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HOMOGENIZATION OF TRANSPORT PROBLEMS

AND SEMIGROUPS

ETIENNE BERNARD, FRANÇOIS GOLSE, AND FRANCESCO SALVARANI

Abstract. In some cases, the homogenization of evolution differential
equations whose solution is given by the action of a semigroup on their
initial data may lead to evolution problems with a completely different
structure, usually integro-differential equations whose dynamics is not
defined by a semigroup, but involves memory effects. A typical example
is the homogenization — or discretization — of opacities in radiative
transfer. In this paper, we propose a formulation of homogenized equa-
tions in terms of a semigroup acting on an enlarged phase space (i.e. on
functions involving more variables than in the original problem.)

To the memory of Aldo Belleni-Morante (1938–2009)

1. Introduction

The mathematical modeling of the response of composite materials to
external fields usually involves partial differential equations with oscillating
coefficients. Specifically, the wavelengths of these oscillations correspond
with the spatial scales defined by the microscopic structure of the compos-
ite, i.e. the scale at which the elementary constituents of the composite
are assembled. When investigating the macroscopic properties of such a
composite material, a first step is to average out the oscillations of the co-
efficients at microscopic scale, and to filter the high frequency oscillations
they induce in the response fields one is interested in. This mathematical
process is called homogenization, since it may be viewed as the replacement
of a composite material by an equivalent homogeneous material. In the
most favorable cases, this would be done by simply replacing the response
coefficients oscillating at microscopic scale in the field equation with coef-
ficients for the equivalent homogeneous material where the oscillations at
microscopic scale have been eliminated.

Unfortunately, this picture is outrageously optimistic. In many cases, a
single response coefficient oscillating at microscopic scale will be replaced
with several homogenized equivalent coefficients, for instance due to the
persistence of anisotropy effects in the microscopic structure of the compos-
ite material. Worse, the structure of the partial differential equation itself
can be modified after taking the homogenization limit, and this is precisely
our concern in the present work. A striking example of such a change in
the structure of the homogenized equation was given by Tartar [10], who
observed that the homogenization limit of the simplest imaginable ordinary
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differential equation would lead to an integro-differential equation (i.e. in-
volving memory terms). In other words, the group property of the original
evolution equation can be destroyed by the homogenization limit.

Some time later, Vanderhaegen [11, 12], Levermore-Pomraning-Sanzo-
Wong [5], and Sentis [8] studied in detail the homogenization problem for
the absorption coefficient in transport theory (for either neutrons or pho-
tons). Their work also leads to integro-differential equations as in the simple
example considered by Tartar — and for the same basic reason.

The phenomena observed by Tartar in his simple example — i.e. the fact
that the group property satisfied by the solutions of an evolution equation
can be destroyed by the homogenization limit — also occurs in very differ-
ent contexts. It has been very recently identified in a classical problem in
nonequilibrium statistical mechanics, namely the Boltzmann-Grad limit of
the periodic Lorentz gas, by E. Caglioti and the second author, and by J.
Marklof and Strömbergsson in [3, 2, 6], as well as in a homogenization prob-
lem for the linear Boltzmann equation in a periodically perforated domain,
by the two first authors and E. Caglioti [1]. In all these works, the solution
of the equation at microscopic scale is given by a semigroup, and, in order
to keep the semigroup property after passing to the macroscopic limit, it is
necessary to consider an enlarged phase space involving additional variables.
The present paper explains how the ideas in [2, 6, 1] can be applied in the
context of the homogenization of opacities considered in [11, 12, 5, 7, 8].

Semigroups and kinetic models have been among Aldo Belleni-Morante’s
favorite scientific subjects. His own ideas have had a great influence on
the development of this field of mathematical analysis. In view of his own
particular interest in photonics and, more generally, transport problems in
astrophysics, we dedicate this modest contribution to his memory.

2. Homogenization of an ODE

Our starting point is the following elementary, yet fairly instructive ex-
ample, due to L. Tartar [10].

Let a ∈ L∞(TN ), assume without loss of generality that a ≥ 0 a.e. on
TN , and consider, for each ǫ > 0, the ODE with unknown uǫ ≡ uǫ(t, z) ∈ R:

(2.1)







duǫ
dt

+ a
(z

ǫ

)

uǫ = 0 , t > 0 , z ∈ RN ,

uǫ(0, z) = uin(z) ,

where uin ∈ L2(RN ) ∩ L∞(RN ). Obviously, for each ǫ > 0, one has

uǫ(t, z) = uin(z)e−ta(z/ǫ) , t > 0 , z ∈ RN ,

so that, in the limit as ǫ→ 0+, one has

uǫ⇀u in L∞(R+ ×RN ) weak-*

where the limit u is explicitly given by the formula

(2.2) u(t, z) = uin(z)Φ(t) , t ≥ 0 , z ∈ RN ,

with

(2.3) Φ(t) =

∫

TN

e−ta(y)dy , t ≥ 0 .
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This example shows that the homogenized solution u does not satisfy the
equation

du

dt
+ au = 0

where a is the average of a on TN , i.e.

a =

∫

TN

a(y)dy ,

as someone unfamiliar with the intricacies of homogenization might (naively)
expect. Worse, unless a is a.e. constant on TN , there does not exist any
A ∈ R such that

du

dt
+Au = 0 .

(Should such an A exist, it would be referred to as the “homogenized coeffi-
cient” equivalent to the oscillating coefficient a(z/ǫ).) Equivalently, although
for each ǫ > 0 the solution uǫ is defined in terms of uin by the semigroup
Sǫ(t) defined on L2(RN ) by the formula

(2.4) Sǫ(t)φ = φ(z)e−ta(z/ǫ) ,

the homogenized solution u is not given in terms of uin by a semigroup
acting on L2(RN ), since (by convexity of the exponential)

Φ(t1 + t2) 6= Φ(t1)Φ(t2) , t1, t2 > 0 ,

unless a is a.e. constant on TN — meaning that there are no fast oscillations
in the original problem (2.1), so that there is no need for homogenization in
this case.

In fact, L. Tartar (see lecture 35 in [10]) proved that the homogenized
solution satisfies the following integro-differential equation

(2.5)











du

dt
(t, z) + au(t, z) =

∫ t

0
K(t− s)u(s, z)ds , t > 0 , z ∈ RN ,

u(0, z) = uin(z) ,

where the Laplace transform of K is given by the expression

K̃(p) :=

∫ ∞

0
e−ptK(t)dt =

∫

TN

(p+a(y))dy−

(
∫

TN

dy

p+ a(y)
dy

)−1

, p> 0 .

Concerning the appearance of an integro-differential equation such as (2.5)
as the homogenization limit of an ODE, it is instructive to compare the
situation above with the problem

(2.6)











dvǫ
dt

+ b

(

t

ǫ

)

vǫ = 0 , t > 0 ,

vǫ(0) = vin ,

with unknown vǫ ≡ vǫ(t) ∈ R, where b ∈ L∞(T1). In this case

vǫ(t) = vin exp

(

−

∫ t

0
b(s/ǫ)ds

)

→ vine−Bt = v(t)
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for each t ≥ 0 as ǫ→ 0+, where

B :=

∫ 1

0
b(σ)dσ .

Indeed,

1

t

∫ t

0
b(s/ǫ)ds =

ǫ

t

∫ t/ǫ

0
b(σ)dσ → lim

t→+∞

1

t

∫ t

0
b(σ)dσ = B

as ǫ→ 0+. Hence, the homogenized equation obtained from (2.6) is






dv

dt
+Bv = 0 , t > 0 ,

v(0) = vin ,

and in this case, B is the equivalent absorption coefficient obtained from the
oscillating absorption coefficient b(t/ǫ) by homogenization.

The difference between the homogenization of problems (2.1) and (2.6) is
that in the latter case, the oscillating variable in the coefficient b is the time
variable, and the equation (2.6) provides a bound on the time derivative of
the solution vǫ, thereby excluding the possibility of fast oscillations in t in
the solution vǫ.

At variance with this case, in Tartar’s example (2.1), the oscillating vari-
able is z, and the equation (2.1) does not involve derivatives in z to prevent
the buildup of fast oscillations in z in the solution uǫ. In that example, the
fast oscillations in z in both a(z/ǫ) and uǫ combine to produce the integral
term on the right-hand side of (2.5).

Obviously, the example (2.1) can be generalized to the case where the
quasi-periodic oscillating coefficient a(z/ǫ) is replaced with a bounded fam-
ily aǫ ≡ aǫ(z) of functions in L∞(RN ) converging in the sense of Young
measures as ǫ→ 0+.

3. A semigroup in extended phase space

As a warm-up, we shall in this section consider again Tartar’s example
above, and express the homogenization limit of (2.1) in terms of a semi-
group defined on an extended phase space — i.e. acting on functions with
additional variables.

Let aǫ ≡ aǫ(z) be a bounded family of functions in L∞(RN ) converging
in the sense of Young measures to (µz)z∈RN (see [9] for a lucid presentation
of the notion of Young measures.) In other words, (µz)z∈RN is a family of
probability measures on R that measurably depends on z, and satisfies, for
each f ∈ Cb(R)

f(aǫ)⇀Fa in L∞(RN ) weak-* , with Fa(z) =

∫

R

f(λ)dµz(λ) =: 〈µz, f〉

in the limit as ǫ → 0+. Without loss of generality, we henceforth assume
that aǫ ≥ α > 0 a.e. on RN .

For each ǫ > 0, let uǫ ≡ uǫ(t, z) be the solution of

(3.1)







duǫ
dt

+ aǫ(z)uǫ = 0 , t > 0 , z ∈ RN ,

uǫ(0, z) = uin(z) ,
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where uin ∈ L1 ∩ L∞(RN ).

Proposition 3.1. In the limit as ǫ→ 0+, one has

uǫ⇀u =

∫ +∞

0
Uds in L∞(R+ ×RN ) weak-* ,

where U ≡ U(t, s, z) is the solution of

(3.2)







∂tU − ∂sU = 0 , t, s > 0 , z ∈ RN ,

U(0, s, z) = −uin(z)
dµ̃z
ds

(s) .

(We recall that the notation µ̃z designates the Laplace transform of µz.)

Before giving the (elementary) proof of this result, a few remarks are in
order.

First, the equation satisfied by U is a free transport equation, where
s ∈ R+ is the space variable. Since the vector field −∂s is outgoing on the
boundary of the half-line R+, there is no need of a boundary condition for
s = 0, so that the problem (3.2) is well-posed — in L2(R+ ×RN ; e−sdsdz),
for instance.

Next, although the homogenization limit u of uǫ as ǫ → 0+ is not of the
form u(t, ·) = S(t)uin with S(t) a semigroup on L2(RN ), the function U
is defined by a semigroup in terms of its initial data (since the equation
satisfied by U is a free transport equation.) Specifically

U(t, s, z) = Σ(t)U(0, s, z) with Σ(t)ψ(s, z) = ψ(t+s, z) , t, s > 0, z ∈ RN .

In other words, while there does not exist any semigroup S(t) acting on
L2(RN ) such that Sǫ(t) → S(t) in the weak operator topology for each
t > 0 as ǫ→ 0+, one has

Sǫ(t) →

∫ +∞

0
Σ(t)ds

in that same topology.

Proof. For each ǫ > 0, define

Uǫ(t, s, z) := uǫ(t, z)aǫ(z)e
−saǫ(z) , t, s ≥ 0 , z ∈ RN .

Obviously

(∂t − ∂s)Uǫ(t, s, z) = aǫ(z)e
−saǫ(z)

(

duǫ
dt

(t, z) + aǫ(z)uǫ(t, z)

)

so that Uǫ satisfies

(3.3)

{

∂tUǫ − ∂sUǫ = 0 , t, s > 0 , z ∈ RN ,

Uǫ(0, s, z) = uin(z)aǫ(z)e
−saǫ(z) .

Since aǫ > 0 a.e. on RN , one has ‖Uǫ(t, ·, ·)‖L∞(R+×RN ) ≤ ‖uin‖L∞(RN ).

Hence Uǫ is bounded and therefore (by the Banach-Alaoglu theorem) rela-
tively weak-* compact in L∞(R+×R+×RN )). If U is a weak-* limit point
of Uǫ as ǫ → 0+, by passing to the limit in the sense of distributions in the
free transport equation satisfied by Uǫ, we conclude that (∂t − ∂s)U = 0.
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Since Uǫ is bounded in L∞(R+ ×R+ ×RN ), the free transport equation
satisfied by Uǫ implies that ∂tUǫ is bounded in L∞(R+×RN ;W−1,∞(R+)).
Therefore, Uǫn

∣

∣

t=0
⇀U

∣

∣

t=0
in L∞(RN ;W−1,∞(R+))) weak-* for each subse-

quence ǫn ↓ 0 such that Uǫn⇀U in L∞(R+ ×R+ ×RN ) weak-*. Since

Uǫ

∣

∣

t=0
⇀uin(z)

∫ +∞

0
ae−sadµz(a) = −uin(z)

dµ̃z
ds

(s)

in L∞(R+ ×RN ) weak-*

and the problem (3.2) has a unique solution, Uǫ⇀U in L∞(R+×R+×RN )
weak-* as ǫ→ 0+.

Since aǫ(z) ≥ α > 0 a.e. in z ∈ RN , one has
∫ +∞

T
|Uǫ(t, s, z)|ds = e−Taǫ(z)|uǫ(t, z)| ≤ e−Tα‖uin‖L∞(RN )

so that, for each test function φ ∈ L1(R+ ×RN ),
∫ +∞

0

∫

RN

(
∫ +∞

T
|Uǫ(t, s, z)|ds

)

|φ(t, z)|dtdz → 0 uniformly in ǫ > 0

as T → +∞, by dominated convergence. Since on the other hand

uǫ(t, z) =

∫ +∞

0
Uǫ(t, s, z)ds

we conclude that

uǫ =

∫ +∞

0
Uǫds⇀

∫ +∞

0
Uds

in L∞(R+ ×RN ) weak-*. �

4. Homogenization of opacities in radiative transfer

In this section, we shall apply the method described above to the equation
of radiative transfer.

Radiative transfer is a kinetic theory for a gas of photons exchanging
energy with a background material (such as a plasma, a stellar or a planetary
atmosphere). This energy exchange is the result of absorption, emission or
scattering of photons by the atoms in the background matter. The state at
time t of the population of photons is given by the specific radiative intensity
denoted I(t, x, ω, ν) that is chν times the number density of photons with
frequency ν located at the position x with direction ω. Here, c is the speed
of light while h is Planck’s constant.

Neglecting scattering processes, the radiative intensity satisfies the radia-
tive transfer equation

(4.1)
1

c
∂tI + ω · ∇xI = σ(ν, T )Bν(T )− σ(ν, T )I .

Here Bν(T ) is the specific radiative intensity at frequency ν of a black body
at temperature T , while σ(ν, T ) > 0 is the opacity, or absorption cross-
section per unit volume, of the background material at temperature T for an
incident radiation with frequency ν. While Bν(T ) has the explicit expression

Bν(T ) =
2hν3

c2
1

ehν/kT − 1
,
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Figure 1. Opacity of a boron plasma (see [4] on p. 98)

the opacity σ(ν, T ) is in general not known explicitly but tabulated. What
is worse, the dependence of σ(ν, T ) in either ν or T is quite involved, and
the function ν 7→ σ(ν, T ) can be wildly oscillating, even for T fixed, as can
be seen on the graph given above.

We recognize in (4.1) the same type of difficulty that was handled in the
two previous sections, since oscillations in the opacity σ(ν, T ) are due to the
dependence of that coefficient in the frequency ν, while the streaming (or
free transport) operator 1

c∂t + ω · ∇x acts on the variables t and x only.
Henceforth, we assume for simplicity that the temperature T ≡ T (t, x)

is given in the background medium which occupies the Euclidian space R3.
We consider the following model problem:

(4.2)







1

c
∂tIǫ + ω · ∇xIǫ = σǫ(ν, T )Bν(T )− σǫ(ν, T )Iǫ ,

Iǫ
∣

∣

t=0
= Iin(x, ω, ν) ,

posed for (t, x, ω, ν) ∈ R∗
+ × R3 × S2 × R∗

+. Here the oscillations of the
opacity are recorded by the small parameter ǫ that is the typical “oscillation
wavelength” in the variable ν.

We henceforth assume that the given temperature profile T is bounded
away from 0 and +∞, i.e. that T ∈ [θ,Θ] for some constants 0 < θ < Θ,
and that the family (σǫ(ν, T ))ǫ>0 satisfies the uniform bound

0 < m ≤ σǫ(ν, T ) ≤M , for each ǫ, ν > 0 and T ∈ [θ,Θ] .

Furthermore, we assume that, for each T > 0, the family σǫ(·, T ) converges
in the sense of Young measures to (µTν )ν>0 as ǫ → 0+. By the method
introduced in the previous section, we can formulate a theorem on the ho-
mogenized limit of the model problem (4.2) in the following manner.
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Theorem 4.1. In the limit as ǫ→ 0+, one has

Iǫ⇀I =

∫ +∞

0
Jds in L∞(R+ ×R3 × S2 ×R+) weak-* ,

where J ≡ J(t, s, x, ω, ν) is the solution of

(4.3)















1

c
∂tJ + ω · ∇xJ − ∂sJ =

d2µ̃Tν
ds2

Bν(T ) ,

J
∣

∣

t=0
= −Iin(x, ω, ν)

dµ̃Tν
ds

(s) ,

posed for (t, s, x, ω, ν) ∈ R∗
+ ×R∗

+ ×R3 × S2 ×R∗
+, where the notation µ̃Tν

denotes the Laplace transform of µTν .

The proof of this theorem is essentially the same as that of Proposition
3.1 — except for the source term in (4.2) — and we do not repeat it.

Observe that the homogenized problem (4.3) is a transport equation where
the space variables are x and s, and therefore defines a semigroup acting
on the extended phase space R+ × R3 × S2 × R+ = {(s, x, ω, ν)}, instead
of the usual phase space R3 × S2 × R+ = {(x, ω, ν)} familiar in radiative
transfer problems. More precisely, the solution of (4.3) is given in terms of
the Duhamel formula for the transport semigroup in extended phase space
defined by the left-hand side of that equation. This is at variance with the
homogenized radiative transfer equations obtained in [5, 8] which are written
in the usual phase space, but involve memory terms as in Tartar’s example
— and precisely for the same reason.

Notice that we have assumed that the initial data Iin does not have fast
oscillations in the ν variable — as is the case of Bν . In general, treating the
case of an oscillating initial data Iinǫ (in the ν variable, say) would require
considering the joint Young measure of Iinǫ and σǫ — i.e. the Young measure
of the couple (Iinǫ , σǫ) viewed as a function of ν with values in R2. The
complexity of the resulting model could be reduced in the case where the
oscillations of Iinǫ and σǫ are independent so that the joint Young measure
is the tensor product of the Young measure of Iinǫ by that of σǫ.

A few words about the meaning of the additional variable s appearing
in the homogenized equation (4.3) are in order. The original equation (4.2)
can be viewed as a balance equation for the number density of photons with
frequency ν located at the position x with direction ω at time t, that is
1

chν Iǫ(t, x, ω, ν). The loss term −σǫ(ν, T )Iǫ(t, x, ω, ν) on the right-hand side
of (4.2) models the absorption of photons by the matter as follows. Assuming
for simplicity that σǫ ≡ σǫ(ν) is independent of temperature, the probability
that a photon with frequency ν is not absorbed in the time interval [0, t] is

e−tσǫ(ν). In the homogenized equation (4.3), the loss of photons due to
absorption by the atoms of the surrounding matter is described by the term
−∂sJ on the left-hand side. Any characteristic line of the streaming operator
1
c∂t+ω ·∇x−∂s being of the form t 7→ (x+ctω, s− t), the unknown quantity
1

chνJ(t, s, x, ω, ν) in (4.3) should be viewed as the number density at time t
of photons with frequency ν at the position x in the direction ω which will be
absorbed precisely at time s+ t. In other words, in the homogenized model
(4.3), the additional variable s should be viewed as the “life expectancy”
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of photons, and their number density is disintegrated with respect to —
in probabilistic terms, conditioned relatively to — this new variable. The
absorption of photons is described by characteristic lines of the streaming
operator on the left-hand side of equation (4.3) leaving the phase space
s > 0, and not by prescribing the probability that a photon of frequency ν
is absorbed in the infinitesimal interval of time [t, t+ dt].

5. Conclusion

We have explained how the notion of a “kinetic theory in extended phase
space” introduced in [2] can be used in the homogenization problem for
opacities in radiative transfer (Theorem 4.1), and how it avoids considering
integro-differential equations whose solutions do not have the semigroup
property, as in Tartar’s elementary example.

The formalism presented here could be applied to various problems of
the same nature. For instance, as mentioned above, opacities are strongly
oscillating functions of the frequency variable, which seriously complicates
the discretization of the radiative transfer equation. Usually, this is done by
replacing the radiative intensity I(ν) with the vector (Ij)1≤j≤n, where

Ij ≃

∫ νj+1

νj

I(ν)dν ,

and where the frequency groups — i.e. the intervals (νj , νj+1) — are chosen
appropriately. Of course the main difficulty is to understand what to do
with the absorption term

∫ νj+1

νj

σ(ν)I(ν)dν .

The projection of the radiative intensity on frequency groups as above is an
instance of homogenization process, and one could hope that the consider-
ations outlined in Theorem 4.1 might be helpful in this context.

Similar difficulties exist in the theory of neutron transport — with the
neutron kinetic energy being the analogue of the frequency in radiative trans-
fer. One could hope to apply the same method as above to this type of
problem also; however, scattering processes are more important and should
be taken into consideration, at variance with the discussion in the present
paper. We hope to return to these questions in a forthcoming publication.
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des Sci. Toulouse 17 (2008), 735–749.

[4] C.A. Iglesias, V; Sonnad, B.G. Wilson, J.I. Castor: Frequency dependent electron
collisional widths for opacity calculations; High Energy Dens. Phys. 5 (2009), 97–
104.

[5] C.D. Levermore, G.C. Pomraning, D.L. Sanzo, J. Wong: Linear transport theory in
a random medium; J. Math. Phys. 27 (1986), 2526–2536.



10 E. BERNARD, F. GOLSE, AND F. SALVARANI
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