
HAL Id: hal-00455124
https://polytechnique.hal.science/hal-00455124

Submitted on 1 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Enhancement of Terahertz Radiation from Laser
Filaments in Air by a Static Electric Field

Aurélien Houard, Yi Liu, Bernard Prade, Vladimir Tikhonchuk, André
Mysyrowicz

To cite this version:
Aurélien Houard, Yi Liu, Bernard Prade, Vladimir Tikhonchuk, André Mysyrowicz. Strong Enhance-
ment of Terahertz Radiation from Laser Filaments in Air by a Static Electric Field. Physical Review
Letters, 2008, 100 (25), pp.255006. �10.1103/PhysRevLett.100.255006�. �hal-00455124�

https://polytechnique.hal.science/hal-00455124
https://hal.archives-ouvertes.fr


 1 

Strong Enhancement of Terahertz Radiation from Laser Filaments in Air  

by a Static Electric Field 

              
Aurélien Houard

1
, Yi Liu

1
, Bernard Prade

1
, Vladimir T. Tikhonchuk

2
, and André Mysyrowicz

1*
 

1Laboratoire d’Optique Appliquée, ENSTA, Ecole Polytechnique, CNRS UMR 7639, Palaiseau, 91761 France 
2Centre Lasers Intenses et Applications, Université Bordeaux 1, CEA, CNRS UMR 5107, Talence, 33405 France 

 

  We observe a three order of magnitude enhancement of the terahertz (THz) energy radiated by a 

femtosecond pulse undergoing filamentation in air in the presence of a static electric field. Measurements 

of THz pulse duration, spectrum, polarization and radiation pattern elucidate the physical processes 

responsible for this radiation. A theoretical model explains the results and predicts another three orders 

of magnitude enhancement with a TW laser pulse. 

 

The ionization front produced by an intense femtosecond laser pulse propagating in air is the source of a 

THz radiation emitted in a narrow cone in the forward direction [1, 2]. The radiation is produced by the 

longitudinal oscillations of the plasma left in the wake of the moving ionization front. These plasma oscillations 

are excited by the ponderomotive force of the laser pulse and are heavily damped by electron collisions on a 

picosecond timescale. The radiation is emitted by a dipole-like structure moving at the speed of light, it is 

therefore similar to the Cerenkov emission created by a pair of opposite charges. Because of the simplicity in its 

implementation, this THz source is suitable for many applications. It requires no optical element or crystal in the 

path of the femtosecond laser which would be prone to damage or induce dispersion, and is therefore easily 

scalable to higher laser intensities. In contrast to other methods such as four wave mixing of femtosecond pulses 

at frequencies ω and 2ω, there is no phase sensitive adjustment or precise alignment between pulses. Another 

attractive feature is the fact that such a source can be placed in the proximity of distant targets, solving thereby 

the longstanding problem posed by the strong attenuation of THz radiation in air due to water vapor. Displacing 

the onset of ionization is easily achieved by either imposing a negative linear chirp to the femtosecond laser 

pulse or by enlarging the beam diameter [3, 4].  

In this letter, we show that the THz radiation from the laser filament is highly sensitive to the presence of a 

transverse electric field. We demonstrate an enhancement of its intensity by three orders of magnitude and show 

how a further enhancement by at least another three orders of magnitude should be easily obtained. This 

enhanced source maintains all advantages discussed above since the static field can be also placed in front of the 

sample. The THz pulse we have obtained in the laboratory with a 2 mJ femtosecond pulse is already sufficiently 

intense to allow its complete characterization by nonlinear mixing in air with an infrared source [5]. We present 

an analytical model explaining all observed features.  

A commercial Ti:Sa CPA (chirped pulse amplified) laser chain, delivering 50 fs duration pulses at 800 nm, 

with a maximum energy of 10 mJ per pulse operating at a repetition rate of 100 Hz, or a similar system operating 

at 1 kHz were used. The laser beam was focused in air by a convex lens to form a plasma filament with a typical 

length of 5 cm. A static electric field (also referred as a DC bias) was applied to the ionized region along 

direction X (perpendicular to the filament axis Z) by placing two copper plane electrodes across the filament, see 

Fig. 1(a). The electrode length was 5 cm and the maximum applied field was 10 kV/cm.  To characterize the 

THz radiation emerging from the region between the electrodes, several detectors were used. A bolometric 

detector cooled to 4 K in conjunction with a band pass filter centered at 1.3 THz (bandwidth ~ 1 THz) measured 

the THz pulse energy (see [6] for details). The angular radiation pattern was measured with a heterodyne 

detector sensitive to the 0.1 THz component of the spectrum [2].  The THz waveform was fully characterized by 

mixing in ionized air the THz signal with a short laser pulse at 800 nm to generate an optical signal at 400 nm, 

using the technique pioneered by Dai et al. [5] (see Fig. 1(b)).  

Figure 2 shows the angular patterns of THz radiation measured in the plane Z-X, with the detector sensitive 

to the X component of the polarization. In the absence of static field, we observe the typical conical shape of the 

THz emission from the longitudinal current excited by the laser pulse ponderomotive force reported in [2], Fig. 

2(a). With increase of the electric field, the energy of THz signal increases, while its peak gradually converges to 

the filament axis. A change of the DC field polarity reverses the observed pattern with respect to the plane Z-Y 

(see insets in Fig. 2). We also measured the angular pattern as a function of the filament length, which was 

varied by changing the focal length of the lens, Fig. 3(a). The influence of the external field on the total energy 

of THz signal in the range 0.5 − 2 THz measured with a bolometer is shown in Fig. 3(b). A quadratic 

dependence is observed, with no sign of saturation up to the highest applied field of 6 kV/cm. This means that 

the amplitude of the THz signal is directly proportional to the static electric field. In another experiment, we 

obtained a factor 10
3
 enhancement with a 2.5 mJ laser pulse energy and a DC field of 5 kV.  

The polarization of the THz signal was measured by rotating a grid polarizer in front of the bolometer 

around Z axis. The THz emission was found to be linearly polarized in the plane X-Z containing the external 

electric field, but did not depend on the laser polarization. This excludes a four wave mixing or difference 
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frequency generation (DFG) between the laser field and the static field as the origin of the THz enhancement, as 

suggested in ref. [7]. Since the THz field generated by the ponderomotive current is radially polarized [1], the 

polarization and directionality of the signal in the present experiment indicate a direct THz emission from the 

transverse current excited in the plasma column by the external electric field. 

The THz temporal waveform has been characterized by the technique shown in Fig. 1(b) using a kHz laser 

system. Part of the initial pulse at the wavelength of 800 nm was mixed with the THz pulse emerging from the 

filament, yielding a signal at the second harmonic frequency, 400 nm. By measuring the harmonic signal as a 

function of the delay between the THz and the ultrashort infrared pulse, one determines the waveform of the THz 

field, giving access to the pulse duration and spectrum. This detection method presents the advantage over 

classical electro-optics sensors to have a better time response since it avoids phonon absorption and dispersion of 

crystals in the THz range [8]. An example of such a signal is shown in Fig. 4(a). The THz pulse is short, 

essentially a single cycle. Its spectrum, obtained by a Fourier transform is shown in Fig. 4(b). 

We model this laser-created filament as a plasma channel of a cylindrical shape, with a homogeneous 

electron density ne and a radius c. The static external electric field Es is directed along the X-axis 

perpendicularly to the channel axis Z. Electrons in the channel feel the electric field Es at the moment they are 

detached from atoms by the AC electric field of the laser pulse. Therefore the electron motion at different 

positions z in the channel is similar but occurs with time delay z/c, which depends on the distance of a particular 

cross section from the channel head. That is, the electron motion depends on the coordinates in the channel cross 

section, x, y, and the local time  = t – z/c. 

The plasma in the channel being a good conductor, the electrons start moving under the action of the 

external electric field, accumulate charge at the channel edge and eventually screen completely the electric field 

in the plasma. However, there is a transient process of redistribution of charges, and the temporal behaviour of 

the electric current depends on relation between three parameters: the duration of the ionization process tion, the 

electron collision time tcol, and the period of plasma oscillations tpl. For the experimental set of parameters of the 

laser filament in air at normal pressure, the electron density in the channel is 10
16

 − 10
17

 cm
-3

, the channel radius 

30 − 50 µm and the laser pulse duration is about 50 fs. Then the plasma period is approximately 1 − 0.5 ps, the 

collision time is of the same order 1 – 0.3 ps; both of them longer than the ionization time. One can therefore 

consider a plasma response to an instantaneous ionization. The electric current is directed along the direction of 

the external electric field and it exhibits oscillations at the plasma frequency decaying in a few electron collision 

times.  

The temporal behaviour of the electric current jx() is qualitatively similar to that in the wake field created 

by the laser ponderomotive force considered in ref. [2],  
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plasma frequency and e is the electron collision frequency. There are two major differences from the wake 
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proportional to the external field Es. 

The spectrum of the emitted energy in the solid angle dis given by: 
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The maximum of the emission is directed along the filament axis,  = 0, and the filament length L defines the 

angular width of the emission cone,  = 4c/L. Moreover, in difference from the longitudinal current, the 

total emitted energy is proportional to the channel length L. As shown in Fig. 3(a), the measurements at 0.1 THz 

are in good agreement with this expression. We observe a linear increase of the radiated energy, and a reduction 

of the angular width, while increasing the plasma length. 

The spectrum of the electromagnetic emission is defined by the current Fourier component:  
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It has a maximum at the plasma frequency and the line width is proportional to the electron collision frequency. 

The spectrum obtained from the waveform measurement is in a good agreement with this formula (see Fig. 4 (b)). 

Let us consider also the waveform of the emission at the distance r >> L from the source,  
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This is a typical damped oscillation at the plasma frequency. The on-axis amplitude is proportional to the 

filament length and the plasma density, and the cone opening is a few degrees for the present parameters.  

The analysis of the far field THz emission provides a method for measuring the ponderomotive potential (or 

the laser intensity in the filament). For a low DC field, the THz field generated by the ponderomotive force, E
1
 is 

comparable with the one induced by the static transverse field E
2
. By observing the far field angular pattern 

resulting from their superposition, one can estimate the relative strength of the two fields, and deduce the 

ponderomotive potential of the laser pulse responsible for the transition Cerenkov emission. The Fourier 

components of the two radiation electric fields at the distance r from the filament within the emission cone read: 
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where Up = e
2
IL/(2meε0cω0

2
) is the ponderomotive potential proportional to the laser pulse intensity [2]. We 

compared the calculated pattern at ω = 0.1 THz with the measurements presented in Fig. 2(b) and (c). The best 

fit is obtained for Up = 5.4 eV, corresponding to a laser intensity inside the filament IL = 9x10
13

 W.cm
-2

. 

The model predicts also a correct dependence of the emitted energy on the DC field. Indeed, the total 

emitted energy reads: 
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It is proportional to the square of the filament cross section, to the square of the DC electric field strength, to the 

filament length and to the plasma density in the channel in the power 3/2.  

Löffler et al.  were the first to report a large enhancement of the THz emitted by ionized air in presence of a 

static field [9]. Our model of THz emission in a certain sense is similar to the current surge idea they suggested. 

The emission is produced by an electric current propagating in the wake of the laser pulse. However, the 

important difference is the predicted coherent and nonlocal nature of the emission, which defines its good 

directivity and a relatively high radiated energy. There is also very close similarity with the electromagnetic 

emission from double filament structure [10]. The qualitative features are very similar since the current source 

has the same direction; the main difference is that the electric field generated by bifilamentation depends on the 

distance between the filaments, which is not well known. The geometry with external electric field offers better 

defined conditions and consequently a more unambiguous comparison with a theoretical model. 

The model reproduces all observed results. This is true for the radiation pattern for different field strength 

(as shown by red curves in Fig. 2) and for different plasma column lengths (Fig. 3). The model also predicts the 

correct dependence of the THz intensity as a function of the DC electric field (see Fig 3(b)). The total emitted 

energy, measured with the bolometric detector and the band pass filter (see ref. [6] for the calibration method), is 

estimated to be 0.05 nJ for Es = 5 kV/cm, laser energy 2.4 mJ and L = 2 cm, while Eq. (6) for the same 

parameters gives 0.08 nJ. There are clear possibilities for improvement of the THz emission efficiency. First, one 

can apply a higher DC electric field. A voltage of 20 kV, still well below the threshold for spontaneous sparking 

discharge, will lead to a factor 16 enhancement. Increasing the distance over which the electric field is applied  

to L = 20 cm can bring another factor of 10. Another improvement by one or two orders of magnitude can be 

achieved with the use of a more powerful femtosecond laser. Above the threshold of ~ 10 GW, the IR 

femtosecond pulse generates N filaments, which all act as a source of THz emission (Here, N ~ P/Pcr and Pcr = 5 

GW is the critical power for filamentation [4]). In the experiment without static field, we observed a factor 40 

enhancement of the THz signal by using a pulse energy of 200 mJ from the teramobile instead 10 mJ [2]. 

Furthermore, since the THz radiation emitted by each individual filament is coherent, by phase sensitive control 

of the filament pattern one should obtain a THz intensity scaling like N². Altogether, one can expect an increase 

of the THz intensity by at least 10
3
, bringing the pulse energy content to hundreds of nJ for a pulse duration of 1 

ps.  

One can also notice that according to the theoretical model, the same enhancement of the THz generation 

should be observed if the static field is replaced by a THz or a microwave pulse of the same electric field 

(several kV/cm). Indeed, if the period of the applied field is much longer than the time during which ionization 

occurs (tion ≈ 50 fs), this field is seen as static by the ionization front. Thus, by selecting a microwave pulse 

which is not absorbed by air and focusing it on the filament, one should be able should allow to remotely 

enhance the THz emission of the plasma string. 

In conclusion, it is demonstrated experimentally that the THz emission from a femtosecond laser filament in 

air can be greatly enhanced when an electric field is applied in the ionized air region. A theoretical model has 

been developed, which explains well all observed features. From far field THz measurements, most of the 
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intrinsic characteristics of the plasma column can be deduced or alternatively the (remote) local electric field can 

be measured if the plasma properties are known.  
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FIG 1. Experimental method for THz generation (a) and for THz detection (b). 

 

 

 



 5 

FIG 2. Angular dependence of the THz emission generated in a filament in presence of a DC field |Es |= 0 (a), 0.5 (b) and 3 

kV/cm. Measurements were made at 0.1 THz with a focusing lens F = 1000 mm generating a 2 cm plasma filament. Red 

continuous curves:  fit using Eq. (5) with a laser intensity IL ≈ 9x1013 W/cm2. 
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FIG 3. (a) Angular dependence of THz emission in presence of a static field Es = 5 kV/cm for the filament lengths 1.5 and 5 

cm. Red curves are fits using Eq. (2) with the corresponding plasma lengths. (b) Energy of the THz radiation in the range 1 − 

2.5 THz measured as a function of the DC electric field for a 2 cm plasma. The input IR pulse has energy of 1.4 mJ and a 

pulse duration of 50 fs. 
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FIG 4. (a) THz field measured by induced second harmonic generation. (b) Corresponding spectrum in the range 0.1 − 10 

THz obtained by a Fourier transform. The red dotted curve is calculated using Eq. (3) with ωpe = 1.9×1012 rad.s-1 and νe = 

5×1012 rad.s-1). 
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