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Abstract 

By immersing a conventional glass axicon in index-matching liquid, we generated high 

quality, tunable, quasi non-diffracting Bessel beams. The aberrations resulting from the 

roundness of the axicon tip are minimized when a large base angle is used in liquid-

immersion. This configuration also allows coarse and fine tunability through changing the 

liquid and adjusting the temperature, respectively. Our experimental results match very 

well with calculated intensity profiles.  We succeeded to generate two-meter long plasma 

channels in air by focusing femtosecond laser pulses with the liquid immersion axicon.  

 

 

 

 

 

1. Introduction 
The virtues of non-diffracting beams are appealing particularly when high laser intensities are 

needed over prolonged distances. These beams are proper solutions to the wave equation when 

the transverse field profile is in the form of zeroth-order Bessel function [1]. While the ideal 

Bessel beams carry infinite energy, hence are unpractical, approximate Bessel-like profiles can 

be generated, retaining high intensities over distances much longer compared to Gaussian beams 

of similar spot sizes. This behavior proved fruitful for many applications ranging from optical 

coherence tomography [2] and multi-photon imaging [3, 4]  to manipulation and sorting of micro 

objects like biological cells [5-7] and generation of nonlinear optical interactions (including 

plasma formation) in solids [8-10] liquids [4, 11-13] and gases [14-17]. Several approaches have 

been shown to reasonably approximate the required beam profile, including double-slit with 

focusing lens [18], circular periodic gratings [19], tunable acoustic gradients [20]  and axicon 

focusing [21]. Axicon focusing is superior to other methods in terms of energy throughput. 

However, a conventional axicon generates Bessel-like beam with certain spatial frequency 

determined by the cone angle; hence, the element is not tunable. Moreover, due to manufacturing 

constraints, the tip of the axicon deviates from the ideal cone shape and becomes rather round,  

causing significant aberrations in the intensity profile [22-24] (introducing modulations in the 

on-axis intensity). These oscillations result from the interference of parts of the incoming beam 

propagating through the round, lens-like axicon tip and the conical surface surrounding the tip 

[22]. Axicons with smaller base angles (longer Bessel zones) are more prone to these aberrations. 
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Due to these aberrations and manufacturing difficulties, base angles smaller than ~0.5° are 

unpractical.  

 In this work we present an efficient solution to these limitations. We introduce liquid-

immersion axicon, which not only allows tunability from large up to very small cone angles, but 

also eliminates the aberrations resulting from the blunt tips. The idea is briefly illustrated in 

Fig.1. We use a conventional glass axicon with a large base angle, which exhibits a rounded tip 

region much smaller compared to small base angle axicons. We then immerse this axicon in an 

index-matching liquid, with refractive index smaller than that of the axicon material. The effect 

of the liquid is to decrease the transverse spatial phase gradient and consequently to reduce the 

effective cone angle of the resulting Bessel-like beam. In other words, the presence of liquid 

behind a large-base-angle axicon decreases the angle of refraction of the rays forming the conical 

beam, with minimal aberrations caused by the round tip (since it covers a much smaller area for 

large base angles). This configuration has important advantages. First, since the index-matching 

liquids are available over a broad range (1.3 2.3n  ) with small increments ( 0.002n  ), the 

output cone angle can be adjusted by the choice of the index. Furthermore, by adjusting the 

temperature of the liquid, fine tuning can be achieved. Lastly, using a liquid with index of 

refraction very close to that of the axicon glass, very small cone angles can be achieved. A 

conventional axicon with such a small base angle would be both complicated to manufacture and 

prone to introduce strong aberrations. We confirm these principles both theoretically and 

experimentally. We also demonstrate the merit of the liquid immersion axicon in applications 

involving high-power femtosecond lasers by generating ~2 m long plasma channels in air. 
 

 
Fig. 1 The construction of the liquid immersion axicon. A large angle axicon is immersed in 

index-matching liquid, which is held in a ring shaped housing.   

 

 The idea of using fluids to construct tunable axicons was first demonstrated recently by 

Milne et al. [25], who used an inverse-molded polymer axicon filled with sucrose solution. By 

changing the sucrose concentration, the size of the core of the Bessel beam was adjusted. In our 

work, in addition to tunability, we put a special emphasis on the quality of the on-axis intensity 

distribution (i.e. elimination of the modulations) as it is critical to perform reliable and unbiased 

experiments to understand the dynamics of nonlinear propagation of high power Bessel beams 

[15, 16]. Furthermore, we also show that fine tunability can be achieved via adjusting the liquid 

temperature.   

Alternative schemes were previously suggested to generate tunable Bessel-like beams 

including tunable acoustic gradients [20], imaging with lenses [26, 27] and using the electro-

optic effect in a uniaxial nonlinear crystal [28]. The aberrations resulting from the blunt tips can 

also be reduced by spatial filtering in the focal plane of the primary lens used for imaging [24]. 
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Compared to these schemes the liquid-immersion axicon provides a more compact, higher 

throughput and better beam quality solution. Furthermore, schemes involving imaging pose 

difficulties in high power laser applications since the beam goes through a focus and can 

generate nonlinear interactions (such as plasma formation) before the Bessel zone. 

2. Liquid immersion axicon: theoretical and experimental results 
 The propagation of beams after passing through an axicon is primarily determined by the 

half cone angle   of the resulting k-vectors, as the transverse electric field profile is of the form 

 0
( ) sinE r J kr  , where 

0
J  is the zeroth-order Bessel function of the first kind, k is the 

wavenumber and r is the radial distance. The cone angle for the liquid immersion axicon can be 

calculated for a collimated input beam, using Snell’s law: 

  arcsin sin
l l a

n       (1) 

where 
l

n  and 
a

n  are indices of refraction for the liquid and axicon, 
a

  is the axicon base angle 

and  arcsin sin
l a a l

n n   is the angle that the beam makes with the normal in liquid at the 

axicon-liquid interface. For small angles, this reduces to: 

  l l a
n     (2) 

The angle   can be adjusted by changing 
l

n , either by choosing a different liquid or by adjusting 

the temperature. The change of index of refraction with the temperature is given by 

0
( )n T n T dn dT    , where T  is the change in the temperature and dn dT  is the temperature 

coefficient for the index. For index-matching liquids dn dT  is typically negative.  

In order to demonstrate these ideas experimentally, we used an axicon of 25° base angle 

(50 mm diameter, made of fused silica, by Doric lenses). Applying the recipe presented in [22], 

we confirmed using a small (0.9 mm diameter) input beam that the round area of the tip is 

negligible (much smaller than the beam size).  We designed a ring-like housing to sandwich the 

liquid between the axicon and a glass window (see Fig. 1). Note that the use of a glass window 

with parallel faces has no effect on the output beam profile. We have used index matching liquid 

(Cargille Labs, series AA) with refractive index of 1.45 at D line (589.3 nm) at 25 °C. We used a 

He-Ne laser (at 633 nm wavelength) with beam diameter expanded to 3.74 mm. After we passed 

the beam through the liquid-immersion axicon, we measured the transverse intensity profile at 

different propagation distances by using a CCD camera (UEye 2210M). Figure 2 (left) shows a 

typical measured transverse beam profile (square root taken for clarity). This profile exhibits the 

expected Bessel-like form with no visible aberrations. The radial variation of the intensity fits 

well with ideal Bessel function squared, as compared in Fig.2 (right). Using the transverse 

profiles, we also measured the evolution of the on axis intensity as a function of the propagation 

distance.  
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Fig. 2 Left: The measured beam profile after the liquid immersion axicon exhibits Bessel-like 

transverse intensity (square root taken for clarity of lower intensity rings).  Right: Measured 

radial intensity profile (dashed line) fitted to Bessel function squared (solid line). 

 

In order to compare the measured profile with the theoretical predictions, we calculated 

the light electric field behind the axicon. In the case of Gaussian input beam, the intensity 

distribution behind an ideal axicon can be calculated analytically using the stationary phase 

approximation [29, 30]: 

  
2

2

0 2

0 max max

4 sin 2
( , ) sin exp

Pkr z z
I r z J kr

w z z




 
  

 

 (3) 

where P is the total power in the beam, w0 is the beam spot size at waist, z is the longitudinal 

position and 
0

/ tan
maz

z w   is the position at which maximum axial intensity occurs. In order to 

take into account the effect of the blunt tip, we numerically solved the Fresnel-Kirschoff integral 

[22, 31] (which gives the same results of Eq.(3) for ideal axicon): 

      
2

2

0 0 0 1 0 0 0

0

1
, exp exp /

2 2

r ik
E r z ikz r J kr r z E r r dr

i z z z


   

    
  

  (4) 

where λ is the wavelength. The input beam is taken to be a Gaussian with the measured diameter 

and with spatial phase introduced by the axicon:    tan
a l a

r kr n n   : 

    
2 2

0 0 02

0

exp exp ( )
2

r r
E r E ik i r

Rw


 
   

 

 (5) 

where R is the beam radius of curvature. To evaluate  r , the index of refraction of the liquid at 

the laser wavelength is calculated using the measured indices at three different wavelengths 

(provided by the manufacturer) in the Hartmann dispersion formula [32]. The index of the axicon 

material is calculated using the Sellmeier’s formula. These indices are then adjusted for the 

temperature of the element using the expression given above (for the liquid 
4

3.78 10dn dT C


    , for fused silica 5
1.28 10dn dT C


   ).    

 

 



 5 

 

 

 
Fig. 3 Measured and calculated on axis intensities. Top: liquid immersion axicon at 20°C, 

Center: liquid immersion axicon at 31°C, Bottom: Conventional 0.5° base angle axicon.  

 

Figure 3 (top) shows the measured and calculated on-axis intensity profiles after focusing 

through the liquid-immersion axicon (at 20 °C). It can be seen that the choice of the liquid index 

very close to that of the axicon material allows the generation of a focal line longer than 1.3 m. 

To generate this cone angle ( 0.18   ) and focal depth with a regular axicon would require ~0.4° 

base angle (with fused silica). More importantly, one can note that there are no oscillations on 

the on-axis intensity as observed in the case of regular small angle axicons (see Fig.3, bottom, 

and [22]). To demonstrate the tunability through temperature adjustment, we increased the 

temperature of the liquid immersion axicon to 31 °C, and repeated the measurements. Figure 3 

(center) shows the measurements and calculations for this temperature. Evidently, the adjustment 

of merely 11 °C allowed us to increase the cone angle significantly ( 0.28   ) and reduce the 

focal line to ~0.8 m. The advantages of the scheme we demonstrate become clearer through 

comparison with a regular axicon. We used 0.5° base angle axicon (made of BK7 glass) and 

repeated the measurements (Figure 3, bottom). The calculations are performed taking into 

account the blunt-tip profile [22]. The on axis intensity in this case exhibits significant 
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oscillations, resulting from the interference of the rays emerging from the lens-like tip and the 

axicon-like surroundings.  

 

3. Generation of plasma channels in air with the liquid-immersion axicon 
In order to demonstrate the feasibility of using the liquid immersion axicon in nonlinear 

optical applications involving high peak power lasers, we used a Ti:Sapphire laser system (800 

nm center wavelength, 50 fs pulse duration, 6 mJ pulse energy, 10 mm beam diameter). By 

focusing these pulses with the liquid immersion axicon, we generated a plasma channel in air 

through multiphoton and tunnel ionization [33] (Generation of plasma channels in air are of 

significant interest for several applications [17, 34, 35]). The presence of plasma is detected 

using two electrodes with high (7 kV) potential difference, and measuring the current through the 

grounded electrode, resulting from the plasma screening (more details on the detection in [15]). 

Figure 4 shows the measured current at different transverse positions. The overall length of the 

plasma channel reaches ~2m. The free electron density is free of oscillations observed in similar 

experiments performed with a regular axicon [15, 16]. We observed that when the input pulse 

energy is further increased (E>6mJ), the beam starts to form small-scale filaments within the 

liquid. This limitation can be addressed either by minimizing the liquid thickness (using smaller 

axicon-glass separation in Fig.1) or by increasing the input beam diameter.      

 

 
Fig. 4 Detection of plasma channel generated by focusing ultrashort pulses with the liquid 

immersion axicon. The measured induced current indicates presence of plasma over ~2 m. 

 

4. Conclusion 
In conclusion, we demonstrated a novel optical element, liquid immersion axicon, which can be 

used to generate Bessel-like beams in tunable manner and with minimal aberrations. We 

generated line foci longer than what could be achieved with regular axicons, and the resulting 

on-axis intensity was found to be free from modulations. We also used the liquid immersion 

axicon to focus high power ultrashort laser pulses and generated ~2 m long plasma channels in 

air.    

 

We gratefully acknowledge the funding of C. L. Arnold by the Deutsche Akademie der 

Naturforscher Leopoldina, Grant No. BMBF-LPD 9901/8-181. 
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