
HAL Id: hal-00458295
https://polytechnique.hal.science/hal-00458295v1

Preprint submitted on 19 Feb 2010 (v1), last revised 4 Mar 2011 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deciding the finiteness of the number of simple
permutations contained in a wreath-closed class is

polynomial
Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Dominique Rossin

To cite this version:
Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Dominique Rossin. Deciding the finiteness of
the number of simple permutations contained in a wreath-closed class is polynomial. 2010. �hal-
00458295v1�

https://polytechnique.hal.science/hal-00458295v1
https://hal.archives-ouvertes.fr

Deciding the finiteness of the number of simple permutations

contained in a wreath-closed class is polynomial∗.

Frédérique Bassino,

LIPN UMR 7030, Université Paris 13 and CNRS,

99, avenue J.- B. Clément, 93430 Villetaneuse, France,

Mathilde Bouvel, Adeline Pierrot

LIAFA UMR 7089, Université Paris Diderot and CNRS,

Paris, France.

Dominique Rossin

LIX, UMR 7161, Ecole Polytechnique and CNRS,

Palaiseau, France

Abstract

We present an algorithm running in time O(n logn) which decides if a wreath-
closed permutation class Av(B) given by its finite basis B contains a finite number
of simple permutations. The method we use is based on an article of Brignall,
Ruškuc and Vatter [7] which presents a decision procedure (of high complexity) for
solving this question, without the assumption that Av(B) is wreath-closed. Using
combinatorial, algorithmic and language theoretic arguments together with one of
our previous results on pin-permutations [4], we are able to transform the problem
into a co-finiteness problem in a complete deterministic automaton.

1 Introduction

In [8], Knuth introduced pattern avoiding permutation classes. These classes present
nice combinatorial properties, for example 231 avoiding permutations are in one-to-one
correspondence with Dyck words. It is then natural to extend this enumerative question
to all classes and compute, given a set of permutations B, the generating function
S(x) =

∑

snx
n where sn is the number of permutations of length n avoiding every

permutation of B. From the work of Albert and Atkinson [3], many criteria arise giving
sufficient conditions to decide the nature of the generating function: rational, algebraic,
P-recursive . . .

∗This work was completed with the support of the ANR project GAMMA number 07-2 195422

1

In a series of three articles [6, 5, 7] Brignall et al. prove that it is decidable to know if
a permutation class of finite basis contains a finite number of simple permutations, and
hence has an algebraic generating function. Every algorithm involved in this decision
procedure is polynomial except the algorithm deciding if the class contains arbitrarily
long proper pin-permutations.

In [4] a complete characterization of pin-permutations is given. We use this character-
ization to give a polynomial-time algorithm for the preceding question in the restricted
case of wreath-closed permutation classes, that is to say the classes of permutations
whose basis contain only simple permutations. More precisely, we give a O(n log n) algo-
rithm to decide if a finitely based wreath-closed class of permutations Av(π(1), . . . , π(k))
contains a finite number of simple permutations where n =

∑

|π(i)|. A key ingredient of
this procedure is the transformation of a containment relation involving permutations
into a factor relation between words. As a consequence deciding the finiteness of the
number of proper pin-permutations is changed into testing the co-finiteness of a regular
language given by a complete deterministic automaton.

The paper in organized as follows. We first recall basic definitions and known re-
sults that will be used in the sequel. In Section 3 we establish, in the special case of
wreath-closed permutations classes, some links between pattern containment relation on
permutations and factor relation between words. Finally Section 4 is devoted to the
presentation of a polynomial algorithm deciding the finiteness of the number of proper
pin-permutations contained in a wreath-closed permutation class by checking the co-
finiteness of a regular language given by a complete deterministic automaton.

2 Background

2.1 Definitions

We recall in this section a few definitions about permutations, pin representations and pin
words. More details can be found in [6, 7, 4]. A permutation σ ∈ Sn is a bijective function
from {1, . . . , n} onto {1, . . . , n}. We either represent a permutation by a word σ = 231 4
or its diagram (see Figure 1). A permutation π = π1π2 . . . πk is a pattern of a permutation
σ = σ1σ2 . . . σn, and we write π ≤ σ if and only if there exist 1 ≤ i1 < i2 < . . . < ik ≤ n

such that π is order isomorphic to σi1 . . . σik . We also say that σ involves or contains
π. If π is not a pattern of σ we say that σ avoids π. A permutation class Av(B) -
where B is a finite or infinite antichain of permutations called the basis- is the set of all
permutations avoiding every element of B. A permutation is called simple if it contains
no block, i.e. no mapping from {i, . . . , (i+ l)} to {j, . . . , (j + l)}, except the trivial ones
corresponding to l = 0 or i = j = 1 and l = n − 1. When the basis B contains only
simple permutations the permutation class Av(B) is said to be wreath-closed. In [3]
wreath-closed classes are defined in a different way but Albert and Atkinson prove that
both definitions are equivalent.

In the following we study wreath-closed classes with finite basis. Our goal is to
check whether such a class contains a finite number of simple permutations, ensuring in

2

this way that its generating function is algebraic [3]. As we shall see in the following,
a class of particular permutations, called the pin-permutations, play a central role in
the decision procedure of this problem. For this reason, we record basic definitions and
results related with these pin-permutations.

A pin in the plane is a point at integer coordinates. A pin p separates - horizontally
or vertically - the set of pins P from the set of pins Q if and only if a horizontal - resp.
vertical - line drawn across p separates the plane into two parts, one of which contains
P and the other one contains Q. A pin sequence is a sequence (p1, . . . , pk) of pins in the
plane such that no two points lie in the same column or line and for all i ≥ 2, pi lies
outside the bounding box of {p1, . . . , pi−1} and respects one of the following conditions:

• pi separates pi−1 from {p1, . . . , pi−2}.

• pi is independent from {p1, . . . , pi−1}, i.e., it does not separate this set into two
non empty sets.

A pin sequence represents a permutation σ if and only if it is order isomorphic to its
diagram. We say that a permutation σ is a pin-permutation if it can be represented by
a pin sequence, which is then called a pin representation of σ. Not all permutations are
pin-permutations (see for example the permutation σ of Figure 1).

p1

p2
p3

p4

p5
p6

Figure 1: The permutation σ = 472 6 3 1 5, the pattern π = 462 3 1 5 and a pin repre-
sentation of π. 14L2UR (if we place p0 between p3 and p1) and 3DL2UR are pin words
corresponding to this pin representation.

A proper pin representation is a pin representation in which every pin pi, for i ≥ 3,
separates pi−1 from {p1, . . . , pi−2}. A proper pin-permutation is a permutation that
admits a proper pin representation.

Remark 1. A pin representation of a simple pin-permutation is always proper as any
independent pin pi with i ≥ 3 creates a block corresponding to {p1, . . . , pi−1}.

Pin representations can be encoded by words on the alphabet {1, 2, 3, 4, U,D,L,R}
called pin words. Consider a pin representation (p1, . . . , pn) and choose an arbitrary
origin in the plane (we can think of the origin as extending the pin representation to the
sequence (p0, p1, . . . , pn) where p0 is the origin). Then every pin p1, . . . , pn is encoded
by a letter according to the following rules:

• The letter associated to pi is U -resp. D,L,R- if and only if pi separates pi−1 and
{p0, p1, . . . , pi−2} from the top. -resp. bottom, left, right-.

3

• The letter associated to pi is 1 -resp. 2, 3, 4- if and only if pi is independent
from {p0, p1, . . . , pi−1} and is situated in the up-right -resp. up-left, bottom-left,
bottom-right- corner of the bounding box of {p0, p1, . . . , pi−1}.

This encoding is summarized by Figure 2. The region encoded by 1 is called the first
quadrant. The same goes for 2, 3, 4. The letters L,R,U,D are called directions, while
1, 2, 3 and 4 are numerals. An important remark is that the definition of pin words
implies that they do not contain any of the factors UU,UD,DU,DD,LL,LR,RL and
RR.

3 D 4

R

1U2

L

Figure 2: Encoding of pins by letters.

To each pin word corresponds a unique pin representation, hence a unique permuta-
tion but each pin-permutation of size greater than 1 has at least 8 pin words associated
to it -choice of the origin-.

A strict pin word is a pin word that begins by a numeral followed only by directions.

Remark 2. Notice that strict pin words always encode proper pin representations,
whereas a proper pin representation is encoded by both strict and non-strict pin words
-again, choice of the origin-. Following this idea, another remark is that a pin-permuta-
tion is proper if and only if it admits a strict pin word.

The language SP of strict pin words can be described by the following regular ex-
pression:

(1+2+3+4)
(

(ǫ+L+R)(U+D)
(

(L+R)(U+D)
)∗
+(ǫ+U+D)(L+R)

(

(U+D)(L+R)
)∗
)

.

2.2 Some known results

In [7] Brignall et al. studied conditions for a class to contain an infinite number of
simple permutations. Introducing three new kinds of permutations they show that this
problem is equivalent to looking for an infinite number of permutations of one of these
three simpler kinds.

Theorem 1. [7] A permutation class Av(B) contains an infinite number of simple
permutations if and only if it contains either:

• An infinite number of wedge simple permutations.

4

• An infinite number of parallel alternations.

• An infinite number of proper pin-permutations.

The definitions of the wedge simple permutations and the parallel alternations are
not crucial to our work, hence we refer the reader to [7] for more details. What is
however important for our purpose is to be able to test whether a class given by its
finite basis contains an infinite number of permutations of these kinds. Alternations and
wedge simple permutations are well characterized in [7], where it is shown that it is easy
to deal with this problem using the three following lemmas.

Lemma 1. [7] The permutation class Av(B) contains only finitely many parallel alter-
nations if and only if its basis B contains an element of every symmetry of the class
Av(123, 2413, 3412).

Lemma 2. [7] The permutation class Av(B) contains only finitely many wedge simple
permutations of type 1 if and only if B contains an element of every symmetry of the
class Av(1243, 1324, 1423, 1432, 2431, 3124, 4123, 4132, 4231, 4312).

Lemma 3. [7] The permutation class Av(B) contains only finitely many wedge simple
permutations of type 2 if and only if B contains an element of every symmetry of the
class Av(2134, 2143, 3124, 3142, 3241, 3412, 4123, 4132, 4231, 4312).

Therefore deciding if a class contains an infinite number of wedge simple permutations
or parallel alternations is equivalent to checking if elements of the basis involve patterns
of size at most 4. Using [2], this test can be made efficient and its exact complexity is
given in the proof of Theorem 3 in Section 4.

In [7] Brignall et al. also proved that it is decidable to know if a class contains a
infinite number of proper pin-permutations using language theoretic arguments. Ana-
lyzing their procedure, we can prove that it has an exponential complexity due to the
resolution of a co-finiteness problem for a regular language given by a non-deterministic
automaton.

In the sequel making use of a characterization we established in [4], we give a poly-
nomial algorithm for deciding if a wreath-closed class of permutations contains finitely
many proper pin-permutations.

3 Pattern containment and pin words

In this section we show how to transform the pattern containment relation on permuta-
tions into a factor relation between words. More precisely, let Av(B) be a finitely based
wreath-closed class of permutations, that is to say such that its basis B is finite and con-
tains only simple permutations. We prove that the set of strict pin words corresponding
to permutations that contain an element of B is characterized as the set of all strict pin
words whose images by a particular bijection (denoted by φ in the sequel) contain some
factors.

5

First recall the definition of the partial order � on pin words introduced in [7].
Let u and w be two pin words. We decompose u in terms of its strong numeral-led
factors as u = u(1) . . . u(j), a strong numeral-led factor being a sequence of contiguous
letters beginning with a numeral and followed by any number of directions (but no
numerals). We then write u � w if w can be chopped into a sequence of factors w =
v(1)w(1) . . . v(j)w(j)v(j+1) such that for all i ∈ {1, . . . , j}:

• if w(i) begins with a numeral then w(i) = u(i), and

• if w(i) begins with a direction, then v(i) is nonempty, the first letter of w(i) corre-
sponds to a point lying in the quadrant specified by the first letter of u(i), and all
other letters in u(i) and w(i) agree.

This order is closely related to the pattern containment order ≤ on permutations.

Lemma 4. [7] If the pin word w corresponds to the permutation σ and π ≤ σ then
there is a pin word u corresponding to π with u � w. Conversely if u � w then the
permutation corresponding to u is contained in the permutation corresponding to w.

As a consequence, if π and σ are permutations and w is a pin word corresponding to
σ, then π ≤ σ if and only if there is a pin word u corresponding to π with u � w. We
apply this result to the set P (π) of pin words encoding a simple permutation π, and in
the case of a strict pin word w encoding σ. Additionally we show that in this special
case, we can associate to each strict (resp. quasi-strict – see definition in Remark 3) pin
word v = v1v2 . . . vn a word φ(v) (resp. φ(v2 . . . vn)) that does not contain numerals and
such that the pattern involvement problem is equivalent to check if φ(w) has a factor in
φ(P (π)).

Definition 1. Let M be the set of words of length greater than or equal to 3 over the
alphabet L,R,U,D such that R,L is followed by U,D and conversely.

We define a bijection φ from SP to M as follows. For any strict pin word u ∈ SP
such that u = u′ · u′′ with |u′| = 2, we set φ(u) = ϕ(u′) · u′′ where ϕ is given by:

1R 7→ RUR 2R 7→ LUR 3R 7→ LDR 4R 7→ RDR

1L 7→ RUL 2L 7→ LUL 3L 7→ LDL 4L 7→ RDL

1U 7→ URU 2U 7→ ULU 3U 7→ DLU 4U 7→ DRU

1D 7→ URD 2D 7→ ULD 3D 7→ DLD 4D 7→ DRD

For any n ≥ 2, the map φ is a bijection from the set SPn of strict pin words of length
n to the set Mn+1 of words of M of length n+ 1. More precisely, for any u ∈ SP ,

• ui = φ(u)i+1 for any i ≥ 2,

• the two first letters of φ(u) are sufficient to determine the first letter of u (which
is a numeral). Thus for a word v of {LU,LD,RU,RD,UL,UR,DL,DR} we can
by abuse of notation define φ−1(v).

6

Notice that our bijection consists in replacing numbers in strict pin words by letters.
This implies that we know in which quadrant lies every pin of a pin representation
corresponding to the pin word.

Lemma 5. Let w be a strict pin word and p the pin representation corresponding to w.
Then for any i ≥ 2, wi−1 and wi determine the quadrant in which lies pi with respect to
{p0, . . . , pi−2} :

• if i ≥ 3, pi lies in the quadrant φ−1(wi−1wi).

• if i = 2, pi lies in the quadrant φ−1(BC) where φ(w1w2) = ABC.

Proof. (Sketch) If i ≥ 3, wi−1 and wi are letters. For example if wi−1 = L and wi = U ,
then pi lies in the quadrant 2 and φ−1(LU) = 2. If i = 2, wi−1 is a numeral and wi is a
letter. For example if wi−1 = 1 and wi = L, then pi lies in the quadrant 2 and we have
φ(1L) = RUL and φ−1(UL) = 2.

Remark 3. A pin word corresponding to a simple permutation is not always a strict
pin word. But by Remark 1, the only other possibility is that it begins with two numerals
followed only by directions. We call quasi strict pin words these pin words.

We first study the case of strict pin words.

Lemma 6. For any strict pin words u and w, u � w if and only if φ(u) is a factor of
φ(w).

Proof. If u � w, as u is a strict pin word, writing u in terms of its strong numeral-
led factors leads to u = u(1), thus w can be decomposed into a sequence of factors
w = v(1)w(1)v(2).

If v(1) is empty, then w(1) begins with a numeral, w(1) = u(1) and u is a prefix of w
thus φ(u) is a prefix of φ(w).

Otherwise w(1) begins with a direction hence the first letter of w(1) corresponds to a
point lying in the quadrant specified by u1 the first letter of u(1), and all other letters
(which are directions) in u(1) and w(1) agree : u2 . . . u|u| = wi+2 . . . wi+|u| where i = |v

(1)|.

If |v(1)| = i ≥ 2 then according to Lemma 5 we have u1 = φ−1(wi.wi+1). We then
have φ(u) = wiwi+1 . . . wi+|u| and φ(u) is a factor of w which do not contain numeral
thus φ(u) is a factor of φ(w).

If |v(1)| = 1 then from Lemma 5 we have u1 = φ−1(BC) where φ(w1w2) = ABC thus
φ(u) = BCu2 . . . u|u| and φ(w) = ABCw3 . . . w|w|. As u2 . . . u|u| = w3 . . . w|u|+1, φ(u) is
a factor of φ(w).

Conversely if φ(u) is a factor of φ(w) then φ(w) = v.φ(u).v′. If v is empty then φ(u)
is a prefix of φ(w) thus u is a prefix of w hence u � w.

If |v| = i ≥ 2 then w = φ−1(v).φ(u).v′. Thus φ(u) = wi . . . wi+|φ(u)|−1 = wi . . . wi+|u|

and u2 . . . u|u| = wi+2 . . . wi+|u|, u1 = φ−1(wiwi+1). u1 is the quadrant in which wi+1 lies
hence u � w.

7

If |v| = 1 then φ(w1w2) = v φ(u)1φ(u)2 thus according to Lemma 5, w2 lies in the
quadrant φ−1(φ(u)1φ(u)2) = u1. As

w3 . . . w|u|+1 = φ(w)4 . . . φ(w)|u|+2 = φ(u)3 . . . φ(u)|u|+1 = u2 . . . u|u|,

u � w, concluding the proof.

The second possible structure for a pin word corresponding to a simple permutation
is to begin with two numerals.

Lemma 7. Let u be a quasi strict pin word corresponding to a permutation π and w

be a strict pin word corresponding to a permutation σ. If u � w then φ(u2 . . . u|u|) is a
factor of φ(w) which begins at position p ≥ 3.

Proof. Decompose u into its strong numeral-led factors u = u(1)u(2). Since u � w,
w can be decomposed into a sequence of factors w = v(1)w(1)v(2)w(2)v(3). Moreover
|w(1)| = |u(1)| = 1 so w(2) contains no numerals thus v(2) is nonempty, the first letter of
w(2) corresponds to a point lying in the quadrant specified by the first letter of u(2), and
all other letters in u(2) and w(2) agree. Hence w = v(1)w(1)vφ(u(2))v(3) where v is the
prefix of v(2) of length |v(2)| − 1. Then φ(u(2)) is a factor of w which have no numeral
thus φ(u(2)) is a factor of φ(w) which begin at position p ≥ 3.

Lemma 8. Let u be a quasi strict pin word corresponding to a permutation π and w be
a strict pin word corresponding to a permutation σ. If φ(u2 . . . u|u|) is a factor of φ(w)
which begins at position p ≥ 3 then π is a pattern of σ.

Proof. Since φ(u(2)) is a factor of φ(w) which begins at position p ≥ 3 then by Lemma
6, u(2) � w. Let p1 . . . pn be a pin representation of w (which corresponds to σ) and
Γ be the subset of points corresponding to u(2), then Γ ⊆ {p3 . . . pn}. Let π′ be the
permutation corresponding to {p1} ∪ Γ, then π′ ≤ σ. We claim that π′ = π. Let i be
the quadrant in which lies p1, and v = i u(2). Then v is a pin word corresponding to
π′. As u begins with two numerals, there is k ∈ {1, . . . , 4} such that u = k u(2) and u

corresponds to π but v = i u(2) thus v corresponds to π hence π′ = π.

To any simple permutation π we associate the set of its pin words. From Lemma
4.3, Fact 4.1 and Lemma 4.5 of [4], this set contains at most 64 elements. We define
E(π) = {φ(u) |u is a strict pin word corresponding to π}∪{v ∈M | there is a quasi strict
pin word u corresponding to π and x ∈ {LU,LD,RU,RD} ⊎ {UL,UR,DL,DR} such
that v = xφ(u2 . . . u|u|)}. For the second set, the first letter of φ(u2 . . . u|u|) determines
the set in which x lies.

It is then immediate to check that |E(π)| ≤ 320.

Theorem 2. Let π be a simple permutation and w be a strict pin word corresponding to
a permutation σ. Then π � σ if and only if φ(w) avoids the finite set of factors E(π).

Notice that it is enough to consider only one strict pin word corresponding to σ

rather than all of them.

8

Proof. If π ≤ σ, then by Lemma 4, there is a pin word u corresponding to π with u � w.
By Remark 3, u is a strict pin word or a quasi strict pin word. If u is a strict pin word
then, by Lemma 6, φ(u) is a factor of φ(w) and φ(w) has a factor in E(π). If u is a
quasi strict pin word then by Lemma 7, φ(u2 . . . u|u|) is a factor of φ(w) which begins at
position p ≥ 3. Let x be the two letters preceding φ(u2 . . . u|u|) in φ(w). As φ(w) ∈M ,
xφ(u2 . . . u|u|) is a factor of φ(w) that belongs to E(π).

Conversely suppose that φ(w) has a factor v in E(π). If v ∈ {φ(u) |u is a strict pin
word corresponding to π} then by Lemma 6, there is a pin word u corresponding to π with
u � w so by Lemma 4, π ≤ σ. Otherwise there is a quasi strict pin word u corresponding
to π and x ∈ {LU,LD,RU,RD,UL,UR,DL,DR} such that v = xφ(u2 . . . u|u|) ∈ M .
Thus φ(u2 . . . u|u|) is a factor of φ(w) which begins at position p ≥ 3 and by Lemma 8,
π ≤ σ.

Returning to our motivation with respect to the number of proper pin-permutations
in Av(B), the links between pattern containment relation and pin words that we estab-
lished yield the following lemma:

Lemma 9. A wreath-closed class Av(B) has arbitrarily long proper pin-permutations if
and only if there exist words of arbitrary length on the alphabet {L,R,U,D} avoiding
the set of factors ∪π∈BE(π) ∪ {LL,LR,RR,RL,UU,UD,DD,DU}.

Proof. The class Av(B) contains arbitrarily long proper pin-permutations if and only if
there exist arbitrarily long proper pin-permutations which have no pattern in B. That
is –making use of Theorem 2 and Remark 2–, if and only if there exist arbitrarily long
strict pin words w such that φ(w) avoids the set of factors ∪π∈BE(π), or equivalently
if and only if there exist words of arbitrary length on the alphabet {L,R,U,D} which
avoid the set of factors ∪π∈BE(π) ∪ {LL,LR,RR,RL,UU,UD,DD,DU}. Note that
we translate the finiteness result for proper pin-permutations into a finiteness result for
strict pin words. The key idea is that for every proper pin-permutation, the number of
corresponding strict pin words is bounded.

4 From the finiteness problem to a co-finiteness problem

We are now able to give the general algorithm to decide if a wreath-closed permutation
class given by its finite basis B contains a finite number of proper pin-permutations (see
Algorithm 1).

In this algorithm, PB denotes the set of pin words that encode the permutations of
B, L(PB) the language of words on the alphabet {L,R,U,D} which contain as a factor a
word of ∪π∈BE(π) or one of the 8 words LL,LR,RR,RL,UU,UD,DD and DU , A the
automaton recognizing L(PB) and A

c the automaton that recognizes the complementary

9

language of L(PB) in {L,R,U,D}∗.

input : a set B of simple permutations
output: boolean : true if and only if Av(B) contains only a finite number of

proper pin-permutations

// Determine the set of pin words associated to the elements of B;
PB ←PinWords(B);
// Build a complete deterministic automaton recognizing L(PB);
A ← Automaton(L(PB));
if Ac contains an accessible and co-accessible cycle then

return false
else

return true
end

Algorithm 1: Deciding the finiteness of the number of proper pin-permutations

The first part of this algorithm relies on the function Pinwords (described by Al-
gorithm 2) which computes the pin words associated to a simple permutation. It uses
the fact that the pin representations of a simple permutation, when they exist, are al-
ways proper (see Remark 1), and that from Lemma 4.1 in [4], two first pins of a proper
pin representation are in knight position (i.e., in a configuration like or one of its
7 symmetric under rotation and mirror). Next from two points in knight position, a
proper pin representation, if it exists, can be efficiently computed using the separation
condition. Finally it remains to encode the pin representation by pin words.

input : a simple permutation σ

output: The set P of pin words encoding σ

// Count the number of pairs of points in knight position;
E ← ∅;
foreach σi do

E ← E
⋃

{(σi, σj) in knight position}
end

// If more than 24 pairs are found, σ is not a pin-permutation;
if |E| > 24 then

return ∅
end

// Otherwise each knight may be the beginning of a pin representation of σ;
P ← ∅;
foreach (σi, σj) ∈ E do

P ← P
⋃

{ pin words of the pin representation beginning with (σi, σj)}
end

return P
Algorithm 2: Pinwords function

10

Lemma 10. Algorithm 2 computes the set of pin words encoding a simple permutation
in linear time.

Proof. The algorithm above can be decomposed into two parts. First, we count the num-
ber of points in knight position that should be smaller than 24. Indeed from Lemma 4.2
of [4], if σ is a simple pin-permutation, in any of its pin representations (p1, . . . , pn),
every knight (pi, pj) contains at least one of the points p1, p2 or pn. As only 8 points can
be in knight position with a given point, the permutation σ has at most 24 knights.

Therefore given a simple permutation σ, we count the number of pairs of points in
knight position. To do this, we take each point p of the permutation and we check if
another point is in knight position with p. As at most 8 cells can contain a point in
knight position with p, this counting part runs in time 8n.

If this number is greater than 24, σ is not a pin-permutation. Otherwise, we compute
for each pair of points in knight position the potential associated pin representation.

The second part of the algorithm builds the pin representation beginning with a given
knight, if it exists, and its associated pin words. This can also be done in linear time as
there is at most one pin representation of σ beginning with a given pair of points. Indeed,
because σ is simple, its pin representations are always proper (see Remark 1). The pin
representation starting with a given knight is then obtained as follows. If (p1, . . . , pi)
has already been computed then, since the pin representation we look for is proper, pi+1

separates pi = σk from previous points. It means that either it separates them vertically,
and then pi+1 = σk+1 or pi+1 = σk−1, or it separates them horizontally and then its
value must be σk±1. Therefore knowing σ−1 allows us to find the next point in a proper
pin representation in constant time.

Finally as at most 8 pin words (choice of the origin) correspond to a given pin
representation, computing all pin words can easily be done in linear time from the pin
representation.

Lemma 11. Algorithm 1 tests in linear time if a wreath-closed permutation class given
by its finite basis contains a finite number of proper pin-permutations.

Proof. First according to Lemma 10 the Pinwords function runs in linear time, and
produces a set PB , containing at most |B| · 24 · 8 words, whose lengths sum to O(n),
with n =

∑

π∈B |π|.
Next a complete deterministic automaton A recognizing words having a factor in

∪π∈BE(π) ∪ {LL,LR,RR,RL,UU,UD,DD,DU} can be built in linear time (w.r.t. n)
using Aho-Corasick algorithm [1]. With this construction the number of states of the
resulting automaton is also linear. The automaton Ac that recognizes the complementary
language of L(PB) in {L,R,U,D}∗ is obtained by exchanging final and non-final states of
the initial automaton. Then it remains to test in the complete deterministic automaton
Ac whether there exists an accessible cycle from which a path leads to a final state (i.e.,
that is co-accessible). Making use of a depth-first traversal, this step takes a linear time.
Hence checking if there exist arbitrarily long words on {L,R,U,D} which avoid a finite
set of factors can be done in linear time – linear in the sum of the sizes of the factors –
concluding the proof.

11

The precedent results allow us to decide in linear time if a wreath-closed permutation
class given by its finite basis contains arbitrarily long proper pin-permutations. To end
our proof, following the same steps as [7], we must deal with wedge simple permutations
and parallel alternations in order to decide if the permutation class contains a finite
number of simple permutations. These results are summarized in the following theorem:

Theorem 3. Let Av(B) be a finitely based wreath-closed class of permutations. Then
there exists an algorithm to decide in time O(n log n) where n =

∑

π∈B |π| whether this
class contains finitely many simple permutations.

Proof. From Theorem 1, we can look separately at parallel alternations, wedge simple
permutations and proper pin-permutations. For parallel alternations and wedge simple
permutations, Lemmas 1, 2 and 3 show that the problem can be solved by checking
if there exists an element of B in every symmetric class of special pattern avoiding
permutation classes, where the bases are composed only of permutations of length at
most 4. From [2] checking pattern avoidance of patterns of length at most 4 can be done
in O(n log n), this leads to a O(n log n) algorithm for deciding whether the numbers of
parallel alternation and of wedge simple permutations in the class is finite.

The case of proper pin-permutations can be solved with Algorithm 1. From Lemma 11
checking if there exist arbitrarily long proper pin-permutations in a wreath-closed per-
mutation class can done in linear time – linear in the sum of the lengths of the elements
of the basis of the class – concluding the proof.

Conjecture We highly believe that Theorem 3 can be generalized to all finitely based
permutation classes (and not only wreath-closed classes). The methods used here seem
to extend to the general case using the results of [4]. This is a work in progress.

Open problem By [3], containing a finite number of simple permutations is a sufficient
condition for a permutation class to have an algebraic generating function. Our work
allows to decide efficiently whether the number of simple permutations in the class is
finite, but does not allow the computation of the set of simple permutations in the class.
Describing an efficient (polynomial ?) procedure solving this question, and thereafter
being able to compute algorithmically the algebraic generating function associated to
the class, would be natural continuations of our work.

References

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to
bibliographic search. Communications of the ACM, 18(6), June 1975.

[2] Michael H. Albert, Robert E. L. Aldred, Mike D. Atkinson, and Derek A. Holton.
Algorithms for pattern involvement in permutations. In ISAAC ’01: Proceedings of
the 12th International Symposium on Algorithms and Computation, volume 2223 of
Lecture Notes in Computer Science, pages 355–366, London, UK, 2001. Springer-
Verlag.

12

[3] Michael H. Albert and Mike D. Atkinson. Simple permutations and pattern restricted
permutations. Discrete Mathematics, 300(1-3):1–15, 2005.

[4] Frédérique Bassino, Mathilde Bouvel, and Dominique Rossin. Enumeration of pin-
permutations. Technical report, Université Paris Diderot, Université Paris Nord,
2009.

[5] Robert Brignall, Sophie Huczynska, and Vincent Vatter. Decomposing simple per-
mutations, with enumerative consequences. Combinatorica, 28(4):385–400, jul 2008.

[6] Robert Brignall, Sophie Huczynska, and Vincent Vatter. Simple permutations and
algebraic generating functions. J. Combin. Theory Ser. A, 115(3):423–441, 2008.

[7] Robert Brignall, Nik Ruškuc, and Vincent Vatter. Simple permutations: decidability
and unavoidable substructures. Theoret. Comput. Sci., 391(1-2):150–163, 2008.

[8] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Pro-
gramming. Addison-Wesley, Reading MA, 3rd edition, 1973.

13

