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Abstract The interior transmission problem (ITP), which plays a faméntal role in in-
verse scattering theories involving penetrable defestsiviestigated within the framework
of mechanical waves scattered by piecewise-homogenelassiceor viscoelastic obstacles
in a likewise heterogeneous background solid. For gemgrttie obstacle is allowed to be
multiply connected, having both penetrable componentdu&ions) and impenetrable parts
(cavities). A variational formulation is employed to edisib sufficientconditions for the
existence and uniqueness of a solution to the ITP, providatithe excitation frequency
does not belong to (at most) countable spectrum of trangmigigenvalues. The featured
sufficient conditions, expressed in terms of the mass deasd elasticity parameters of the
problem, represent an advancement over earlier works osubject in that i) they pose
a precise, previously unavailable provision for the wels@dness of the ITP in situations
when both the obstacle and the background solid are hetegogs, and ii) they are di-
mensionally consistent i.e. invariant under the choicelofspal units. For the case of a
viscoelastic scatterer in an elastic solid it is furthervehoconsistent with earlier studies
in acoustics, electromagnetism, and elasticity that thquemess of a solution to the ITP
is maintained irrespective of the vibration frequency. Wiagplied to the situation where
boththe scatterer and the background medium are viscoelastidisipative, on the other
hand, the same type of analysis shows that the analogous afainiqueness does not hold.
Physically, such anomalous behavior of the “viscoelagBcoelastic” case (that has eluded
previous studies) has its origins in a lesser known fact tirathomogeneous ITP is not
mechanically insulated from its surroundings — a featua¢ithparticularly cloaked in situa-
tions when either the background medium or the scatteratissgative. A set of numerical
results, computed for ITP configurations that meet the sefftconditions for the existence
of a solution, is included to illustrate the problem. Cotesi$ with the preceding analy-
sis, the results indicate that the set of transmission galiéndeed empty in the “elastic-
viscoelastic” case, and countable for “elastic-elastitd &iscoelastic-viscoelastic” config-
urations.
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1 Introduction

Over the past two decades mathematical theories of inveettesng have, to a large de-
gree, experienced a paradigm shift, most notably throughlévelopment of the so-called
qualitative or sampling methodEI [5] for non-iterative @uxd¢ reconstruction from remote
measurements of the scattered field. These techniqued) ptueide a powerful alternative
to the customary minimization approaches and weak-seatspproximations, are com-
monly centered around the development of an indicator foncthat varies with coordi-
nates of the interior sampling point, and projects remoteokations of the scattered field
onto a suitable functional space synthesizing the “bas®livave motion inside the back-
ground (i.e. obstacle-free) domain. Such indicator funrcis normally designed to reach
extreme values when the sampling point “falls” inside thppsut of the hidden scatterer,
thereby providing an computationally-effective platfofon geometric obstacle reconstruc-
tion. Among the diverse field of sampling methodls ,18J omay mention thdinear
sampling metho@,] and thdactorization methodR7] among the most prominent ex-
amples. In the context of penetrable scatterers (e.gi@lastusions within the framework
of mechanical waves), these theories have exposed the msadiy and understand a non-
traditional boundary value problem, termed thierior transmission problen@TP), where
two bodies with common support are subjected to a prescjilmep in Cauchy data between
their boundaries. Covered by no classical theory, thislprolihas been the subject of early
investigations since late 19805[@ 44]. The criticapstestudying the ITP involves deter-
mination of conditions (in terms of input parameters) ungeich the problem is well-posed
in the sense of Hadamard. Invariably, this leads to the aisabf the interior transmission
eigenvalues, i.e. frequencies for which the homogeneoBpErmits a non-trivial solution.
In particular, the characterization of such eigenvaluenastbecome of key importance in
recent studieq [40,P6].

So far, two distinct methodologies have been pursued tetigate the well-posedness
of the ITP, mainly within the context of Helmholtz and Maxiedjuations. On the one hand,
integral equation-type formulations have been develop , for scalar-wave prob-
lems, and later adapted to deal with electromagnetic w2@#2$]. One the other hand,
starting from the seminal work i4], an alternative treant of the ITP has been devel-
oped in [b] that involves a customized variational formaatcombined with the compact
perturbation argument. This approach has since been sficttgspplied in a series of pa-
pers to a variety of acoustic and electromagnetic scatfgnioblems, see e.gﬂ ﬂ 8].

In the context of elastic waves, investigation of the ITP haen spurred by the in-
troduction of the linear sampling method for far-fie[d [} #nd near-field EQ]EBEIZZ]
inverse scattering problems, as well as the developmehedbttorization method for elas-
todynamics |E|3]. To date, the elastodynamic ITP has beesstigated mainly within the
framework established for the Helmholtz and Maxwell ecquragj notably via integral equa-
tion approachﬂZ] for homogeneous dissipative scattesesthe variational treatment [10]
for heterogeneous, anisotropic, and elastic scattererhiomogeneous elastic background.
Recently, a method combining integral equation approachcampact perturbation argu-
ment has been proposed E|[11] for homogeneous-isotropstieity to obtain sufficient
conditions for the well-posedness of the ITP.

To extend the validity of the linear sampling and factoli@atmethods to a wider and
more realistic class of inverse scattering problems, tleeidoof this study is the ITP for
situations where both the obstacle and the background amighiecewise-homogeneous,
anisotropic, and either elastic or viscoelastic. This tgpdneterogeneity concerning the
background solid has particular relevance to e.g. seisméging and non-destructive ma-



terial testing where layered configurations are commonyeated either via natural depo-
sition or the manufacturing process. For generality, thetaible is allowed to be multiply
connected, having both penetrable components (inclusems impenetrable parts (cavi-
ties). In this setting, emphasis is made on the well-posendé the visco-elastodynamic
ITP, and in particular on the sufficient conditions underatithe set of interior transmission
eigenvalues is either countable or empty. For an in-depitdtysdf the problem, a variational
approach that generalizes upon the resultsﬂin [6] @d [L8gieloped, including a treat-
ment of the less-understood “viscoelastic-viscoelast@se where both the obstacle and the
background solid are dissipative. The key result of the pseg developments are the suf-
ficient conditions under which the ITP involving piecewisemogeneous, anisotropic, and
viscoelastic solids is well-posed provided that the exicitafrequency does not belong to
(at most) countable spectrum of transmission eigenvalliesse conditions aim to over-
come some of the limitations of the earlier treatments isd@#) elastodynamics in that:
i) they pose a precise, previously unavailable provisiarthe well-posedness of the ITP in
situations when the obstacle and the background solid aheheterogeneous, and ii) they
are dimensionally consistent i.e. invariant under the @hof physical units.

2 Preliminaries

Consider a piecewise-homogeneous, “background” visstielaolid 2 ¢ R? (not neces-
sarily bounded and isotropic) composeddfhomogeneous regular regiofis,. Assum-

ing time-harmonic motion with implicit factas'® and making reference to the correspon-
dence principle@l], lep > 0 and C denote respectively the piecewise-constant mass den-
sity and (complex-valued) viscoelasticity tensor chaazing (2. For clarity, all quanti-

ties appearing in this study are interpreteddasensionles$ollowing the scaling scheme

in TabIeD whered, is the characteristic lengtl is the reference elastic modulus, and
po is the reference mass density. Without loss of generalifycan be taken such that
inf{p(x) : z€ 2} = 1, leaving the choice of at this point arbitrary.

Table 1: Scaling scheme

Dimensionless quantity Scale
Mass density ) 00
Viscoelasticity tensor, traction vector C,t )
Displacement and position vectors u, e do
Vibration frequency w dy*\/ko/po

Next, lets2 be perturbed by a bounded obstafle” 2 composed of\/. homogeneous
viscoelastic inclusion®%* and M, disconnected cavitie®?. In this setting one may write
D = D.UDo, whereD. = =, DI" andDo = |J}2, D{. Here it is assumed that the
cavities are separated from inclusions De.N Do = (), and that2\ D, is connected. Similar
to the case of the background solid, the viscoelasticitgded. and mass density. > 0
characterizingD, are understood in a piecewise-constant sense. For the ggugdathis
study, the reference lengthy appearing in Tablﬂ 1 can be takendgas= |D|1/3, i.e. as the
characteristic obstacle size.



To facilitate the ensuing discussion, consider n&xtsubsets9? of D, where both
(C, p) and(Cx, p«) are constant, i.e.

V(n,m)e {1,...,N}{1,..., My} 2,nDT #0 = Ipe{l,...,Ni}: OF = 2,ND".

SinceD. C £, one hasM. < N, and geometricallyD, = Uévz*le_f. Likewise, one may
identify the N, subsetsod, of D, where(C, p) is constant

V(n,j)€{1,...,N}x{l,..., Mo} 2nNDi+#0 = 3ge{l,...,No}: 04 = 2, N D},

see also Fig[|2. In eadd?, the mass density of the inclusion and the background medium
will be denoted respectively iyt andp?; the background mass density in eaghwill be
similarly denoted by¢.

D
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Fig. 1: ITP configuration: scatterer composed of inclusidnsand cavitiesD, (left) and
scatterer support), occupied by the background material (right).

In what follows it is assumed tha. andC, synthesizing respectively the anisotropic
viscoelastic behavior of the obstacle and the backgrousk the following properties.

Definition 1 Let R[] and<S[-] denote respectively the real and imaginary part of a complex
valued quantity. The fourth-order tens@raindC.. are bounded by piecewise-constant, real-
valued, strictly positive functions c., C andC. and non-negative functionsv., V andV.
such that

clg <RE:C:E <Cl’  in 2,

1
cl€’ < R[E:C.:E <GP in Dy, @
and ~
viEP <SfE:c:E < Vg in o,
> . 2 @
vil€® <Sle:C €] < Vulg] in D

for all complex-valued, second-order tensor fiefden 2 > D.. For further reference,
let c?,cE, CP, 2, vP vE VP and VY signify the respective (constant) valuescot.., C, Cx,
v,vs,V andV, in eacho?, pe{1,..., N.}, and letcd, C, vd andV¢d denote the respective
values ofc, C,v andV in each®{, ¢ € {1, ..., No}. With such definitionsy? =v” =0 and
VP >vP > 0 respectively whei is elastic and viscoelastic (i.e. complex-valuedpify with
analogous restrictions applying to the boundsCarandCo. In this setting, 1) ano[kZ) de
facto require that both real and imaginary parts of a visasial tensor be positive definite
and bounded.
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Comment.With reference to the result iﬂ34] which establishes thgomsymmetry of a
(tensor) relaxation function by virtue of the Onsager’speaxity principle ] , it follows
thatC. andC have the usual major and minor symmetries whereby

R[E:C:€] =€ :R[C] : &, R[E:Cx:&] =& : N[Cx] : €, 3)
Q¢:C:€] =€ :3C) : €, 3[€:Cx: €] = € : T[Cx] : €.

One may also note that the imposition of the upper bou@ds,, V andV. in (EI) and ﬂZ) is
justified by the boundedness of the moduli comprigtrandC.., whereag, c«, v andv.. en-
sure thermomechanical stability of the syst@l ,20] sehepper and lower bounds can be
shown to signify the extreme eigenvalues of (the real andjinaay parts of) a fourth-order
viscoelasticity tensor, defined with respect to a secod@ragigentensor. Explicit treatment
of such eigenvalue problems is difficult in a general angatr case, which may feature
up to six distinct eigenvalues per real and imaginary parthk isotropic case, however,
tensorsC andC. can be synthesized in terms of the respective (complex)y sheduli x
andus, and bulk moduliX and K .. Under such restrictiorf andC. have only two distinct
eigenvalues|E8], given respectively B9, 3K} and{2u«, 3K, }. Depending on the sign
of the real parts of the underlying Poisson’s ratioand v [@], these moduli satisfy the
relationships

0<R <3 =  C=3RK] > 2R =c,
—1<Rp] <0 =  C=2R[u > 3R[K]=c,

0 < Rws] < % = Co = 3R[K+] > 2R[p+] = ¢,

4

Fig. 2: Schematics of the “intersection” domai@§ and©¢ wherein the scatterer and the
background solid both maintain constant material propefisee also Fiﬂ 1).

For further reference it can be shown on the basiﬂof ﬂl)tl@ié)aforementioned eigen-
representations of the viscoelasticity tensor, the tfaimgquality, and the Cauchy-Schwarz



inequality that

@p{:C*:ﬁda}

< (ot V) [[E]l 2 om) Il 2 g0m),

£:C:qpde

- < (C+V) [€llLz(on) [Inll 207 (®)

£:C:qpde
X
where¢ andn are square-integrable, complex-valued, second-ordeptdiglds in©%2 and
ed,pe{l,...,Ns}, qe{l,..., No}.

<(CH+V) (€l L2 og) [l L208)

3 Interior transmission problem

Consider the time-harmonic scattering of viscoelasticesaat frequencyw where the so-
called free fieldu", namely the displacement field that would have existed irotistacle-
free domainf?, is perturbed (scattered) by a bounded obstarie D..U D, C 2 described
earlier. This boundary value problem can be convenientlitewr as

V- [Ci: V] + psw’us =0 in D, (6a)
V-[C:Vu] + pwiu =0 in 2\D, (6b)
Us = u +u ondDx, (6¢)
te[us] = t[u] + tju'] on 9D« (6d)
tfu] +tu] =0 on 9Dg (6e)

whereu is the (total) displacement field within piecewise-homagmrs inclusionD.; u
is the so-called scattered field signifying therturbationof «.” in £2\ D due to the presence
of the scatterert«[9] = C«: V3 -n and t[¥] = C : VI n refer to the surface tractions on
dD; V implies differentiation “to the Ieft”BZ], ana is the unit normal on the boundary
of D oriented toward its exterior. HerEt6a) is to be interpreted@ short-hand notation for
the set ofM, governing equations applying over the respective homageneegionsDy"
(m=1,... M), supplemented by the continuity of displacements anditras acros® D"
where applicable. Analogous convention holds in termﬂj &rictly applying over open
homogeneous region3,\D.

In what follows, it is assumed that the boundary(ofif any) is subject to Robin-type
conditions wherebyﬂG) are complemented by

M —N)-u+ N-tlu] =0 on 90, (7

where\ > 0 is a constantn, implicit in the definition oft[u], is oriented outward from
2; and N is a suitable second-order tensor that varies continuaalslyg smooth pieces
of 912. Note that ﬂ7) include homogeneous Dirichlé¥ (= 0) and Neumann¥ = L)
boundary conditions as special cases. In situations whéeinbounded (e.g. a half-space),
@) and [f) are completed by the generalized radiation ¢iandiB3], namely

lim [t[u](m) Uz, y) — u(z) - T(x, y)} dr = 0, Vye4n, (8)
R—oo FR

wherel'r = Sgr N 2; Sk is a sphere of radiug centered at the origintJ denotes the

displacement Green’s tensor for the obstacle-free s@lind T is the traction Green’s

tensor associated witt.
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Interior transmission problemWith reference to the direct scattering framewoﬂk (E)—(B),
henceforth referred to as the transmission problem (TRgstigation of the associatéut
verse scatteringroblem in terms of the linear sampling and factorizatiorthrods EIZ,
P2 [2}[1B] leads to the analysis of the so-called interimmgmission problem (ITP)][5]. In
the context of the present study, the ITP can be stated aasketfinding an elastodynamic
field that solves theounterpartof (E) where the support oﬂ(eb), nameB\ D, is replaced
by D. Previous studies have, however, shown that the analysis bFP is complicated by
theloss of ellipticityrelative to its “mother” TP that is well known to be ellipti&n in-depth
study of this phenomenon can be foundE [19] who showed, ngaieference to acoustic
waves, that the ITP is not elliptic at any frequency. Here ialiso useful to recall that the
TP @)—@) and the associated ITP can both be representeccbsmon set of boundary
integral equations (written overD), which leads to the well-known phenomenon of fic-
titious frequencies[[4,3p.}#3] plaguing the boundary iraégreatment of direct scattering
problems.

For a comprehensive treatment of the problem, the ITP assotivith ﬂ5)~|2|8) is next
formulated in a general setting which i) allows for the preseof body forces, and ii) in-
terprets the interfacial conditions ov@D.. as a prescribed jump in Cauchy data betwaen
andu.. Making reference to Fig[l 1 and the basic concepts of funatianalysis|[35], such
generalized ITP can be conveniently stated as a task of §rdin, u,uo) € H™ (Dx) x
HY(Ds) x HY(Do) satisfying

V- [Co: Vus] + pu’us = £, in D., (9a)
V-[C:Vu] 4 pw’u = f in Ds, (9b)
V-[C:Vuo] + pruo =f in Do, (9¢)
us=u+g 0N oDy, (9d)
ti[ux] = tlu] + hs 0N dDx, (9e)
t[uo] = ho ond Do, (9f)

where H* = W*?2 denotes the usual Sobolev spa¢g;, f) € L?(D.)x L*(D); g €
H2(3D.); (hs, ho)€ H™2(dD.)x H™ 2 (8Dy), and

te[ts] = Co:Vus-m € H™3(9D.),
tu] = C:Vu-n € H 7(9D,), (10)
tfuo] = C:Vuon € H_%((?D*).

For completeness, it is noted thHt (9§)—(9c) dhd (§d)—(tOireerpreted respectively in the
sense of distributions and the trace operator whiland f, signifying the negatives of body
forces, are placed on the right-hand side to facilitate theussion.

Definition 2 Values ofw for which the homogeneous ITP, defined by setfifig f, g, h«, ho) =
(0,0,0,0,0) in (E), has a non-trivial solution are call&@nsmission eigenvalues



Modified interior transmission problemTo deal with anticipated non-ellipticity of the fea-
tured ITP, it is next useful to consider the compact pertiimbaof (E) as

V- [Cx:Vux] — prus = f, in D (11a)
V:C:Vu] —pu=f in D (11b)
V-[C:Vuo] — puo = f in Do (11c)
us=u+g oNndDx (11d)
ti[us] = tlu] + hs« 0N oD (11e)
t[uo] = ho ond Do, (11f)

see aIsoI]l(S] in the context of the acoustic waves. To dematesttine compact nature of such
perturbation, one may introduce the auxiliary space

[n

(D) := {(ux, u,u0) € H'(Dx) x H'(Dx) x H" (Do) :
V-[Cx:Vuu] € L*(Dy), V-[C:Vu] € L*(Dy), V-[C:Vuo] € L*(Do)}, (12)

and a differential-trace operatgvt representingml) fron® (D) into L2(D+) x L?(Dy) x
L%(Do)x H2 (9Dx) x H™ 2 (dD.) x H™2 (9 Do) such that

M, u, u0) 1= (V-[Co: Vtts] — paths, V-[C:Vu]—pu, V- [C: Vo] —p o,

(us—w)jop.» (t«[us]—tu])|op, , tludjap,) (13)
wheret andt. are defined as ir| (JL0). On the basis pf (11) (13), interarsmission
problem [}9) can be identified with operator= M + (1+ w?)P from Z(D) into L?(D.) x
L2(Dy)x L2 (Do) x H? (D) x H™2 (9Dx) x H™ % (9Do), where the featured perturbation
operator

P(U*/U,,’(Lo) = (p*'d*7 puU, puUuo, 07 07 0) (14)

is clearly compact by virtue of compact embeddingtdf(D..) into L?(D.) and H' (Do)
into L2(Do).

Definition 3 Triplet (., u,uo) € H(Dx) x H' (D) x H'(Do) solving (L1h){(@1c) in

the sense of distributions arfd (11d)}11f) in the senseedfrtite operator is calledstrong
solutionof the modified ITP.

3.1 Weak formulation of the modified ITP
The next step is to examine the ellipticity of the modified IfIR) through a variational
formulation, following the methodology originally intraded in [24] and later deployed
in [ﬂ,@]. To this end, recall the definition of the “backgnali viscoelasticity tensor and
consider the space of symmetric second-order tensor fields

W (D.) = {4s cL’(D.): =", V-&c L*D.) and Vx [C':®] = 0}7 (15)

equipped with the inner product

(@1, P2)w(p.) = (1, P2)r2(D,) + (V-P1,V-P2)12(D,), (16)



and implied norm
1215 (p.) = 18172(p.) + IV @l72(p,)- (17
For clarity it is noted that the curl operator [n]15), defircthat “to the left” [32], is to be

interpreted in the weak sense. With referenc (11) @)ﬂ @Surther B := HY(D.) x
W (Dx) x H' (Do) and define the sesquilinear form : E x E — C as

AU, V) ::/ [Vus : C+: V@, + psus - @, ] dx +/ {%(V-U)(V-@) +uU:c @l da

*

+/ [Vuo : C: V@ + puo - @) da:f/ [u*-§~n+(lx{~n)-cfo*] dez,
J D,

aD.,
(18)
together with the antilinear formd : E — C
LV) = / %ﬁ(v-é)dw— fode— | f - 7. de
JD. Dy D. (19)

+/ [h*-gb*fg-@-n} da:+/ ho - @ dz,
JOD, 0D,

whereC denotes the complex plangé= (u+, U, uo) € E, andV =(¢,, P, ¢) € E.
With such definitions, one may reca(ll) in a variation#tirep as a task of finding
U= (ux+,U,uo) € E such that

AUV) = L(V)  YV=(p,,®,¢)cE. (20)

Theorem 1 If problem ) has unique strong solution., u, uo) € H'(Dx) x H'(Dx) x
H'(Dy), then the variational problenEIZO) has unique weak solufids (u«, C:Vu, uo) €
E. Equally, if problem @O) has unique weak solution= (u«, U, uo) € E, then modified
ITP (1) has unique strong solutid., u, uo) € H'(Dx) x H'(D.) x H' (Do) such that
(Vu+V'u)/2=Cc"1:U.

Proof The proof of this theorem has two parts. The first part esthb thafw., u, uo)
solves [1) if and only i{u«, U, uo) solves [20), while the second part demonstrates the
equivalence between the existenceiniquesolutions.

Parity between the existence of solutions.
— Suppose thatu., u, uo) solves [1fL), and definet = C : Vu wherebyd € W (D).

By taking the L?(D.) scalar product ofa) witkp, € H*(D.) and applying the
divergence theorem, one finds that

/ [Vus : C«: V@, + prus - @] dw—/ U-n)-p, dr =
* 0D,

JOD, D,

by virtue of the boundary conditiof (1l1e). Similarly, agpgliion of the divergence theo-
rem to theL? (Do)-scalar product of (11c) witr € H' (Do) yields

/ [Vuo: C:Vp+ puo- @] dw:/

ho~§0dw—/ f @ dx. (22)
o OD, D,
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Finally, by taking theZL?(D.)-scalar product of[(1]b) with~! V- & for somed
W (D.) and making use of (1]Ld), one obtains

J,

1
p

(V~u)-(v-4’5)+u:c*1:4’5} dw—/aD s - P -ndx
. (23)

:/ lf.(v.és)dmf/ g-® nde.
P Jop.

The weak statemenf (20) is now recovered by sumn{idg @1)~¢@dch demonstrates
thatU = (u«,U,uo) € E is indeed a solution of the variational problem.

Conversely, leU = (ux,U,uo) € E be a weak solution tcmZO). Since the hypothesis
V x [¢~1:U] = 0 guarantees that~':14 meets the strain compatibility conditio[32],
there exists a functiom € H'(D.) such that(Vu+V™u)/2 = ¢! : U in the sense
of a distribution, defined up to a rigid-body motion. By vetof the fact tha/ solves
the variational problen (20) for allp,, ®,¢) € E, it follows by setting the triplet of
weighting fields respectively t@p,., 0, 0), (0,0, ), and(0, &, 0) that(u«, u, uo) Mmust
be such that|(21)[ (22) anfl {23) are satisfied independently.

By way of the divergence theorenﬂZl) yields

| vl pu 1) oo do
+/ (hx + (C:Vu)-n— (Cx:Vux)-n)- @, dr = 0, Ve, € H (Dy)
9D,

whereby(u«, u) satisfies

V- [Cs:Vus] — pxus = f, in Dy,

(24)
ty[us] = tlu] + hy oNnoD:x.

Similarly, equality [2P) leads to

/ (V-[C:Vuo] — puo— f)-pdx + / (ho— C:Vuo-n)@dx = 0, VgoeHl(Do)
J D, &Do

which requiregu, uo) to satisfy

V-[C:Vuo| — = in Do,
[ Uo] — puo = f o (25)
t[’l,Lo] = ho on aDo
On substituting{ = C:Vwuin (@), on the other hand, it follows that for @l e W (D)
/ <1V~[C:Vu]—u—Lf)-(V-@)dw—&—/ (g+u—uy)-®-ndx = 0. (26)
D.\P P P)

D.

To deal with [2p), it is convenient to introduce the “zeroameand zero-first-order-
moment” space of vector fields

L(Q)(D*):{goeLQ(D*):/godm:O,/mxcpda::0},
D. D

s
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and to consider solutiog € H'(D.) of the elastostatic problem

V-C:Vx]=A inD.,  AeL}(D.),

C:Vx-n=0 0ndDx.
By taking® = C: Vi in @) whereby® € W (D), V- = Ain Dy, and® -n =0
on 9D, one finds that

/ (%V-[C:Vu]—u—%f) ~Adz =0 VA€e L3(D.),
and consequently, using identify x z)-A = w-(x x A), that
%V-[C:Vu]—u—%f =ctwxz in Dy, (27)

which specifiesu up to an rigid-body motion given by the translation vectoand
(infinitesimal) rotation vectow.
Consider next solutioy € H' (D) to the problem

V- [C:Vx]=0 inDs
C:Vx-n=A ondD., Ac L§(D.).

Again taking® = C: Vx in (@), which this time implie®s € W (D«), V- & = 0in
Dy and® - n = A ondDx, leads to

(28)

/6D (g+u—us) -Adz=0 VA € LE(0D.), (29)

so that

g+u—ur =c +w xa ondDx, (30)
wherec’ andw’ are vector constants.
On substituting @7) and]SO) intﬂ%), one finds by virtueh@ divergence theorem
and identityw x = = £2 - where 2=w x I that

/ [(c—l—c’)—&—(w—&—w/)x:c] -@-ndx + / R2:dde =0 V@ € W(Dx). (31)
aD, D.

Since the second integral vanishes due to the symmet# axfid antisymmetry of?2,

B1) requires that’ = —c and w = —’. From (2}), [2b), [37) and (B0), it now

immediately follows that(u«, u 4+ ¢ + w x ) is a solution to|(1]1).

Parity between the existence of unique solutions.

— Assume that problen] (11) has a unique strong solution, andle= (ul, U, ud)
andU? = (u?,U? u3) denote two weak solutions tg {20). By the equivalence be-
tween solutions to the two problems, one has that u!, ud) and (u2, u?, u2), with
(Vul+VTub)/2 =c7L: Ut and(Vu?+V'u?)/2 = ¢~ 1: U?, are consequently solu-
tions to ). Since the latter two triplets must coincidepbgmise, it follows that that
ul = w2, U'=U? and ul = w2, i.e. that the solution to the variational probldm] (20) is
likewise unique.

— Conversely, assume thdt [20) has a unique weak solution)ear(@d!, !, u$) and
(u?,u?, u2) denote two strong solutions tp [11). Sin@e, C : Vu'!, ul) and(u2,C:
vu?, u3) are consequently solutions 0 }(20), one must hae= 2, Vu' +V'u! =
Vu?+VTu? andul = uZ by premise. The proof is completed by noting thdtand
u? are equal up to a rigid body motion, which must vanish thank&é boundary con-
dition (L1d).

O
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4 Existence and uniqueness of a solution to the modified ITP

Having reduced the study of the modified I‘IEl(ll) to that of/@sational statement]ZO),
the question arises as to the conditions under which therlptbblem is well-posed. For
clarity of exposition, the focus is made on thefficientconditions that compare thatastic
parameters of the inclusion, comprisiffC.], to those of the background in terms®ic].

In general, it is possible that the consideration of malteigsipation (synthesized via[C ]
and3[C]) may relax the “elasticity” conditions under Whi(ﬂ(ll) a(@) are elliptic, and
thus help establish the sufficieahd necessary conditions. The latter subject is, however,
beyond the scope of this study. With such restraint, thefatig lemma helps establish the
sufficient “elasticity” conditions.

Lemma 1 With reference to Definitioﬂ 1 specifying the bounds on teeoglastic tensors
C andc., the sesquilinear formA is elliptic if the inequalitiesp? < p2 and C? < £ hold
in each “intersection” domain@%, p € {1,..., N.}.

Proof ForU = (u«, U, uo) € EE, one finds from8) that

1

p(vu)~(v.a)+u:c*1;a dz

AU, U) :/ [Vus: Co: Vs + psths - Us da:+/ [
D. D.

+/ [Vuo : C: Vo + puo - o) dw—/ [u*~u-n+(u-n)-ﬁ*] d.
o JOD,

(32)
On employing the divergence theorem, the triangle inetyydiie Cauchy-Schwarz inequal-
ity, and definition of the “intersection” domair’, one finds

N.
/617 P @ nde|<H [H‘P*HL?(@f)HV' Pl 207y + HV%HL2(@5)H¢||L2(@£)] :
* p:l
(33)

By virtue of the fact thatA(U, U)| > R[A(U,U)], (83), and boundd]1) on (the real parts
of) the viscoelasticity tensoG, andC in each©?, it can be further shown that

P

- 1 1
AU, U)| > {CQHVU*H%Z(@@ + PRlwllzzon) + 5 IV Ullzaor) + 5|\u||12(@g>}

i
A

s

M

[l 260 IV Ul 2or) + V2 2 or Ul (o) |
1

“ 3

2 2
+ [Cg”VUOHLz(@g) +ngUO”L2(@g>} .
1

=]
Il

(34)
Since for every(z,y) € R?, a > 0, andB > 0 one has

2
oz’ + %y2 —2zy = OCT% (x - ﬁy) + (a—pB) (%$2 + %Zﬁ) ) (35)
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inequality ) can be rewritten as

N

AU.0) =Y

p=1

1 ) 1/cP )
+ (k- CP) (§||Vu*|\L2(@f) + m”ul\m(@f))

P 4cr
3 [Vusl[r20r) —

2
HU||L2((~)§))

&4 cp

P+ pP 2 2
S (HU*HLZ(@f) - WHV'UHLZ(QS)) (36)

1/p"
P + pP

1
+ (¥ = ") (gl\u*lliz(@f) + HV'UH%Q@E))

No

2 2
+ Z [Cg||vuo”L2(@g) + ngUOHLQ(@g)} :
g=1

On introducing the lower-bound parameter

<c§3*CP =P ph—pP PR —pP

7c3,pg> . @)

¥ = min ) )
S\ 2 O+t 2 Tkt pr)

one finds thaty > 0 sincep? < p? andC? < c¥ in each®? by premise. On the basis of this
result one finds, by dropping the “squared-difference” Behrr@), that

N. No
A O = | 3 (el o) + Ul on) ) + D luolfer | - (38)
p=1 g=1

Recalling that = (u+, U, uo) € E, the sesquilinear form is consequently elliptic with

AW, 2 5 (sl 0. + (. + ol (i, ) (39)

which completes the proof.

One is now in position to investigate the variational foratidn of the modified ITP.

Theorem 2 Under the assumptions of Lemrﬂa 1, variational probl@l\ (2 & unique
weak solutiorl/ = (u«, U, uo) € E with an a priori estimate

lusll (o, + [Ullw(p.) + llwollzr(p,) <

3C
(1) + 182200 418l 3 o+ W=l 3 o+ TR0l o ) (40)

wherey > 0 is given by @7), and’ > 0 is a constant independent §f, f, g, h+« and ho.

Proof The norm of the antilinear operatgrin (@) can be shown, by exercising the triangle
inequality, the Cauchy-Schwarz inequality, the divergetieorem (applied t@) and the
trace theorem, to be continuous i.e. bounded with constant0 independent off,, f, g,

h.. andh, such that

I2lles < C(Illzacpy + 1# 12,

+ llgll ;3 + [l

H?2(8D.) (41)

+ lkoll,

H~3(8D.) -3 (6D0)> '
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whereE* denotes the dual dE.
To establish the boundedness of the sesquilinear fa&¢ti, V), on the other hand, one
may introduce the notation

WUIE = el o) + Wy (o) + luollF (ny) 42)

2 2 2 2
WVlE = llellmp.) +12lwp.) + el (py):

for U,V e E defined as in[(20). In this setting, it follows frorh [20), thiangle inequality,
@), the Cauchy-Schwarz inequalit}, 39).](42), and bowswis as| V.|| 2 (p.) < [|U]fe
that there is a constadt’' >0 such that

MOV < C Ul V]| (43)
Using the notation introduced iﬂ42[[39) can also be rg@nimore compactly as
AU, U)| = ~||UJE. (44)

With the boundednesﬂ43) and coerciv (44)ohow verified, the existence of a unique
solution to the variational problerﬂZO) follows directhpiin the Lax-Milgram theorerrmBS]
which ensures thatU||z < v 1||£||~. In this setting, a priori estimatg (40) is derived as a
consequence om41)|]42a), and upper bounds suft.d; (p,) < [|U]lE-

]

Theorem 3 Under the hypotheses of Lemﬂa 1, modified @ (11) has a usigqueg so-
lution (ws, w, uo) € H' (D) x HY(Dx) x H'(Do) with an a priori estimate

lusll gy (p,y + 1wl (p,) + llwollgr (py) <

e (I£1z2) + 1£12200) + 13 o, + el ol o) 45)

H™%(0D.) ~2 (8D,

wherec > 0 is a constant independent ¢f, f, g, h« andho.

Proof The first part of the claim, namely the existence and unigs®ieéa strong solution
to (1) follow directly from Theoremf 1 ar}i 2, while ineqtyal3) can be obtained on the
basis of ) anﬂO). In particular, from the relationsbip= C : Vu and the fact that.
satisfies|(11b), it follows via triangle inequality that

lullr2(p,y < o« (Ulwp,) + 11FlL2p.)) (46)

for some constant > 0. By virtue of the bounds on the viscoelasticity tensbin (ﬂ)
and ﬂZ), on the other hand, one finds

IVullp2p.y = 1€ Ul 2,y < BIUIw(b.), (47)

for somes > 0. On combining [46) and (#7) to obtain t#&' (D.) norm of u, estimate|(45)
follows directly as a consequence (40) with

¢ < @wm)g.
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5 Well-posedness of the ITP

Having established the conditions under which the modifretlpm ) is uniquely solv-
able, one is now in position to study the existence and unigg® of a solution to the (orig-

inal) ITP (9).

Theorem 4 Under the hypothesis that’ < p} and C? < c£ in each “intersection” domain
6%, p € {1,...,N«} as in Lemma]|1, the set of transmission eigenvalues C for which
the interior transmission problen|(9) does not have a unigoletion is either empty or
forms a discrete set with infinity as the only possible acdatimn point.

Proof With reference to the spacg(D) introduced in 2), it is recalled that the modified
ITP (1) is represented by the differential-trace operatoms in [1B), while the original
problem [P) is identified with operat@® = M + (1+w?)P, whereP is the compact per-
turbation given by@4). In Theoreﬂm 3 it is shown that—! exists, and furthermore that it
is bounded i.e. continuous under the assumptions of Lefhritagorem[4 claims that the
operatorM + (1+w?)P is invertible for allw € C\S, wheres is either an empty set or a
discrete set of points in the complex plafieSince M ! is continuous, this claim can be
established by showing the analogous result for the operato

Z + (1+* )M P,

whereZ is the identity operator front (D) into = (D). As shown in Sectioﬂ 3, operat@r
is compact owing to the compact embeddingfbf(D) into L?(D), and so isM 1P by
virtue of the continuity ofA1~! [@]. For this situation, the Fredholm alternative applies
[67] whereby
-1
(I + (1+w2)/\/l_173)

exists and is bounded except for, at mostliscreteset of transmission eigenvaluese
S C C (see also Definition 2). Finally, since the countable spmetof (compact) operator
M~1P can only accumulate at zerE[463,is further characterized by infinity as the only
possible accumulation point.

0

5.1 Relaxed solvability criterion

With reference to Theoreﬁlu 4, itis noted that the eigenvad@EBP (ﬂ) may form a countable
set even in situations that violate the aforestated réistnico” < pL andC? < < in each
6%, p € {1,...,N.}. Indeed, the latter condition can be relaxed in a way sintdathat
proposed in @O], albeit without introducing additionahgplexities. To this end, recal[|(9)
and letw denote the “combined” elastodynamic field ih= D. U D, so thatu anduo
are therestrictionsof w on D, and Do, respectively. Given(f,, f) € L?(D.) x L?(D),
ge H? (0D+), and (h«, ho) € H? (0D«) x H™? (0Do), the focus is then made on finding
(us,w) € HY(Dy) x HY(D) that satisfies

V-[Ci:Vus] + psw’us = £, in Ds,

V-[C:Vw] + puiw = f in D,
Uus =w-+g onodDxy, (48)
ty[us] = tjw] + hx 0N D,

tlw] = ho on 9D,
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which is simply a restatement cﬂ (9). Following the develepts in Secti0|E|3, the modified
i.e. “regularized” counterpart of ITH (48) can be written as

V-[Cx:Vux] — prux = f, in Dy, (49a)
V-[C:Vw] — pw = f in D, (49b)
ur=w+g ondDx, (49c)
ti[us] = t[w] + ha onaDx, (49d)
tlw] = ho ondDo, (49e)

where(u.,w) € H'(D.) x H' (D). In this setting, the conditions under which the trans-
mission eigenvalues of](9) i.4. {48) form a countable set eeoren(]4) can be extended
through the following theorem.

Theorem 5 Under the hypothesis that > p% and c” > C% in each “intersection” domain
6%, p € {1,..., N}, the set of transmission eigenvaluesc C for which the interior
transmission problen] (48) i.€](9) does not have a uniquetisol is either empty or forms
a discrete set with infinity as the only possible accumutagioint.

Proof The proof of the theorem follows directly from the foregoihgyvelopments provided
that the variational formulation is slightly modified. Tagkend, define the space of second-
order tensors

Wa(Dy) = {45*6 L*(D.): @, = BL, V-b.c L(D.)andV x [C;1:d.] =01,

(50)
equipped with the norm

@[y, (D) == 18172, + IV-Bull72(p.)- (51)

Note that the only difference betwedn|(15) ahd (50) is éhags been replaced Is.. Next,
let E. = Wi (Dx) x H'(D) and define the sesquilinear fors. : E. x E. — C as

Li(v-u*) (VB) + U : C:1:§*1| da

AU, V) = /

D,

+/ [Vw:C:Ve+pw - | dz —/ [(Usn) -@+w-Pin] dz, (52)
D 0D,

together with the antilinear form. : E. — C
Lo(V) ::/ Lt (v da f/ F pdo
D, Px D
Jop., J 8D,
whereU = (U«,w) € Ex andV = (P, ) € E..
With reference to the developments in Sectﬂn (3), it candbe shown thatu., w) €

HY (D) x H'(D) uniquely solves ITP[(49F and only if (., w) € E., such tha( V. +
V'u.)/2 = C~1:U., uniquely solves the variational problem

AU, V) = Lo(V) WV = &+, ) € Eu. (54)
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With such equivalence, one may again make use of the factAltat U)| > R [A(U,U)],
[B3), and bounds irf}(1) on the real parts of the viscoelagtiensorsC.. and¢ in eache?,
to show that

N

1 1
AU = {p—pnv-u*uiz(@g) + U202 + Vw72 () + ppl\wl\%z(ez)}
p:1 * *
N
=2 ) [lwlipzen) IV-Usllzzon) + IVl c2gon Us 2 on)|
p=1

No
+3 [IVewliizop + pllwlaon) -
q=1
(59)
On introducing the auxiliary parameter

Vo= min S Tk S T il - il o
el 20 TCR(E@+CR)T 2 T pk(pP + p)

,cg,pg) . (56)

which is strictly positive 4« >0) whenp? > p? andc? > C% in each6?, one finds by virtue

of (83) that

N Ny
AN = 70 | 3 (1l or) + w0l o)) + D lwlines | - 67)
p=1 q=1

As aresult, the sesquilinear for, is coercive with
AU, U)] > |IUJI5., WUIE. = el p.) + lwlFnpy.  (68)

With the continuity i.e. boundedness of both antilineanfat. and sesquilinear formt.
being direct consequences of the triangle inequality aedGauchy-Schwarz inequality,
the hypotheses of Lax-Milgram theorem are thus verifieds Tinturn guarantees a unique
solution to the variational problerﬂ54) with an a prioriiegtte

20*
It .y + ol (o) < == (18l 220y + £ 2202y
18,3 om0l oy IR0l 3 o)+ B9)

where constan€. > 0 is independent of,, f, g, h« andho, cf. (49). Following the ar-
gument presented in Sectitﬂn 4, one consequently finds taadttbng solutionux, w) €
H'(D.) x H'(D) solving modified ITP[49) i.e[(11) is likewise unique with estimate

lsllzn (. + ol o) < o (18l 2y + 1£l2p.)

+ llgll ;2 + IR

HZ (8D.) + llholl

(60)

_1 1 )7
H™2(0D.) 2 (0D,)

such that constant. > 0 is independent off,, f, g, h« and ho, cf. @5). The proof of
Theorenﬂ:') can be brought to a close by introducing the auxifipace

[n

(D) = {(u*,w) € H (D) x H'(D) : V-[Cs:Vui] € L3(Ds), V-[C: V] eL2(D)}
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and abijectivedifferential-trace operatok1, representinglEQ), fror. (D) onto L? (Dy) x
L2(D) x H2(dD.) x H™2(dD.) x H™(dDy) such that

M (s, w) := (V~[C* :Vus]—psus, V-[C: Vw]—pw,
(= w)jop. (bl = tfw])op. tiwlon, ). (61)

On defining the perturbation operat®s from =, (D) into L(D.) x L2(D) x H2 (dDy) x
H™2 (0Dx) x H_%(aDo), namely

P*(u*7w) = (p*u*7 pw, 07 070) (62)

that is compact by virtue of compact embeddingtf(D.) into L?(D.) and H' (D) into
L%(D), one can finally apply the Fredholm alternative to the compglooperatotZ + (1+
w?) M 1P, whereby

(z n (1+w2)/\/t*_173*)71

exists and is bounded except for at most a countable set oésal € S, C C. Again,
S« is characterized by infinity as the only possible accumaitafioint, since the countable
spectrum ofM; 1P, can only accumulate at zero.

]

Remark. With reference to Theorenﬂs 4 aﬂd 5, it will be assumed througthe remainder
of this study that either

pP<pl and CP<cl, Vpe{l,..., N«}, (63)

or
pP>pt and P> CE, Vpe{l,..., Ny} (64)

As shown via the foregoing theorems, the compliance Wiﬁheei@) or @4) represents a
sufficient conditiorfor the ellipticity of the modified ITPml) and thus for theigue solv-
ability of ITP @) provided thats does not belong to a countable spectrum of transmission
eigenvalues.

6 Can the set of transmission eigenvalues be empty?

In light of the foregoing results which establish sufficienhditions for the countability of
the transmission eigenvalue set via the analysislasticparameter&t[C] andR[C], it is
next of interest to examine whether the material attenoatizanifest via3[C] and 3[Cx],
can bring about the uniqueness of a solution to the interd@msimission problerr[|(9) for all
w € C. To this end, it is useful to introduce two auxiliary measunéthe “viscosity” of the
system

Ymin[C, D] :
“Vmax[C,D] :

inf{3[¢:C:€]: x€ D}
sup{S[¢:C:€]: € D}

0,

=
20,

where¢ is a complex-valued, second-order tensor fielisuch that¢|*> = 1. On the basis
of Definitionﬂ, it is clear thatmaxC, D] takes zero value only i§[C] (and thusv) vanishes
identically inD.
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Theorem 6 Let D C Do, and D), C D, denote the “viscoelastic” regions, preserving re-
spectively the topology ab, and D, that each have a support of non-zero measure. If
either

YinlC, Dol >0  and  ¥in[C, DL >0  and  ¥madCs«,Ds] =0 (65)
or
YminlC, Dpl >0 and  YmalC,D«] =0  and  ¥yin[Cx, DL] > 0 (66)

the interior transmission problerﬂ(g) has at most one sotutin other words, the multiplic-
ity of solutions to ITP|]9) is precluded if there is a regi®§ C D, whereC is viscoelastic
and a regionD’, C D. where_eithelC or C.. is viscoelastic.

Proof Let (u«, u, uo) be the algebraic difference between two solutions to treimttrans-
mission problem|]9). The displacement field, being solution to the homogeneous Neu-
mann problem oveb,, vanishes identically owing to the premise that,[C, Do) >0 where

Dy preserves the topology @,. From the homogeneous counterparts@‘ (9a) Ed (9b), on
the other hand, one finds by employing the divergence thetwgether with boundary con-
ditionsu =wu+ andt[u] =t.[u«] overdD, that

/ [Vu:C:Vﬁfpru-ﬁ] da::/ tlu] - wde =
D. aD.,

0D, *

The triviality of w andu. can now be established by taking the imaginary pa@f (67gkvh
reads

/ Vu: S[C]:Vu dr = / Vs : S[Cx]: Vs de. (68)

Assuming [6) which requires the right-hand side{of (68)anish, one finds by virtue of|(2)
that

0< Vu:%[C]:Vﬁde/ Vu: S[C]: Va dx = 0,
D! D.

which via Korn’s inequality B?EB] yield&’« = 0 in D,. On recalling the field equa-
tion ) with f = 0, it follows thatw = 0 in D} as well. By way of the Holmgren's
uniqueness theorem for piecewise-homogeneous bsafm(Z]wypothesis thab’, pre-
serves the topology db., the trivial Cauchy data = t[u] =0 on 9D, can now be uniquely
extended to demonstrate that= 0 in D, and consequently that = t[u] = 0 on 9Dx.
On the basis of the interfacial conditiors](9d) apd (9€) with 0 andh. = 0, one further
hasus« = t«[ux] = 0 0N dDx, so that finallyus = 0 in D, by virtue of the Holmgren’s
uniqueness theorem. The companion claim, namely that thé@odifference(us, u, uo)
vanishes identically wheﬂ%) is met, can be established ianalogous fashion.
]

One is now in position to demonstrate, under suitable @&in onC, C., p andps, the

existence of a unique strong solution to the interior traesion problem|]9)m eC.
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Theorem 7 Assuming that eithem3) om64) hold in termsp., R[C] and R[C], and
that either [6p) or[(66) hold in terms &f[c] andS(C-], ITP (§) has a unique strong solution
(us,uw, uo) € H(Dx) x HY(Dx) x H (Do) with an a priori estimate

lusll 1 (p,y + lullzr(D,) + llwollgr(p,) < ¢ (”f*HLZ(D) + 1 fllz2(p.)

+ llgll ;3 + [l

H?2(8D.) (69)

+ ko,

H’%(aD*) ’%(6Do))

where constant > 0 is independent of,, f, g, h. and ho.

Proof The above claim is a direct consequence of Theorgn$ 4, 5[]afid Blustrate
the proof, assume thaﬂGS) and eith@ (65)@ (66) are met,racall the definition of
operatorsM and P given respectively by[(}3) and (14). By Theoré¢in 4, operator-
M + (1+w?)P identified with ITP BB) is surjective, whereas TheorEm 6 essthatO is
injective. As a consequencé) is bijective with bounded inverssﬂ [5]. Thus there exists a
unique solution to the interior transmission problem (8),dllw € C, verifying the a priori
estimate@). The proof whep (64) holds in lieu[of{ (63) cares®blished in an analogous
fashion on the basis of Theorefpjs 5 ﬂ\d 6, recallingdhatw, p, anduo = w|p, in terms
of the “combined” fieldw such thau., w) € H'(D.) x H'(D) solves [4B).

m]

Remark. Implicit in the foregoing analysis is the fact that the smwot uo, to the homo-
geneous ITP oveD, is uncoupledfrom w andw. in that it solves the interior Neumann
problem

V-[C: Vo] + pw?uo =0 in Do,

tluo) =0 ondDo.

As a resultuo will by itself introduce discrete eigenvalues into the devb ] as soon as
the restrictiorC, p, is elastic i.e. real-valued. This is reflected in Theofpm &tvprecludes
such possibility by requiring thatmin[C, D] > 0 where D, C Do has a support of non-zero
measure and preserves the topologyef To provide a focus in the study, this assumption
will be retained hereon.

With the above premise, consider next the “elastic-elastse

Yin[C, Dol >0  and  %nax]C,D«] =0  and  ¥maxCx«, Dx] = 0,

where bothC andC.. are real-valued everywhere in.. In this situation, both sides (ﬂGS)
vanish which precludes the foregoing analysis from emptyire (countable) set of trans-
mission eigenvalues. This is consistent with the well-knd&havior of the interior Dirich-
let and Neumann problems in elastodyna [29] which aosvkrto have discrete eigen-
values.

If the same procedure as in Theorﬂm 6 is applied to the “vlastie-viscoelastic” case,
on the other hand, where bothandC. are (at least intermittently) complex-valued such
that

YminlC, Do) >0 and  min[C, DL >0  and  Ymin[Cx, DY] >0,  (70)

whereD,ND. # (, DY/ ND. # 0, and D. C D. is connectedone finds that both sides
of @) are non-trivial oveD., which again fails to eliminate the transmission eigersalu
Note that the featured assumption B and D,/ physically means that there is at least one
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connected piece). C D., whereboth C and C. are at least partially viscoelastic. This
of course encompasses the case wigeaed C.. are complex-valued throughout. To better
understand such counter-intuitive result whereby thevthiction of “additional” material
dissipation relative to that in Theoreﬂ1 6 may lead to the tdssgjectivity, it is useful to
re-examine the problem within an energetic framework.

6.1 Energy balance

To establish the energetic analogue[of (67) fnH (68), imebin the proof of Theoretf] 6, con-
sider the case of steady-state viscoelastic vibrations @.iWith reference to the implicit
time-harmonic factoe'*, one may recall the expressions for trocityfields, v = iwu
and v, = iwux, over D, which allows one to interpret

T
S[Vu:C:Va] = %/ R[C: Vu e R[Vve“dt = — &P,
JO

3=

LT . (71)
S[Vus:Cx: Vs = ;/ R[C: Vs '] : R[Vvre|dt = - g2,
0

in terms of the dissipated energy densiti€8, and £°2 in D., calculated per period of
vibrationsT' = 27 /w. Similarly, one finds that

T . )
Stlu]-u] = %/ R[t[u]e'"] - Rlwe'“t dt = %]—‘Dy

’ T . ' (72)
Sts[us] ws] = /0 %[t*[u*]elwt]’m[v*elwt]dt = ]__57

3=

carry the meaning of energy influx densitig® and 72 overdD.., reckoned per period of
vibrations. On the basis df {71) ar[d]72), the imaginary paf7) can be written as

/ P de = FPdx = / el de = FP da, (73)

J D JOD, J D JOD,

which states that any solution to the homogeneous ITP mustitiethat the dissipated en-
ergies overD,, and corresponding energy influxes o@db.., are the same for both bodies.
In this setting it is clear that when either body is purelysétaoverD.. as specified by@S)

and @), the equality of dissipated energi@ (73) requiveslisplacement field in the vis-
coelastic companion to vanish by virtue of the positive difiress |ﬂ2) of the imaginary part
of the viscoelastic tensor. From the vanishing Cauchy da@/2., one consequently finds
by virtue of the Holmgren’s uniqueness theore@ [22] thatdbleition in the elastic body

must vanish as well. When both bodies are viscoelastic a@)j 6n the other hand, one
finds from (7B) that

/ EPdx = FPdx = / Edx = FP dx >0, (74)

D, 8D, D. Jop.,

where D, is a connected piece db., and the foregoing approach provides no means to
preclude the existence of non-trivial solutions to the hgemeous ITP. In particularD74)
demonstrates the homogeneous ITRasmechanically isolateftom its surroundings in the
sense that it permits positive energy influx into both bodiesr oD, C D+ even though
the jump between the respective Cauchy data, specifiegl ata k.., vanishes.
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7 Results and discussion

Comparison with existing resultdn Sectiorﬂs, it is shown that ITFE|(9) is well-posed when
w does not belong to (at most) countable set of transmissigenealues provided that
either (6B) or[(64) holds. These sufficient conditions, fokated in terms of the material-
parameter distribution&, p) and(Cx«, p«), State that

either  pP<pf, CP<cl or  p’>ph P> Vpe{l,...,N«}, (75)

whereC andc signify respectively the maximum and minimum eigenvaluethe real part
of a fourth-order viscoelasticity tens@ras examined earlier.

To the authors’ knowledge, the first (and only existing) gtaflan elastodynamic ITP
involving heterogeneous bodies can be fountﬁlh [10], wharassl that: i) the obstacle and
the background are both non-dissipative i.e. elastidy@)tiackground is homogeneous with
unit mass density, and iii) the obstacle is in the form of al&rconnected inclusion with
bounded but otherwise arbitrary distribution of elastiogarties. Within the framework of
the present investigation, these hypotheses can be suretas

$[C] = S[C«] = 0, C = const, p=1, Ci < oo, D = D.. (76)

With such assumptionsﬂlO] employed the variational fdetion analogous to that in this
study (following |]3]) and obtained sufficient conditifor the countability of the trans-
mission eigenvalue spectrum as
either min S Cmin > E or max _ < cmax < (77)
P* = * c p* C2 I * C2 I
where )
Pt = inf{ps:xeD},  p™ = sup{p«: xz €D},

kanin = inf{C* : (IJED}7 Ciﬂax - Sup{c*: (IJED}

Despite the fact that all quantities iE[??) are dimensiml@onditions@?) are unfortu-
nately non-informative as either set of inequalities cdud for a given ITPpoth met and
violated depending on the choice of the reference modejus Tableﬂ used to normalize
C andC. (note thatoy must equal the mass density of the background solid to pave).
As a point of reference, sufficient conditio(75) obtaiimethis study can be degenerated
by virtue of ) and@S) to conform with the hypotheses m'ad@] as

(78)

either pMin> 1, cM0S C or X, CRXcc (79)
This counterpart of@?), that is invariant under the chaitgy andxg, can be qualitatively
described as a requirement that the inclusion be eithers&tesnd stiffer” or “lighter and
softer” than the background solid throughout — a conditidricw guarantees that ITIE 9),
subject to hypotheseE[76), is characterized by a counsglgletrum of transmission eigen-
values.

In the context of dissipative soIidsEIlZ] considered th® Ifor a homogeneous vis-
coelastic obstacle in a homogeneous elastic backgroumdh&garticular case where the
prescribed jump in Cauchy data, manifest giandh. in the present study, is given by the
traces of the elastodynamic fundamental solution, thegbéished the existence and unique-
ness of a solution to the featured ITP via a volume integrpt@gch. Most recentlymll]
investigated the ITP in isotropic elasticity for the caroahicase where both the inclusion
and the background solid are homogeneous. By making rezdarthe integral equation
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approach, ellipticity of the elastostatic ITP, and the caotperturbation argument, they
arrived at sufficient conditions for the countability of ti@ensmission eigenvalue spectrum
as

either  p« > p, Ko > K or pe < p, Ke < K. (80)

For completeness, sufficient conditio (75) can be degé&stkry virtue of |]4) to the
homogeneous-isotropic-elastic case as

O<v<i = either p«>p, 2u >3K or pu<p, 3K. <2y,

. 81
—1<wm <0 = either p.>p, 3K«>2u OF pe<p, 2ux < 3K. (81)

Clearly, inequalitiesl) are more restrictive than th'tms), most notably in that they

entail a relationship between the mass densities of thesim and the background. The
principal reason for such distinction lies in the fact t@][centered their analysis around
theelastostatidTP, deployed as an elliptic (and compact) perturbatiomeffeatured (elas-

todynamic) ITP. Unfortunately, the weak formulation of thedified ITP employed in this

study does not permit elastostatic analysis as it would &isnrequire settingo and p«

in {L4) and thus in[(18) and (19) to zero, which both introducebounded terms and
destroys the required *-structure of the quadratic formd (U, U). Despite this apparent
limitation formulas @5) provide, for the first time, an objiwe set of sufficient conditions

that ensure the well-posedness of the visco-elastodynérRién a fairly general situation

(where both the obstacle and the background solid can beolgeteeous, anisotropic, and
dissipative) provided that the excitation frequency doeshelong to (at most) countable
spectrum of transmission eigenvalues.

7.1 Analytical examples

Assuming that eitheEjB) om64) holds, it is shown in Sen:Edhat the set of transmission
eigenvalues characterizin ITE (9) is at most discreteepixfor the “elastic-viscoelastic”

case examined in Theor 6, however, it is not known whettisrset is nonempty. For

the ITP in acoustics, it was demonstratedm [17] that thestmdssion eigenvalues indeed
exist for certain problem configurations. For completen#ss possibility is examined in

the context of (visco-) elastic waves via two analyticalrepées.

Longitudinal waves in rodsConsider the interior transmission problem involving liag
dinal waves in two thin prismatic rods having unit length auplial cross-sectional areas.
In this setting, le( E, E.) € C? and(p, p«) € R? denote respectively the constant Young’s
moduli and mass densities of the two rods. One seeks a naal-tlisplacement solution,
(u, ux), of the homogeneous ITP associated with frequency 0 so that

dQU*

2 .
By 72 + pxw ux =0 in [0,1],
d2u 2 .
E@erw u=20 in [0,1], 82)
ux(0) =u(0),  ux(1) =u(l),
dux du dux du
Ey . (0) = E%(O)7 Ey . (1) = E%(l)

Clearly, the solution to@Z) entails four unknown conssanbmputable from the algebraic
system of equations whose determinant vanishes whisna transmission eigenvalue. To
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examine this possibility, one may adopt the inverse of théuied determinant, termed.,
as an indicator function. On the basis (82), on finds that

1 1 —1 —1
ele e i —eler —eTier
Fr=ldet| B B B E. : (83)
clﬁ E c,lg E . B e
Lot e Ve —Lxley Lx o7l
C Cx Cx

wherec = /E/p andex = / E«/p« denote the phase velocities in the two rods. The left
panel in Fig.ﬂB plotsF, versusw for the “elastic-elastic” case assumirg = 2F € R
and p. = 2p, noting that the featured set of material parameters cordarith the one-
dimensional variant 03) which guarantees that the sé&iaosmission eigenvalues is at
most countable. From the display, one can clearly see thesitioh of transmission eigen-
values, spread uniformly along the frequency range of @sterAs a complement to this
result, the right panel in Fid] 3 plots,. versusw for the “elastic-viscoelastic” case which
assumesz. = (2 + 0.11))E € C andp« = 2p. Consistent with the claim of TheoreEn 6,
the latter result indicates absence of transmission e@ees whenFE is real and E. is
complex-valued (note that the local maximumuat= 0, present in both diagrams, takes
significantly smaller value than the truncated “dynamic’xinaa in the left panel).

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 4‘0

Fig. 3: Eigenvalue indicatorF, versus vibration frequency: “elastic-elastic” case,
(E, E.) € R? (left panel) and “elastic-viscoelastic” cagé}, E.) € R x C (right panel).

Oscillations of spheresThe second example deals with the ITP for two homogeneous and
isotropic spheres of unit radius, characterized by theeetsge shear moduliy, ) € C?,
Poisson’s ratiogv, v«) € R?, and mass densiti€p, p«) € R2. Once again, the transmission
eigenvalues are associated with non-trivial solutiondiéoitomogeneous ITP for which the
two spheres share the Cauchy data on the boundary. Assuh@hghe two spheres are
subjected respectively to constant radial pressprasdp., the induced (radial) boundary
displacements andus can be computed foIIowind][3] as

Cpe Quoos(@:) —sin(@)
1 G cos(Qe) — (1 — a2Q2)sin(@-)”
o Qus@—sin(@
4p Qcos(Q) — (1 — a2Q?)sin(Q)’

U

(84)
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where

2 2
2 1—-vw 2 1—wy 2 pw 2 pxw
YT T T 4y = & Ainc? (85)

To develop an eigenvalue indicator function in the spirithef previous example, one may
assume that equality= p. holds on the boundary, and define

Fo= vl (86)

u U s

p P«

as a quantity which becomes unbounded wheis a transmission eigenvalue. As an il-
lustration, the left panel in Fig[] 4 plots, versusw for the “elastic-elastic” case assuming
ws=2p € R, ve = =1/8 andp« = 2p, while the right panel describes the corresponding
“elastic-viscoelastic” situation where, = (2 + 0.1i)u € C. Similar to the previous ex-
ample, the numerical results indicate the existence ositréssion eigenvalues when both
spheres are elastic, as well as their suppression when dhe bfo spheres is dissipative.

10 10t
10° 10° -
F, F
10° 10°
A/\/\/\
0 5 10 15 20 25 30 3 40 0 5 10 15 20 25 30 35 40
w w

Fig. 4: Eigenvalue indicatars versus vibration frequency: “elastic-elastic” caseu, u«) €
R? (left panel) and “elastic-viscoelastic” cagg, ) € R x C (right panel).

Viscoelastic-viscoelastic casén the above examples, the focus was made on “conven-
tional” ITP configurations where neither or either of the toalies is dissipative. In light of
the results in Sectiof] 6 where the analysis used to demomstiaabsence of transmission
eigenvalues in the “elastic-viscoelastic” case failedi#ddjthe same result for “viscoelastic-
viscoelastic” (VV) configurations, it is of interest to exama the latter class of problems via
the example of oscillating spheres. To ascertain whethesinission eigenvalues could in-
deed exist in the VV case, the spheres problem is approacbeddn alternative point of
view, namely by fixing the vibration frequency at=wo € R, and then seeking admissible
sets of viscoelastic parameters for whighis a transmission eigenvalue. To this end, one
may introduce an auxiliary set of material parametgrsy) € C? and (., v«) € C? as

2 a2 2 az
B=pa”,  y=—, Br=peax, Y= (87)
1 s

From ) and@?), one finds

QQZM
43"’

2
pxw

2 _
Q** 4/8*7
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which allows the boundary displacementsE (84) to be resrias

Ux =

P (ﬁ) 2 @+ cos(Q+) — sin(Q+)
Q'+ cos(

B 4 ﬁ* x) — — * V% % zSin * ’
1 Q«) — [1 — (Bay+)2 Q%] sin(Qx) (88)
P (1) 2 Qcos(Q) —sin(Q) _
4\B/) Qeos(Q) —[1— (87)%Q?sin(Q)

Given wo € R, (p,ps) € R?, and (8, B«,7v+) € (C\R)?, one is now in position to seek
~ € C\R such that: = u. andp = p.. On the basis of ($8), the explicit solution is given by

BA(Q cos(Q) — sin(Q))?

7= Qeos(@) — (1 1 ABQ%) sm(Q)F” (89)
where )
A= <')/_*) ? Q* COS(Q*) — Sin(Q*) . (90)
B ) Qucos(Qx) — [1 — (Bay+)2 Q3] sin(Q)

In this setting, any relevant solution in termsyafust also satisfy the conditions of physical
admissibility in terms of the shear and bulk moduli

u=(§>§, K=4ﬁ—§(é>§,
vy 3\

which are subject to the ellipticity and thermomechanitabgity requirements

R[u] > 0, S[p] =0, R[K] > 0, S[K] = 0. (91)
Despite the multitude of inequality constraints (91)i,si1indeed possible to find an ad-
missible solution@g) in terms of given wo, (p, p«) and(3, B«,v«) as shown in Tablﬂ 2.
For completeness, this result is accompanied by the vamiatf the eigenvalue indicator
function ) in FigDS, wheré is plotted versus frequency for each of the three VV con-
figurations highlighted in TabIE 2. From the display, it i®sdhat the three diagrams of
F, exhibit apparent “blow-off” behavior respectively @at= 2,10 and25 as expected. In
unison, Tablg]2 and Fid} 5 provide a clear indication thattaesmission eigenvalues may
appear even in situations when both the obstacle and theylzacid solid are viscoelastc
i.e. dissipative - a finding that may be especially relevarthe application of inverse scat-
tering theories to real-life problems (e.g. seismic imgyivere many materials are known
to exhibit dissipative constitutive behavior.

Table 2: Oscillating spheres problem - VV configuration: muital values of material pa-
rameters for whichv =wy is a transmission eigenvalue.

wo | p | px w Lo K K. Config.
2 3| 1.5 | 8833+ 1.214¢ | 3.139+0.314¢ | 12.22+4+0.781¢ | 11.82 + 0.782¢ 1
10 | 3 | 1.5 | 41574+ 1.684% | 3.139 4+ 0.3147 | 26.46 + 0.155¢ | 11.82 + 0.782¢ 2
25 | 6 | 3.4 | 173.6 +4.3207 | 1.414+0.071¢ | 368.5 4 52.24¢ | 14.11 4 1.106¢ 3
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Fig. 5: Oscillating spheres problem - VV configuration: nuitel manifestation of the trans-
mission eigenvalues exposed in Taﬁle 2

8 Conclusions

In this study the analysis of the interior transmission pFob(ITP), that plays a critical role
in a number of inverse scattering theories, is extended ablerthe treatment of problems
in piecewise-homogeneous, anisotropic, elastic and glastic solids involving multiply-
connected penetrable and impenetrable obstacles. Maddogrrse to a particular variational
formulation, the Lax-Milgram theorem, and the compactymddtion argument, a set of suf-
ficient conditions is established in terms of the elastiaitg density parameters of the obsta-
cle and the background solid that ensure the ellipticitheflTP provided that the excitation
frequency does not belong to (at most) countable set ofriiess$on eigenvalues. Itis further
shown that this set is empty in situations when either théaokes or the background solid
are dissipative i.e. viscoelastic. Whbaththe obstacle and the background are either elas-
tic or viscoelastic, on the other hand, the same type of aisfgils to produce any further
restrictions on the (countable) set of transmission eiglel@s. Given the counter-intuitive
nature of such finding for the “viscoelastic-viscoelas{i¢V) case, the problem is further
investigated via an energetic argument which shows thahdineogeneous ITP involving
VV configurations is not mechanically isolated from its swmdings in that it permits a
non-zero energy influx into the system even though the plestexcitation (given by the
jump in Cauchy data between the two bodies) vanishes. A seiroérical results, computed
for configurations that meet the sufficient “solvability”raitions, is included to illustrate
the problem. Consistent with the underpinning analysis,résults indicate that the set of
transmission values is indeed empty in the “elastic-vilie” case, and countable for the
“elastic-elastic” and VV configurations.
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