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Deciding the finiteness of the number of simple permutations contained in a wreath-closed class is polynomial *

, we are able to transform the problem into a co-finiteness problem in a complete deterministic automaton.

Introduction

Permutation classes were first introduced in the literature by Knuth in [START_REF] Knuth | of The Art of Computer Programming[END_REF], where the class of permutations sortable through one stack is characterized as the permutations avoiding the pattern 231. This result has been the starting point of the study of permutation classes and pattern-avoiding permutations in combinatorics. The study of permutation classes has been mostly interested in enumeration questions as testified by the survey [START_REF] Kitaev | A survey on certain pattern problems[END_REF] and its references. The predominance of the counting questions certainly finds an explanation in the Stanley-Wilf conjecture, stating that the enumeration sequence (s n ) n of any (non trivial) permutation class is at most simply exponential in the length n of the permutations (as opposed to n! in general). This conjecture has been proved by Marcus and Tardos in 2004 [START_REF] Marcus | Excluded permutation matrices and the Stanley-Wilf conjecture[END_REF], and this result can be considered as one of the first general results on permutation classes, that is to say a result that deals with all permutation classes. More recently, some other general results dealing with wide families of permutation classes have been described [START_REF] Michael | Simple permutations and pattern restricted permutations[END_REF][START_REF] Michael | The insertion encoding of permutations[END_REF][START_REF] Atkinson | Substitution-closed pattern classes[END_REF][START_REF] Brignall | Simple permutations and algebraic generating functions[END_REF][START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF][START_REF] Vatter | Enumeration schemes for restricted permutations[END_REF]. In particular, Albert and Atkinson [START_REF] Michael | Simple permutations and pattern restricted permutations[END_REF] proved some sufficient conditions for the generating function S(x) = s n x n of a class to be algebraic. This is also the direction chosen in this article, where we are interested in describing an efficient algorithm to decide the finiteness of the number of simple permutations in a class, for any wreath-closed permutation class.

To be more precise, in a series of three articles [START_REF] Brignall | Simple permutations and algebraic generating functions[END_REF][START_REF] Brignall | Decomposing simple permutations, with enumerative consequences[END_REF][START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF] Brignall et al. prove that it is decidable to know if a permutation class of finite basis contains a finite number of simple permutations, which is a sufficient condition for the generating function to be algebraic. Every algorithm involved in this decision procedure is polynomial except the algorithm deciding if the class contains arbitrarily long proper pin-permutations.

In [START_REF] Bassino | Enumeration of pinpermutations[END_REF] a detailed study of pin-permutations is performed. We use some of the properties of the simple pin-permutations established in [START_REF] Bassino | Enumeration of pinpermutations[END_REF] to give a polynomial-time algorithm for the preceding question in the restricted case of wreath-closed permutation classes, that is to say the classes of permutations whose bases contain only simple permutations. More precisely, we give a O(n log n) algorithm to decide if a finitely based wreath-closed class of permutations Av(π (1) , . . . , π (k) ) contains a finite number of simple permutations where n = |π (i) |. A key ingredient of this procedure is the transformation of a containment relation involving permutations into a factor relation between words. As a consequence deciding the finiteness of the number of proper pin-permutations is changed into testing the co-finiteness of a regular language given by a complete deterministic automaton.

The paper is organized as follows. We first recall basic definitions and known results that will be used in the sequel. In Section 3 we establish, in the special case of simple patterns and proper pin-permutations, some links between pattern containment relation on permutations and factor relation between words. Finally Section 4 is devoted to the presentation of a polynomial algorithm deciding the finiteness of the number of proper pin-permutations contained in a wreath-closed permutation class.

Background

Definitions

We recall in this section a few definitions about permutations, pin representations and pin words. More details can be found in [START_REF] Brignall | Simple permutations and algebraic generating functions[END_REF][START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF][START_REF] Bassino | Enumeration of pinpermutations[END_REF]. A permutation σ ∈ S n is a bijective function from {1, . . . , n} onto {1, . . . , n}. We either represent a permutation by a word σ = 2 3 1 4 or its diagram (see Figure 1). A permutation π = π 1 π 2 . . . π k is a pattern of a permutation σ = σ 1 σ 2 . . . σ n , and we write π ≤ σ if and only if there exist 1 ≤ i 1 < i 2 < . . . < i k ≤ n such that σ i 1 . . . σ i k is order isomorphic to π. We also say that σ involves or contains π. If π is not a pattern of σ we say that σ avoids π. A permutation class Av(B)where B is a finite or infinite antichain of permutations called the basis -is the set of all permutations avoiding every element of B. A permutation is called simple if it contains no block, i.e. no mapping from {i, . . . , (i + l)} to {j, . . . , (j + l)}, except the trivial ones corresponding to l = 0 or i = j = 1 and l = n -1. Wreath-closed permutation classes have been introduced in [START_REF] Michael | Simple permutations and pattern restricted permutations[END_REF] in terms of substitution-or wreath-product of permutations. This original definition is not crucial to our work, and we prefer to define them by the characterization proved in [START_REF] Michael | Simple permutations and pattern restricted permutations[END_REF]: a permutation class Av(B) is said to be wreath-closed when its basis B contains only simple permutations.

In the following we study wreath-closed classes with finite basis. Note that it is not a restriction for our purpose: from [START_REF] Michael | Simple permutations and pattern restricted permutations[END_REF], when the basis is infinite we know that the number of simple permutations in the class is infinite. Our goal is indeed to check whether a wreath-closed class contains a finite number of simple permutations, ensuring in this way that its generating function is algebraic [START_REF] Michael | Simple permutations and pattern restricted permutations[END_REF]. As we shall see in the following, a class of particular permutations, called the pin-permutations, plays a central role in the decision procedure of this problem. For this reason, we record basic definitions and results related with these pin-permutations.

A pin in the plane is a point at integer coordinates. A pin p separates -horizontally or vertically -the set of pins P from the set of pins Q if and only if a horizontal -resp. vertical -line drawn across p separates the plane into two parts, one of which contains P and the other one contains Q. A pin sequence is a sequence (p 1 , . . . , p k ) of pins in the plane such that no two points lie in the same column or row and for all i ≥ 2, p i lies outside the bounding box of {p 1 , . . . , p i-1 } and respects one of the following conditions:

• p i separates p i-1 from {p 1 , . . . , p i-2 }.

• p i is independent from {p 1 , . . . , p i-1 }, i.e., it does not separate this set into two non empty sets.

A pin sequence represents a permutation σ if and only if it is order isomorphic to its diagram. We say that a permutation σ is a pin-permutation if it can be represented by a pin sequence, which is then called a pin representation of σ. Not all permutations are pin-permutations (see for example the permutation σ of Figure 1). A proper pin representation is a pin representation in which every pin p i , for i ≥ 3, separates p i-1 from {p 1 , . . . , p i-2 }. A proper pin-permutation is a permutation that admits a proper pin representation.

Remark 2.1. A pin representation of a simple pin-permutation is always proper as any independent pin p i with i ≥ 3 creates a block corresponding to {p 1 , . . . , p i-1 }.

Pin representations can be encoded by words on the alphabet {1, 2, 3, 4, U, D, L, R} called pin words. Consider a pin representation (p 1 , . . . , p n ) and choose an arbitrary origin p 0 in the plane such that it extends the pin representation to a pin sequence (p 0 , p 1 , . . . , p n ). Then every pin p 1 , . . . , p n is encoded by a letter according to the following rules:

• The letter associated to p i is U -resp. D, L, R-if and only if p i separates p i-1 and {p 0 , p 1 , . . . , p i-2 } from the top -resp. bottom, left, right-.

• The letter associated to p i is 1 -resp. 2, 3, 4-if and only if p i is independent from {p 0 , p 1 , . . . , p i-1 } and is situated in the up-right -resp. up-left, bottom-left, bottom-right-corner of the bounding box of {p 0 , p 1 , . . . , p i-1 }.

This encoding is summarized by To each pin word corresponds a unique pin representation, hence a unique permutation but each pin-permutation of length greater than 1 has at least 6 pin words associated to it. The reason is that for any pin representation, there are 8 possible placements of p 0 w.r.t. p 1 and p 2 , among which at least 6 give a possible prefix of a pin word (see Figure 3 for an example). On Figure 3, the two prefixes 4R and 3R (resp.. 2U and 3U ) may be excluded, when p 3 is encoded by R or L (resp. U or D).

A strict (resp. quasi-strict) pin word is a pin word of length at least 2 that begins by a numeral (resp. two numerals) followed only by directions. b. However a pin-permutation is proper if and only if it admits a strict pin word among its encodings.

The language SP of strict pin words can be described by the following regular expression:

(1+2+3+4) (ǫ+L+R)(U +D) (L+R)(U +D) * +(ǫ+U +D)(L+R) (U +D)(L+R) * .

Some known results

In [START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF] Brignall et al. studied conditions for a class to contain an infinite number of simple permutations. Introducing three new kinds of permutations they show that this problem is equivalent to looking for an infinite number of permutations of one of these three simpler kinds.

Theorem 2.3. [9] A permutation class Av(B) contains an infinite number of simple permutations if and only if it contains either:

• An infinite number of wedge simple permutations.

• An infinite number of parallel alternations.

• An infinite number of proper pin-permutations.

The definitions of the wedge simple permutations and the parallel alternations are not crucial to our work, hence we refer the reader to [START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF] for more details. What is however important for our purpose is to be able to test whether a class given by its finite basis contains an infinite number of permutations of these kinds. Alternations and wedge simple permutations are well characterized in [START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF], where it is shown that it is easy to deal with this problem using the three following lemmas. With these lemmas, it is possible to decide in polynomial time whether a class contains a finite number of wedge simple permutations or of parallel alternations. More precisely, we have: Lemma 2.7. Testing whether a finitely based class Av(B) contains finitely many parallel alternations (resp. wedge simple permutations of type 1, resp. wedge simple permutations of type 2) can be done in O(n log n) time, where n = π∈B |π|.

Lemma 2.4. [9] The permutation class Av(B) contains only finitely many parallel alternations if and only if its basis B contains an element of every symmetry of the class

Proof. By Lemmas 2.4, 2.5 and 2.6, deciding if a class Av(B) contains a finite number of wedge simple permutations or parallel alternations is equivalent to checking if there exists an element of B in every symmetric class of special pattern avoiding permutation classes, where the bases are composed only of permutations of length at most 4. From [START_REF] Michael | Algorithms for pattern involvement in permutations[END_REF] checking whether a permutation π avoids some patterns of length at most 4 can be done in O(|π| log |π|). This leads to a O(n log n) algorithm for deciding whether the numbers of parallel alternation and of wedge simple permutations in the class are finite.

In [START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF] Brignall et al. also proved that it is decidable to know if a class contains a infinite number of proper pin-permutations using language theoretic arguments. Analyzing their procedure, we can prove that it has an exponential complexity due to the resolution of a co-finiteness problem for a regular language given by a non-deterministic automaton. As said before our goal in this paper is to solve this same problem in polynomial time for the wreath-closed classes.

Pattern containment and pin words

In this section we show how to transform into a factor relation between words the pattern containment relation of a simple permutation pattern in a proper pin-permutation. More precisely, let Av(B) be a finitely based wreath-closed class of permutations, that is to say such that its basis B is finite and contains only simple permutations. We prove that the set of strict pin words corresponding to permutations that contain an element of B is characterized as the set of all strict pin words whose images by a particular bijection (denoted by φ in the sequel) contain some factors.

First recall the definition of the partial order on pin words introduced in [START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF].

Definition 3.1. Let u and w be two pin words. We decompose u in terms of its strong numeral-led factors as u = u (1) . . . u (j) , a strong numeral-led factor being a sequence of contiguous letters beginning with a numeral and followed by any number of directions (but no numerals). We then write u w if w can be chopped into a sequence of factors w = v (1) w (1) . . . v (j) w (j) v (j+1) such that for all i ∈ {1, . . . , j}:

• if w (i) begins with a numeral then w (i) = u (i) , and

• if w (i) begins with a direction, then v (i) is nonempty, the first letter of w (i) corresponds to a point lying in the quadrant specified by the first letter of u (i) , and all other letters in u (i) and w (i) agree.

This order is closely related to the pattern containment order ≤ on permutations.

Lemma 3.2. [START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF] If the pin word w corresponds to the permutation σ and π ≤ σ then there is a pin word u corresponding to π with u w. Conversely if u w then the permutation corresponding to u is contained in the permutation corresponding to w.

In what follows, σ is a proper pin-permutation. So we can choose a strict pin word w that encodes σ (see Remark 2.2 b.). As a consequence of Lemma 3.2, checking whether a permutation π is a pattern of σ is equivalent to checking whether there exists a pin word u corresponding to π with u w. Additionally, we show that when π is simple, we can associate to each strict (resp. quasi-strict) pin word v = v 1 v 2 . . . v n of π a word φ(v) (resp. φ(v 2 . . . v n )) that does not contain numerals and such that the pattern involvement problem is equivalent to checking if φ(w) has a factor of the form φ(v) for v strict or φ(v 2 . . . v n ) for v quasi-strict encoding π. Definition 3.3. Let M be the set of words of length greater than or equal to 3 over the alphabet L, R, U, D such that R, L is followed by U, D and conversely.

We define a bijection φ from SP to M as follows. For any strict pin word u ∈ SP such that u = u ′ u ′′ with |u ′ | = 2, we set φ(u) = ϕ(u ′ )u ′′ where ϕ is given by:

1R → RU R 2R → LU R 3R → LDR 4R → RDR 1L → RU L 2L → LU L 3L → LDL 4L → RDL 1U → U RU 2U → U LU 3U → DLU 4U → DRU 1D → U RD 2D → U LD 3D → DLD 4D → DRD
For any n ≥ 2, the map φ is a bijection from the set SP n of strict pin words of length n to the set M n+1 of words of M of length n + 1. Furthermore, it satisfies, for any u ∈ SP, u i = φ(u) i+1 for any i ≥ 2.

In the above table, we can notice that, for any u ∈ SP, the first two letters of φ(u) are sufficient to determine the first letter of u (which is a numeral). Thus it is natural to extend the definition of φ to words of length 1 (that do not belong to SP by definition) by setting φ(1) = {U R, RU }, φ(2) = {U L, LU }, φ(3) = {DL, LD} and φ(4) = {RD, DR}, and by defining consistently φ -1 (v) ∈ {1, 2, 3, 4} for any v in {LU, LD, RU, RD, U L, U R, DL, DR}.

Notice that our bijection consists of replacing the only numeral in any strict pin word by two directions. Lemma 3.4 below shows that for each strict pin word w, we know in which quadrant lies every pin of the pin representation corresponding to w. Lemma 3.4. Let w be a strict pin word and p the pin representation corresponding to w. For any i ≥ 2, set

q(w i-1 , w i ) = φ -1 (w i-1 w i ) if i ≥ 3 φ -1 (BC) if i = 2 and φ(w 1 w 2 ) = ABC
Then for any i ≥ 2, q(w i-1 , w i ) is a numeral indicating the quadrant in which p i lies with respect to {p 0 , . . . , p i-2 }.

contains no numerals thus v (2) is non-empty, the first letter of w (2) corresponds to a point lying in the quadrant specified by the first letter of u (2) , and all other letters in u (2) and w (2) agree. Hence w = v (1) w (1) vφ(u (2) )v (3) where v is the prefix of v (2) of length |v (2) | -1. Then φ(u (2) ) is a factor of w which has no numeral thus φ(u (2) ) is a factor of φ(w) which begin at position p ≥ 3.

Lemma 3.7. Let u be a quasi strict pin word corresponding to a permutation π and w be a strict pin word corresponding to a permutation σ. If φ(u 2 . . . u |u| ) is a factor of φ(w) which begins at position p ≥ 3 then π is a pattern of σ.

Proof. Set u (2) = u 2 . . . u |u| . Since φ(u (2) ) is a factor of φ(w) which begins at position p ≥ 3 then by Lemma 3.5, u (2) w. Let p 1 . . . p n be a pin representation of w (which corresponds to σ) and Γ be the subset of points corresponding to u (2) , then Γ ⊆ {p 3 . . . p n }. Let π ′ be the permutation corresponding to {p 1 }∪ Γ, then π ′ ≤ σ. We claim that π ′ = π.

Let i be the quadrant in which p 1 lies, and v = i u (2) . Then v is a pin word corresponding to π ′ . As u begins with two numerals, there is k ∈ {1, . . . , 4} such that u = k u (2) . It is easy to see that v and u encode the same permutation, even if i = k. Hence π ′ = π.

The set of pin words of any simple permutation π contains at most 64 elements. Indeed by Lemma 4.6 of [START_REF] Bassino | Enumeration of pinpermutations[END_REF] there are at most 8 pin representations p of π -corresponding to the possible choices of (p 1 , p 2 )-and at most 8 pin words for each pin representation (see Figure 3) so at most 64 pin words for π.

We define E(π) = {φ(u) |u is a strict pin word corresponding to π} ∪ {v ∈ M | there is a quasi strict pin word u corresponding to π and x ∈ {LU, LD, RU, RD} ⊎ {U L, U R, DL, DR} such that v = x φ(u 2 . . . u |u| )}. For the second set, the first letter of φ(u 2 . . . u |u| ) determines the set in which x lies.

By Remarks 2.1 and 2.2 a., the pin words of π are either strict or quasi strict, therefore |E(π)| ≤ 64 × 4 = 256. Theorem 3.8. Let π be a simple permutation and w be a strict pin word corresponding to a permutation σ. Then π σ if and only if φ(w) avoids the finite set of factors E(π).

Notice that it is enough to consider only one strict pin word corresponding to σ rather than all of them.

Proof. If π ≤ σ, then by Lemma 3.2, there is a pin word u corresponding to π with u w. By Remarks 2.1 and 2.2 a., u is a strict pin word or a quasi strict pin word. If u is a strict pin word then, by Lemma 3.5, φ(u) is a factor of φ(w) so φ(w) has a factor in E(π). If u is a quasi strict pin word then by Lemma 3.6, φ(u 2 . . . u |u| ) is a factor of φ(w) which begins at position p ≥ 3. Let x be the two letters preceding φ(u 2 . . . u |u| ) in φ(w). As φ(w) ∈ M , xφ(u 2 . . . u |u| ) is a factor of φ(w) that belongs to E(π).

Conversely suppose that φ(w) has a factor v in E(π). If v ∈ {φ(u) |u is a strict pin word corresponding to π} then by Lemma 3.5, there is a pin word u corresponding to π with u w so by Lemma 3.2, π ≤ σ. Otherwise there is a quasi strict pin word u corresponding to π and x ∈ {LU, LD, RU, RD, U L, U R, DL, DR} such that v = x φ(u 2 . . . u |u| ) is a factor of φ(w). Thus φ(u 2 . . . u |u| ) is a factor of φ(w) which begins at position p ≥ 3 and by Lemma 3.7, π ≤ σ.

Returning to our motivation with respect to the number of proper pin-permutations in Av(B), the links between pattern containment relation and pin words that we established yield Theorem 3.9. 

From the finiteness problem to a co-finiteness problem

We are now able to give the general algorithm to decide if a wreath-closed permutation class given by its finite basis B contains a finite number of proper pin-permutations (see Algorithm 1).

In this algorithm, P B denotes the set of pin words that encode the permutations of B, L(P B ) the language of words on the alphabet {L, R, U, D} which contain as a factor a word of ∪ π∈B E(π) or one of the 8 words LL, LR, RR, RL, U U, U D, DD and DU , A the automaton recognizing L(P B ) and A c the automaton that recognizes the complementary language of L(P B ) in {L, R, U, D} * . Notice that A c recognizes the words φ(w) for w a strict pin word encoding a proper pin-permutation σ ∈ Av(B). The first part of this algorithm relies on the function Pinwords (described by Algorithm 2) which computes the pin words associated to a simple permutation. It uses the fact that the pin representations of a simple permutation, when they exist, are always proper (see Remark 2.1), and that from Lemma 4.3 in [START_REF] Bassino | Enumeration of pinpermutations[END_REF], the first two pins of a proper pin representation are in knight position (i.e., in a configuration like or one of its 3 symmetries under rotation and reflection). Next from two points in knight position, a proper pin representation, if it exists, can be efficiently computed using the separation condition. Finally it remains to encode the pin representation by pin words. Proof. Algorithm 2 can be decomposed into two parts. First, we count the number of ordered pairs of points in knight position that should be smaller than 48. Indeed from Lemma 4.4 of [START_REF] Bassino | Enumeration of pinpermutations[END_REF], if σ is a simple pin-permutation of length n, in any of its pin representations (p 1 , . . . , p n ), every unordered pair of points {p i , p j } that is a knight contains at least one of the points p 1 , p 2 or p n . As only 8 points can be in knight position with a given point, the permutation σ has at most 24 unordered pairs of points in knight position, hence at most 48 ordered pairs (p i , p j ) that are knights.

Therefore given a simple permutation σ, we count the number of ordered pairs of points in knight position. To do this, we take each point p of the permutation and we check if another point is in knight position with p. As at most 8 cells can contain a point in knight position with p, this counting part runs in time 8n.

If this number is greater than 48, σ is not a pin-permutation. Otherwise, the second part of the algorithm computes, for each ordered pair of points in knight position, the pin representation beginning with it (if it exists) and its associated pin words. This can also be done in linear time as there is at most one pin representation of σ beginning with a given ordered pair of points. Indeed, because σ is simple, its pin representations are always proper (see Remark 2.1). The pin representation starting with a given knight is then obtained as follows. If (p 1 , . . . , p i ) has already been computed then, since the pin representation we look for is proper, p i+1 separates p i = σ k from previous points. It means that either it separates them vertically, and then p i+1 = σ k+1 or p i+1 = σ k-1 , or it separates them horizontally and then its value must be σ k ± 1. Therefore, if we compute σ -1 in advance (which is easily done by a linear-time precomputation) we are allowed to find the next point in a proper pin representation in constant time.

Finally as at most 8 pin words (choice of the origin, see Figure 3) correspond to a given pin representation, computing all pin words can easily be done in linear time from the pin representation. Next a complete deterministic automaton A recognizing L(P B ) the set of words having a factor in ∪ π∈B E(π)∪{LL, LR, RR, RL, U U, U D, DD, DU } can be built in linear time (w.r.t. n) using Aho-Corasick algorithm [START_REF] Aho | Efficient string matching: An aid to bibliographic search[END_REF]. With this construction the number of states of the resulting automaton is also linear. The automaton A c that recognizes the complementary language of L(P B ) in {L, R, U, D} * is obtained by exchanging final and non-final states of the initial automaton A which is complete and deterministic. Then it remains to test in the complete deterministic automaton A c whether there exists an accessible cycle from which a path leads to a final state (i.e., that is co-accessible). Making use of a depth-first traversal, this step takes a linear time. Hence checking if there exist arbitrarily long words on {L, R, U, D} which avoid a finite set of factors can be done in linear time -linear in the sum of the lengths of the factors. Together with Theorem 3.9 this concludes the proof.

The preceding results allow us to decide in linear time if a wreath-closed permutation class given by its finite basis contains arbitrarily long proper pin-permutations. To end our proof, following the same steps as [START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF], we must deal with wedge simple permutations and parallel alternations in order to decide if the permutation class contains a finite number of simple permutations. These results are summarized in the following theorem: Proof. From Theorem 2.3, we can look separately at parallel alternations, wedge simple permutations and proper pin-permutations. For parallel alternations and wedge simple permutations, Lemma 2.7 shows that testing if their number in Av(B) is finite can be done in O(n log n) time. The case of proper pin-permutations can be solved with Algorithm 1. From Lemma 4.2 checking if there exist arbitrarily long proper pin-permutations in a wreath-closed permutation class can done in linear time -linear in the sum of the lengths of the elements of the basis of the class -concluding the proof.

Conjecture We strongly believe that Theorem 4.3 has a generalization to all finitely based permutation classes (and not only wreath-closed classes): namely, we expect that the complexity of deciding whether a finitely based permutation class contains a finite number of simple permutations is polynomial, however of higher degree. This complexity gap we foresee for this generalization and the growing importance of wreath-closed classes in the permutation patterns field justify to our eyes the interest of the result proved in this article. Furthermore, in the general case the pattern relation on permutations cannot be translated into a factor relation on the pin words that encode these permutations. However the substitution decomposition of pin-permutations described in [START_REF] Bassino | Enumeration of pinpermutations[END_REF] should allow us to obtain an efficient recursive algorithm.

Open problem By [START_REF] Michael | Simple permutations and pattern restricted permutations[END_REF], containing a finite number of simple permutations is a sufficient condition for a permutation class to have an algebraic generating function. Our work allows to decide efficiently whether the number of simple permutations in the class is finite, but does not allow the computation of the set of simple permutations in the class. Describing an efficient (polynomial?) procedure solving this question, and thereafter being able to compute algorithmically the algebraic generating function associated to the class, would be natural continuations of our work.
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 61 Figure 1: The permutation σ = 4 7 2 6 3 1 5, the pattern π = 4 6 2 3 1 5 and a pin representation of π. 14L2U R (if we place p 0 between p 3 and p 1 ) and 3DL2U R are pin words corresponding to this pin representation.
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 3 Figure 3: The two letters in each cell indicate the first two letters of the pin word encoding (p 1 , . . . , p n ) when p 0 is taken in this cell.
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 22 Encodings of proper pin-permutations a. Strict and quasi-strict pin words are the encodings of proper pin representations.
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 39 A wreath-closed class Av(B) has arbitrarily long proper pin-permutations if and only if there exist words of arbitrary length on the alphabet {L, R, U, D} avoiding the set of factors ∪ π∈B E(π) ∪ {LL, LR, RR, RL, U U, U D, DD, DU }. Proof. The class Av(B) contains arbitrarily long proper pin-permutations if and only if there exist arbitrarily long proper pin-permutations which have no pattern in B. That is -making use of Theorem 3.8 and Remark 2.2 b.-, if and only if there exist arbitrarily long strict pin words w such that φ(w) avoids the set of factors ∪ π∈B E(π), or equivalently if and only if there exist words of arbitrary length on the alphabet {L, R, U, D} which avoid the set of factors ∪ π∈B E(π) ∪ {LL, LR, RR, RL, U U, U D, DD, DU }.

Algorithm 1 :

 1 Deciding the finiteness of the number of proper pin-permutations input : a set B of simple permutations output: boolean : true if and only if Av(B) contains only a finite number of proper pin-permutations P B ←PinWords(B) // Determine the set of pin words associated to the elements of B A ← Automaton(L(P B )) // Build a complete deterministic automaton recognizing L(P B ) if A c contains an accessible and co-accessible cycle then return false else return true

Algorithm 2 :Lemma 4 . 1 .

 241 Pinwords function input : a simple permutation σ output: The set P of pin words encoding σ // Count the number of ordered pairs of points in knight positionE ← ∅; foreach σ i do E ← E {(σ i , σ j ) in knight position}// If more than 48 pairs are found, σ is not a pin-permutation if |E| > 48 then return ∅ // Otherwise each knight may be the beginning of a pin representation of σ P ← ∅; foreach (σ i , σ j ) ∈ E do P ← P { pin words of the pin representation beginning with (σ i , σ j )} return P Algorithm 2 computes the set of pin words encoding a simple permutation σ in linear time with respect to the length n of σ.

Lemma 4 . 2 .

 42 Algorithm 1 tests if a wreath-closed permutation class given by its finite basis B contains a finite number of proper pin-permutations in linear time with respect to n = π∈B |π|. Proof. First according to Lemma 4.1 the Pinwords function applied to the |B| patterns of the basis runs in total time O(n), and produces a set P B , containing at most |B| • 48 • 8 words, whose lengths sum to O(n).

Theorem 4 . 3 .

 43 Let Av(B) be a finitely based wreath-closed class of permutations. Then there exists an algorithm to decide in time O(n log n) where n = π∈B |π| whether this class contains finitely many simple permutations.

  Av(123, 2413, 3412). 2.5.[START_REF] Brignall | Simple permutations: decidability and unavoidable substructures[END_REF] The permutation class Av(B) contains only finitely many wedge simple permutations of type 1 if and only if B contains an element of every symmetry of the class Av(1243, 1324, 1423, 1432, 2431, 3124, 4123, 4132, 4231, 4312).

	Lemma Lemma 2.6. [9] The permutation class Av(B) contains only finitely many wedge simple
	permutations of type 2 if and only if B contains an element of every symmetry of the
	class Av(2134, 2143, 3124, 3142, 3241, 3412, 4123, 4132, 4231, 4312).
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Proof. It is obvious that q(w i-1 , w i ) is a numeral. The fact that it indicates the claimed quadrant is proved by case examination, distinguishing the case i ≥ 3 from i = 2.

If i ≥ 3, w i-1 and w i are directions. For example if w i-1 = L and w i = U , then p i lies in the quadrant 2 and φ -1 (LU ) = 2.

If i = 2, w i-1 is a numeral and w i is a direction. For example if w i-1 = 1 and w i = L, then p i lies in the quadrant 2 and we have φ(1L) = RU L and φ -1 (U L) = 2. By Remarks 2.1 and 2.2 a., pin words encoding simple permutations are either strict or quasi strict. We first show how to interpret by a factor relation in the case of strict pin words. Lemma 3.5. For any strict pin words u and w, u w if and only if φ(u) is a factor of φ(w).

Proof. If u w, as u is a strict pin word, writing u in terms of its strong numeralled factors leads to u = u (1) , thus w can be decomposed into a sequence of factors w = v (1) w (1) v (2) as in Definition 3.1.

If v (1) is empty then w (1) begins with a numeral, w (1) = u (1) and u is a prefix of w. Consequently φ(u) is a prefix of φ(w).

Otherwise i = |v (1) | ≥ 1 and w (1) begins with a direction. By Definition 3.1, the first letter w i+1 of w (1) corresponds to a point p i+1 lying in the quadrant specified by u 1 (the first letter of u (1) ), and all other letters (which are directions) in u (1) and w (1) agree:

By Lemma 3.4, q(w i , w i+1 ) is the quadrant in which p i+1 lies, i.e. u 1 = q(w i , w i+1 ). Since |u| ≥ 2, by definition of q we have that φ(u) = φ(q(w i , w i+1 )w i+2 . . . w i+|u| ) is a factor of φ(w).

Conversely if φ(u) is a factor of φ(w) then φ(w) = v φ(u) v ′ . If v is empty then φ(u) is a prefix of φ(w) thus u is a prefix of w hence u w.

If |v| = i ≥ 1 then by definition of φ, u 2 . . . u |u| is a factor of φ(w) and more precisely appears in φ(w) for indices from i + 3 to i + |u| + 1. This means that u 2 . . . u |u| = w i+2 . . . w i+|u| . Since i ≥ 1, w i+1 is a direction, and we are left to prove that the point p i+1 corresponding to w i+1 lies in the quadrant indicated by u 1 . By Lemma 3.4, p i+1 lies in quadrant q(w i , w i+1 ), and we easily check that q(w i , w i+1 ) = φ -1 (xy) where xy are the first two letters of φ(u). Hence, we get that q(w i , w i+1 ) = u 1 , concluding the proof.

The second possible structure for a pin word corresponding to a simple permutation is to begin with two numerals. Lemma 3.6. Let u be a quasi strict pin word and w be a strict pin word. If u w then φ(u 2 . . . u |u| ) is a factor of φ(w) which begins at position p ≥ 3.

Proof. Decompose u into its strong numeral-led factors u = u (1) u (2) . Notice that u (2) = u 2 . . . u |u| . Since u w, w can be decomposed into a sequence of factors w = v (1) w (1) v (2) w (2) v (3) satisfying Definition 3.1. Moreover |w (1) | = |u (1) | = 1 so w (2)