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Abstract. During the propagation of intense femtosecond laser pulses in
a transparent medium, pulse shortening can occur without external guiding.
Experimental evidence for this effect and a description of its physical origin are
presented. Nearly single cycle pulses at 800 nm with an energy of 0.120 mJ can
be obtained with excellent beam quality. Carrier envelope offset phase (CEP)
stability is conserved or even improved after the nonlinear propagation stage.
Prospects for further improvement are discussed.
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1. Introduction

The present laser technology based on Ti:sapphire allows routinely reproducible optical pulses
in the near infrared (IR) region to be obtained with a typical duration in the range 10–100 fs.
After chirped pulse amplification (CPA) [1], the energy per pulse can reach from millijoule to
several joules, depending on the repetition rate. There are strong incentives to reduce the pulse
duration further, on the brink of the single cycle limit (∼3 fs at 800 nm). Near single cycle
optical pulses are essential ingredients in attosecond physics both for the generation of XUV
attosecond pulses [2, 3] and for a short intense streaking pulse in the near IR [3, 4]. In addition,
they are important in ultra-relativistic nonlinear optics, where the laser field is high enough
to impart to protons a velocity close to the speed of light [5]. The ultra-relativistic nonlinear
optical regime requires peak laser intensities in the range of 1023 W cm−2. A shorter pulse could
lead to drastic cost and size reduction of the laser facility, since most of the purchasing price of
amplifier systems directly scales with the pulse energy.

A well developed technique for pulse compression has been used for several years. It
consists in launching the pulse to be compressed into a long guiding structure (a hollow
fibre) filled with a neutral gas [6]. Self phase modulation (SPM) of the pulse during guided
propagation leads to a large spectral broadening. The broadened spectrum has a linear chirp
since redder frequencies are added during the ascending slope of the propagating pulse while
bluer frequencies are generated on the descending slope. Using an external compressor at
the output yields pulses as short as 4.5 fs [7], or 3.8 fs with a dual fibre compressor [8, 9]. There
are however several disadvantages with this scheme [10]. It requires meticulous alignment, is
prone to hollow fibre damage and is limited in the recompressed pulse energy since plasma
ionization of the gas in the hollow fibre must be avoided.

In 2004, filament compression of carrier envelope offset phase (CEP) [11] stabilized pulses
in the few-cycle regime has been demonstrated in Zurich [12]. It was recognized during the
tedious alignment of two successive hollow fibre compression stages that similar or even better
results were obtained when the two hollow fibres were simply removed. These results were
interpreted as being due to filamentation occurring during propagation in the argon inside
the chambers containing the hollow chambers. Indeed, pulse reshaping of UV and IR pulses
by filamentation had been reported earlier in gases and solids [13]–[16] and shown to result
in shorter subpulses, but it was the first time that isolated pulses close to the single cycle
limit were measured and that numerical simulations showed sub-3 fs self-compressed filaments
[12, 17]. Conserved or even improved carrier-envelope phase (CEP) stability was observed after
the filamentation stage [18]. In this paper, we successively review properties of filamentation
and discuss why pulse compression is expected. Then experimental results concerning the
production of near single cycle IR optical pulses are described and discussed. Finally, we discuss
prospects for further improvements and draw some conclusions.

2. Filamentation

Consider a short pulse of central wavelengthλ0 with an input powerP > Pcr propagating in
a transparent medium. Here, we consider argon, but similar effects take place in other gases,
in transparent liquids or solids.Pcr is given by the relationPcr ≡ 3.72λ2

0/8πn0n2 wheren0

is the index of refraction at the laser wavelengthλ0, n2 is the nonlinear Kerr coefficient at
λ0. For argon at atmospheric pressuren0 = 1.0, n2 = 3× 10−19 cm2 W−1 at 800 nm so that
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Pcr = 3.4 GW. The conditionP > Pcr translates the fact that beam self focusing always prevails
over the defocusing effect due to diffraction. As a consequence, beam collapse is expected to
occur after a propagation distance given by [19]:

Lc =
0.367LDF√

[(Pin/Pcr)1/2 − 0.852]2 − 0.0219
,

whereLDF =
π n0w

2
0

λ0
is the Rayleigh length of the beam of waistw0.

However, before beam collapse, the intensity has increased to the point that ionization
of the gas occurs, in a multiphoton process involving the simultaneous absorption of
11 photons, corresponding to the energy necessary to liberate an electron from an argon atom
(11× 1.55 eV> Ui = 15.76 eV). Beam collapse is therefore prevented by multiphoton
absorption and the defocusing effect of the plasma. The complex interplay between diffraction,
self-focusing by the optical Kerr effect, defocusing and absorption by the plasma and other
effects such as pulse self-steepening leads to the formation of a filament, i.e. a pulse maintaining
a narrow beam diameter (∼50µm) while keeping a high intensity (∼ 5× 1013 W cm−2) over
long distancesL > LDF. Filamentation is described by a set of two coupled, highly nonlinear
equations for the evolution of the envelopeε(r, t, z) of the laser pulse along thez-axis and
that of the plasma densityρ(r, t, z) generated by the intense pulse, which must be solved
numerically. The derivation of the model describing the propagation of an intense pulse in
ionizing transparent media and filamentation is reviewed in [20] and is similar to that performed
by Brabec and Krausz [21], with specific nonlinear terms for the physical effects mentioned
above:

2i

(
k0 +

i

vg

∂

∂t

)
∂ε

∂z
+ [1⊥ + D] ε + 2ik0N (ε, ρ) = 0, (1)

∂ρ

∂t
= W(ε)(ρnt − ρ) +

σ

Ui
ρ|ε|2, (2)

Here, k0 = k(ω0) denotes the wavenumber corresponding to the central frequencyω0 and
k(ω) = n(ω)ω/c wheren(ω) is the refractive index of the medium (the Sellmeier-like dispersion
relation for argon is obtained from [22]). These equations are expressed in the reference frame
moving with the pulse and thus,t denotes the retarded timeτ − z/vg and vg ≡ ∂ω/∂k|ω0

the group velocity. The term1⊥ in equation (1) represents the beam diffraction; the second
term D is defined from its Fourier transform in the frequency domainD̂(ω) ≡ k2(ω) −(
k0 + v−1

g (ω − ω0)
)2

, and accounts for all dispersive terms. The last term in equation (1)
represents nonlinear effects and reads as:

N(ε, ρ) = i
ω0

c
n2T2

|ε|2ε −
σ

2
(1 + iω0τc) ρε − T

W(ε)Ui

2|ε|2
(ρnt − ρ) ε. (3)

The first term in equation (3) represents the optical Kerr effect. Self-steepening is accounted
for through the operatorT ≡ 1 +(i/ω0)∂/∂t in front of the Kerr term. The second term models
plasma induced absorption and defocusing. The last term describes nonlinear energy losses
i.e, the energy spent by the pulse for ionization. For short pulses of a few tenths of a
femtosecond, optical field ionization is the dominating process for plasma generation in the
filament. During filamentation, intensity usually saturates at levels which do not exceed a few
1014 W cm−2 [23]. In this regime simulations using ionization ratesW(ε) described by the
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Table 1. Summary of the parameters used in the simulations of equations (1)
and (2).

Nonlinear index coefficient n2 = 3× 10−19 p cm2 W−1

Critical power for self-focusing Pcr = 3.4p−1 GW
Dispersion See [22]
Ionization rate See [20, 24, 25]
Density of argon ρnt = 2.5× 10−19 p cm−3

Critical plasma density ρc = 1.8× 10−21 cm−3

Collision time τc = 190p−1 fs
Cross-section for inverse bremsstrahlungσ = 7.8× 10−24 m2 (at 1 atm)

Multiphoton absorption coefficient βK = 3.4× 10−138 p cm19 W−10

MPI coefficient σK = 5× 10−140s−1 cm22 W−11

Keldysh–Perelomov, Popov and Terent’ev (KPPT) formulation [24, 25] usually give satisfactory
agreement with experiments (see [20] for a detailed presentation of the model). We also
considered the inverse bremsstrahlung process with a cross-section ofσ = (e2/n0ε0mec) ×

τc/(1 +ω2
0τ

2
c ) according to the Drude model, whereτc denotes the collision time andρc ≡

(ε0me

/
e2)ω2

0 denotes the critical plasma density.
The incoming pulse is assumed to be Gaussian in time and space and its envelope is

described by:

ε(r, t, z = 0) = ε0 exp

(
−

r 2

w2
0

−
t2

t2
p

− i
k0r 2

2 f

)
, (4)

wherew0 is the beam waist,tp is the pulse duration andf the effective focal length of the
system.

The input intensity is computed from the input powerε2
0 = 2Pin/πw2

0 and the input power
Pin is computed from the pulse energyPin = Ein/tp

√
π/2.

Regarding intensity saturation, multiphoton ionization (MPI) rates described by a simple
power law W(ε) = σK |ε|2K where K = mod(Ui/hω0 + 1) denotes the number of photons
involved in the process (for argon atoms with potentialUi = 15.76 eV, K = 11 at 800 nm)
approximate well the KPPT rates and also give satisfactory agreement with experiment, even
if MPI rates may be significantly larger than KPPT rates. The reason is the rapid increase of
ionization rates with intensity, whereas the Kerr index increases only linearly with intensity.
The estimations below will therefore rely on the MPI coefficientσK and its counterpart for
multiphoton absorptionβK = Kηω0ρntσK , whereρnt denotes the density of neutral atoms.

Table 1 below summarizes the parameters used in our simulations and their pressure
dependence [26, 27] for filamentation in an argon gas of pressurep, expressed in atm.

An important effect in self-compression by filamentation is the chirp induced by
the different physical effects during propagation. Table2 below summarizes the different
contributions to calculate the chirp of a pulse, assumed to have a Gaussian profile
ε ∝ exp(−t2/T2) with flat temporal phase upon filamented propagation over a distance1z.
We consider three physical effects: group velocity dispersion (GVD) in the gas with typical
lengthLdisp = T2/2k′′

0, SPM induced by the Kerr effect and plasma induced SPM. The first line
indicates for each column the phase profile in timeφ(t) that would be carried by the pulse after
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Table 2. Contributions to the chirp induced by different physical effects.

GVD Kerr-induced SPM Plasma-induced SPM

Temporal t21z/T2Ldisp

1+(1z/Ldisp)
2

ω
c n2Isatexp

(
−

2t2

T2

)
1z −

ω0
c

σK I K
satρnt

2n0ρc

t∫
−∞

exp
(
−

2Kt ′2

T2

)
dt ′1z

domainφ(t)

Spectral k′′

0(ω−ω0)
2

2 1z ω
c

√
2

√
3
n2Isatexp

(
T2 (ω − ω0)

2 /12
)
1z −

ρsatω
2
01z

2n0ρcc2(k0+v−1
g (ω−ω0))

domainφ(ω)

Chirp d2φ

dω2 |ω=ω0 k′′

01z ω0
c

√
2

√
3
n2Isat

T2

6 1z −
ω0
c

ρsat1z
n2

0ρck2
0v2

g

Chirp value 2 fs2 58 fs2
−5 fs2

propagation over1z in the absence of the other effects. The second line is the spectral phase
under the same assumptions and was obtained from an approach similar to that of [26]. The
third line is simply the chirp coefficient defined as the second-order derivative of the spectral
phase at the central frequency. The last line gives an evaluation of the chirp coefficient for a
pulse durationT = 6 fs and a propagation distance of1z = 10 cm. We used for this evaluation
the saturation intensity within the filament and the plasma density given by the expressions
[20, 28, 29]:

Isat=

(
2n2ρc

σK Tρnt

)1/(K−1)

= 5× 1013 W cm−2, ρsat= 2ρcn2Isat= 6× 1016 cm−3.

These calculations are only indicative since they rely on the assumption of a decoupling
between space and time. However, the calculated values for the chirp of a 6 fs pulse formed
in a filament show that the Kerr-induced SPM dominates other contributions from GVD and
SPM. This means that it is unlikely that a self-shortened filament carries a negative effective
dispersion. Pulse compression by filamentation actually results from a reshaping process in
space and time that is very similar to the transformation of a bell shaped pulse into a horseshoe
pulse when it propagates in a ionizing gas [30, 31]. This mechanism will be illustrated below
by the results of numerical simulations. In fact, the filamentation dynamics can hardly be
described by considering space and time as independent. Several phenomena associated with
filamentation are a signature of strong spatiotemporal coupling. A typical example is conical
emission [32]–[36] which reflects the fact that ultrashort pulses undergoing filamentation
carry angular dispersion. This angular dispersion ensures non-dispersive and non-diffractive
behaviour of the self-compressed filament over some distance. This is clearly an advantage for
the use of self-compressed filaments. On the other hand, little is known regarding the effect of
standard optical elements (e.g. chirped mirrors) on these non-conventional pulses.

Regarding energy losses, multiphoton absorption should prevail over plasma absorption. A
rough estimation can be performed from the conservation equation for the pulse energyE:

∂E

∂z
= −σ

∫
ρ|ε|2dt2πr dr − βK

∫
|ε|2K dt2πr dr. (5)

By introducing a Gaussian beam and pulse shape into equation (5), one obtains

1E

1z
= −σρsatIsatT R2π

√
π

4
√

2
− βK I K

satTR2 π
√

π

8K
√

2K
.
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(a) (b)

Figure 1. Typical simulation results for filamentation of a 0.9 mJ, 40 fs, 800 nm
laser pulse in a 0.8 atm argon gas cell. (a) Peak intensity (solid curve, left axis)
and electron density (dashed curve, right axis) as functions of the propagation
distance. (b) Pulse duration defined as the full width at half maximum (FWHM)
of the radially integrated temporal profile of the pulse intensity (over a radius of
100µm).

The first term on the right-hand side corresponds to plasma absorption and the second to
multiphoton absorption: for a pulse of durationT = 6 fs, beam widthR = 100µm with a
peak intensity of 8× 1013 W cm−2, propagating over 10 cm, the relative losses are: 240µJ for
multiphoton absorption and 2µJ for plasma absorption.

The numerical results shown in figure1 were obtained by solving equations (1) and (2) with
parameters typical of self-compression experiments in an argon gas cell. The pulse parameters
at the entrance window of the gas cell are:w0 = 2.7 mm, f = 56 cm,tp = 25 fs (FWHM 30 fs,
transform limited pulse),Ein = 0.9 mJ and are standard in our experiments.

The peak intensity exhibits a 35 cm long plateau at 7× 1013 W cm−2 corresponding to the
filament. The density of the associated plasma channel slightly exceeds 1017 cm−3. Figure1(b)
shows the evolution of the duration (FWHM) of the radially integrated intensity profile over
a radius of 100µm. This corresponds to the maximum value reached during propagation by
the radius of the light filament, defined as the half width at half maximum of the fluence (time
integrated intensity) distribution. The minimum duration of 5 fs is obtained at the end of the
filament. This final duration depends on the input conditions but this self-compression behaviour
is generally similar for all filaments. Under slightly different conditions, the minimum pulse
duration at the end of the filament was shown to be as short as a single cycle [17]. The moving
focus model [37] brings a simple explanation to this effect: self-focusing of the most powerful
central part of the pulse should occur faster, hence for smaller propagation distances, than in the
trailing part. In addition, self-focusing of the trailing part is delayed by plasma defocusing and
therefore occurs at the end of the filament while the leading part undergoes nonlinear losses,
diffraction and dispersion.

Figure2 shows a comparison between the energy content of the filament and that of the
whole pulse for the same input parameters as above. The energy calculated by integration
over the whole numerical box exhibits a step-like decrease of 240µJ (27% of the input
energy) aroundz = 50 cm, which corresponds mainly to multiphoton absorption. Plasma
absorption is much smaller (0.5% of the energy losses). The energy contained in the core
of the 100µm filament can be roughly evaluated to be around a few hundred microjoule
(30 fs× 1014 W cm−2

× (100µm)2
∼ 300µJ, i.e. 33% of the input energy). The dashed curve

in figure2 shows that the energy exactly computed in the filament core reaches this value at the
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Figure 2. Evolution of the pulse energy (solid curve) and energy of the filament
core (100µm radius) during propagation (dashed curve). The pulse parameters
are the same as in figure1.

Figure 3. Dynamics of the pulse self-compression by filamentation. (a) Intensity
distribution showing a 40 cm long filament. (b)–(d) Full space-time intensity
profiles at four propagation distances in the filament. Here, the 800 nm, 1.1 mJ
and 30 fs input pulse had a beam widthw0 = 2.25 mm, and was propagated in
air before entering the argon gas cell at 0.8 atm (from [17]).

beginning of the filament and decreases to 50µJ at the location of the minimum pulse duration.
The energy flow is ingoing towards the core during the self-focusing stage and outgoing beyond
the nonlinear focus. The part of the beam surrounding the filament core actually contains the
main part of the pulse energy. Note that an optimal energy throughput is obtained at 60 cm.
However, the self-compressed filament at this distance is about 10 fs, which indicates a trade-
off between energy throughput and minimum pulse duration [38]. This is also in keeping with
recent simulations by Kosarevaet al [39]. As recently proposed, the pulse energy limitation
could be overcome by using a planar waveguide [40].

The dynamics in the filament involves a recurrent pulse temporal splitting into shorter sub-
pulses (see figure3). Each part of the pulse which is self-focusing becomes rapidly intense and
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5.1 fs, 0.18 mJ (core part), 27% transmission

Figure 4. Experimental set-up (see text). Also shown are the pulse temporal
profiles measured before the first cell (A), after the first cell and compressor
(B) and after the last compressor stage (C).

eventually undergoes strong multiphoton absorption. This is the main reason for the multiple
temporal splitting. Refocusing of the temporal slices of the pulse with peak power above critical
occurs until the end of the filament, where this complicated dynamics gives rise to an isolated
few-cycle pulse with an intensity of a few 1013 W cm−2. This result is obtained in a broad range
of input parameters.

3. Experimental results and discussion

The experimental set-up built in Zurich to produce very short pulses is shown in figure4.
The incident CEP-locked pulses are produced in a commercial Ti:sapphire laser working

at a 1 kHz repetition rate. The pulse duration is 33 fs with a maximum energy per pulse of
0.850 mJ. The beam of diameter 6.4 mm (FWHM) is focused with a−2000 radius of curvature
(ROC) silver mirror inside a first 1.8 m long cell filled with Ar at a pressure of 900 mbar. After
emerging from the cell, the spectrally broadened pulse is recollimated, sent through a set of
chirped mirrors to remove the chirp, then focused with another−2000 ROC silver mirror into a
second 1.8 m long cell filled with Ar at a pressure of 820 mbar. The emerging pulse is sent to a
second set of chirped mirrors before being analysed.

Pulse duration measured with the single-shot SPIDER technique [41] is shown at the
entrance, after the first cell and at the output (see figure4). The shortest pulse which could be
obtained is 4.9 fs. More careful spatio-temporal characterization revealed a trade-off between
the shortest pulses and the available pulse energy: 5.7 fs (0.38 mJ, 57% transmission) [12],
5.1 fs (0.18 mJ, 27%) [18, 42] and 4.9 fs (0.12 mJ, 18%) [38]. These results are in agreement
with the numerical calculations, which predict an emerging pulse with a core of duration∼5 fs
and∼0.100 J energy, surrounded by a photon reservoir of longer duration (see figure3).
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(a) (b)

Figure 5. Beam pointing stability measured for 1500 consecutive laser pulses
after a two-stage filament compressor in argon: (a) 0.5% rms without a filament
(with evacuated gas cells) and (b) 0.6% rms with a filament. The two gas cells
were filled with argon at 800 and 700 mbar. Similar results have been achieved
at other gas pressures (according to [42]).

The compressed pulse benefits from several features of filaments: since the intensity is
clamped to the ionization threshold, intensity fluctuations are reduced [43]. The beam quality
is improved by a self-cleaning effect with a factorM2

∼ 1 [44]. Fluctuations in the beam
position have also been compared to those of a pulse propagating in vacuum. (see figure5).
No appreciable deterioration of the position stability of the filamented pulse is observed.
Furthermore, a CEP-locked pulse preserves or even improves the phase stability during the two
filamentary stages [18]. This result is rather surprising, in view of the complex restructuring
of the pulse during filamentation. For example, such a two-state filament compressor has been
successfully used for attosecond angular streaking measurements during which the intense CEP-
stabilized two-cycle pulses had to be stable for several hours supporting a measurement accuracy
of 23 as [4]. The CEP was stabilized at the oscillator and after the two-stage filament compressor
where we could directly use the f-to-2f interferometer [11] without further spectral broadening.

4. Prospects

There is in principle still room for further pulse reduction if better chirped mirrors are used
to mainly compensate for the dispersion of the Brewster-angled exit window of the Ar-cell .
Initial measurements in Zurich yielded pulses of 5.7 fs duration, which could be reduced to
4.9 fs by the use of better designed chirped mirrors. The pulse spectrum measured after the
second filamentation stage but before the chirped mirror compression stage can show a smooth
broadband spectrum (see figure6), with a Fourier transform pulse width of 1.75 fs (assuming a
flat spectral phase). However, design and construction of broadband chirped mirrors compatible
with such a bandwidth become an increasingly challenging task [45, 46]. Another approach to
reach shorter pulses is described in the last paragraph.

At the present time, improvement in compressed pulse energy is limited by the onset of
multifilamentation. In argon, multifilamentation occurs at∼ 17 GW [47]. An approach to obtain
more energetic short pulses is to organize the multifilamentary pattern [48]. For instance, by
using a 0.1 J, 30 fs pulse with a top hat intensity profile, one expects∼10 filament-compressed
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(a) (b)

Figure 6. Two stage argon filament compressor with 0.82 mJ input pulse energy
and 0.39 mJ output energy: (a) measured power spectrum of the pulse after the
second compression cell but before the final compressor stage, (b) corresponding
pulse duration if a constant spectral phase is assumed (according to [12]).

(a) (b)

Figure 7. Self-compression in a pressure gradient. Input pulse: 1 mJ, 30 fs and
800 nm. (a) Beam width (FWHM of the fluence distribution, solid curve, left
axis) and pressure gradient (dashed line, right axis) versus propagation distance.
(b) Duration of the radially averaged (over 100µm) intensity profile.

pulses located on a circle. The conical emission from such organized multiple filaments shows
interference effects, indicating that it should be possible to add them coherently [49]. Therefore,
increase of peak intensity by two orders of magnitude could be obtained by focusing these
synchronous multiple compressed pulses on target.

Another improvement concerns the extraction of the compressed pulse and its delivery on
target. The transport of very short self-compressed pulses is delicate in the present scheme since
transmittance through an exit window introduces dispersion which needs to be compensated,
e.g. by means of recompression mirrors beyond the gas cell. To optimize the transport of the
self-compressed filament, we proposed to propagate the laser pulse in a gas density gradient
which allows control of the nonlinear properties of the medium via the gas pressure [50].
The gradient is shaped so as to form the filament and stop it immediately after the plasma
induced self-compression. The process ends up with a short pulse delivered directly in vacuum.
Figure 7(a) shows an example of pressure gradient (dashed green line) with three control
parameters, the maximum pressure of the gas, the length of the gradient and the position of
the pressure gradient with respect to the focus (at 80 cm) of the lens. These parameters were
optimized by numerical experiments so as to reach the shortest self-compressed filament with
the best contrast. The gradient shown in figure7(a) was actually measured in a pressure gradient
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Figure 8. Pulse dynamics in space and time during self-compression in the
pressure gradient for the same parameters as in figure7.

cell specifically designed to reproduce the optimal profile [50]. Simulations performed with this
measured pressure gradient predict the following results: the beam width plotted as a solid curve
exhibits a small-scale filament around the maximum pressure. The pulse duration was computed
by integration of the intensity over a 100µm diameter, which contains the filament. Figure7(b)
shows the decrease of the pulse duration down to 4 fs along the propagation distance. A nearly
single cycle pulse is finally obtained in vacuum. Note that no external compressor stage is
required in this scheme and that the self-compression by filamentation predicted to occur in the
real pressure gradient is nearly as efficient as that predicted in the ideal bi-Gaussian pressure
gradient [50].

The complete dynamics in space and time of this single cycle pulse generation is shown
in figure8. Initially, the beam is focused and self-focused. Once the nonlinear focus is reached
(figure8(a)), a plasma is generated on the trail of the pulse which defocuses the light on-axis,
thus generating a V-shaped pulse, i.e a cone in space-time by keeping in mind the revolution
symmetry (figures8(b) and (c)). At this stage, a cell at constant pressure would lead to a
refocusing of the trail on-axis; here, the decrease of the pressure leads to the progressive
extinction of the Kerr effect, thus preventing refocusing, and all higher order nonlinear effects
(plasma generation and nonlinear losses) are switched off even faster (figures8(d) and (e)). The
pulse finally takes the shape of a pancake while the pressure decreases since the still intense part
of the wave moves slower than the wings. This nearly single-cycle pancake keeps its duration
and only diffracts in vacuum (figure8(f)). Thus, pressure gradients constitute a very efficient
mechanism to control the filamentation process and to stop it immediately after the generation
of a single cycle pulse.
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Figure 9. Typical intensity profile (top) and instantaneous frequency (bottom) for
a self-compressed filament. This example was obtained from the self-compressed
filament extracted from an argon gas cell with an optimized bi-Gaussian pressure
gradient [50]. The pulse parameters are the same as in figure7.

Finally, the self-compression scheme suggests that filamentation can serve a dual purpose,
to shorten incident pulses and in the same cell to generate high harmonics, allowing attosecond
pulse generation. High-order harmonics were shown to be generated in Xe with filamented
pulses by Langeet al [23]. With self-compressed filaments down to a few cycles, the
time dependent frequency constitutes another remarkable feature worth presenting for its
consequences on attosecond pulse generation: it is well known that a laser pulse propagating
in an ionizing gas undergoes frequency blueshift. In a filament, the plasma is significant only
in the trail of the pulse. For a self-compressed filament, figure9 shows that the instantaneous
frequency exceeds 3ω0 at the peak of the pulse and abruptly decreases in the trail. This means
that self-compressed filaments can be viewed as gates in both time and frequency. With a
self-compressed filament in a uniform pressure gas cell of Ne serving as driving pulse for
high harmonics generation (HHG) in argon Chakrabortyet al [51] predicted from numerical
simulations that isolated 560 as XUV pulses should be obtained by spectral selection of a
10ω0 range of harmonics beyond the cutoff. The rising edge of this isolated XUV emission
is shaped by the increase of the intensity of the driving self-compressed filament. XUV
emission stops before the peak of the driving pulse when the frequency becomes so large
that it significantly reduces the cutoff energy in the spectrum of the generated harmonics with
respect to that obtained for a non-chirped pulse with the same intensity. The pressure gradient

New Journal of Physics 10 (2008) 025023 (http://www.njp.org/)

http://www.njp.org/


13

scheme described above would be especially useful for a dual operation of pulse-compression
by filamentation and HHG. It would also make it easy to overcome the femtosecond barrier.

We conclude by mentioning that pulse self-compression by filamentation is still in its early
stage of development but it already shows promising potential. Progress can be expected in the
coming years.
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