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NONLINEAR REGULARIZING EFFECT

FOR HYPERBOLIC PARTIAL DIFFERENTIAL

EQUATIONS

FRANÇOIS GOLSE

Abstract. The Tartar-DiPerna compensated compactness me-
thod, used initially to construct global weak solutions of hyperbolic
systems of conservation laws for large data, can be adapted in order
to provide some regularity estimates on these solutions. This note
treats two examples: (a) the case of scalar conservation laws with
convex flux, and (b) the Euler system for a polytropic, compressible
fluid, in space dimension one.

1. Motivation

Hyperbolic PDEs such as the wave equation are known to propagate
singularities, unlike parabolic (or elliptic) PDEs, whose solutions are
more regular than the corresponding data. Besides, in the context
of hyperbolic PDEs, nonlinearities are responsible for the build-up of
finite time singularities in the form of shock waves. Therefore, the
notion of a “nonlinear regularizing effect” for hyperbolic PDEs may
seem somewhat of a paradox.
Yet it has been known since the work of P. Lax [8, 9] that the evo-

lution semigroup defined by the entropy solution u ≡ u(t, x) ∈ R of a
scalar conservation law

∂tu+ ∂xf(u) = 0 , (t, x) ∈ R∗

+ ×R

with strictly convex flux f is compact in L1(R) for each t > 0. On the
other hand, if the flux f is linear, solving the equation above explicitly
by the method of characteristics shows that whichever singularities
exist in the initial data u

∣

∣

t=0
are propagated and persist in the solution

u(t, x) for all t > 0. This simple example suggests that some type
of nonlinearities may indeed induce limited regularization effects in
hyperbolic PDEs. The purpose of the present note is to investigate
that question on two examples: (a) the case of a scalar conservation
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law with convex flux as above, and (b) the case of the Euler system for
the dynamics of a polytropic, compressible fluid.

2. Regularizing effect for scalar conservation laws

Consider the Cauchy problem

(1)

{

∂tu+ ∂xf(u) = 0 , x ∈ R , t > 0 ,
u
∣

∣

t=0
= uin ,

with unknown u ≡ u(t, x) ∈ R and flux f ∈ C2(R;R), and assume
without loss of generality that f(0) = f ′(0) = 0.
One of the methods for constructing entropy solutions of Eq. (1)

is based on the compensated compactness method proposed by Tartar
[13]. A striking feature in Tartar’s argument is that he obtains the
compactness of some approximating sequence converging to the entropy
solution of (1) without using any variant of the Ascoli-Arzelà theorem1

based on Sobolev (or Besov) regularity estimates.
Our main purpose in the present note is to present a method for

obtaining nonlinear regularization effects in the context of hyperbolic
PDEs that is inspired from Tartar’s compensated compactness argu-
ment, and follows it very closely.

Theorem 2.1. Let a, R > 0 and assume that f ′′(v) ≥ a for all v ∈ R,
while the initial data uin ∈ L∞(R) satisfies uin(x) = 0 for a.e. |x| ≥ R.

Then, the entropy solution u belongs to the Besov space B
1/4,4
∞,loc(R

∗
+×R);

in other words
∫

∞

0

∫

R

χ(t, x)2|u(t, x)− u(t+ s, x+ y)|4dxdt = O(|s|+ |y|)

as |s|+ |y| → 0, for each compactly supported χ ∈ C1(R∗

+ ×R).

Before giving the proof of this estimate, let us compare it with earlier
results in the literature.
As is well known, the optimal regularity result for Eq. (1) was ob-

tained by Lax [9], who proved that the entropy solution u ∈ BVloc(R
∗

+×
R), as a consequence of the Lax-Oleinik one-sided inequality

∂xu(t, x) ≤
1

at
, (t, x) ∈ R∗

+ ×R .

Unfortunately, this inequality is specific to the case of scalar conserva-
tion laws in space dimension 1 with nondegenerate convex flux.

1The same is true of the argument used by Lax in Ref. [8].
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More recently, Lions-Perthame-Tadmor [10] and Jabin-Perthame [7]
obtained a Sobolev regularity estimate, by using a “kinetic formu-
lation” of the scalar conservation law (1), together with some ap-
propriate “velocity averaging” result. Specifically, they proved that
u ∈ W s,p

loc (R
∗

+ ×R) for all s < 1
3
and 1 ≤ p < 3

2
.

On the other hand, a very interesting contribution of DeLellis and
Westdickenberg [2] shows that one cannot obtain better regularity in

the scale of Besov spaces than B
1/r,r
∞ for r ≥ 3 or B

1/3,r
r for 1 ≤ r < 3, by

using only that the entropy production is a bounded Radon measure,
without using that it is a positive Radon measure.
Our result in Theorem 2.1, like the one of Lions-Perthame-Tadmor or

of Jabin-Perthame, does not use the positivity of the entropy produc-
tion, and therefore belongs to the DeLellis-Westdickenberg optimality
class.

Sketch of the proof. The proof is split in two steps. We henceforth
denote Ds,yφ(t, x) := φ(t+ s, x+ y)− φ(t, x).

Step 1: Let u be the entropy solution of Eq. (1), and consider the two
vector fields B := (u, f(u)) and E := (f(u), g(u)), where g′(v) = f ′(v)2

for each v ∈ R. That u is the entropy solution of Eq. (1) entails the
two following equalities:

divt,xB = 0 , and divt,xE = −µ ,

where µ is a bounded Radon measure on R∗

+ × R. A variant of the
Murat-Tartar div-curl lemma [12] leads to the inequality

∫

∞

0

∫

R

χ2Ds,yE · JDs,yBdtdx ≤ C(|s|+ |y|) ,

where J denotes the rotation of an angle π/2, the function χ is C1

with compact support in R∗

+ ×R and C = C(‖u‖∞, ‖µ‖1) > 0. (The
notations ‖u‖L∞ and ‖µ‖1 designate respectively the sup norm of u
and the total mass of µ.)

Step 2: The integrand in the l.h.s. of the inequality above is of the
form

(w − v)(g(w)− g(v))− (f(w)− f(v))2

=

∫ w

v

dλ

∫ w

v

f ′(λ)2dλ−

(
∫ w

v

f ′(λ)dλ

)2

≥ 0
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by the Cauchy-Schwarz inequality, as observed by Tartar [13]. In fact,
the r.h.s. of the identity above can be written as the double integral:

(w − v)(g(w)− g(v))− (f(w)− f(v))2

=

∫ w

v

∫ w

v

(f ′(ζ)− f ′(ξ))f ′(ζ)dξdζ

= 1
2

∫ w

v

∫ w

v

(f ′(ζ)− f ′(ξ))2dξdζ

≥ 1
2

∫ w

v

∫ w

v

a2(ζ − ξ)2dξdζ = a2

12
|w − v|4 ,

and substituting this lower bound in the inequality obtained at the end

of Step 1 above entails the claimed B
1/4,4
∞,loc estimate. �

Remark 2.2. The same method also works for degenerate convex fluxes,
for which f ′′(v) ≥ 0 for all v ∈ R, but may have finitely many zeros
v1, . . . , vn of finite order — meaning that f ′′(v) = O((v − vk)

2βk) as
v → vk for some positive integer βk. See Ref. [5].

Remark 2.3. The proof sketched above uses only the entropy condition
with f as the entropy density. By using a family of entropies (e.g. all
Kruzhkov’s entropies) one can improve the argument above and obtain

a Besov regularity estimate in B
1/3,3
∞ , known to be optimal according to

DeLellis-Westdickenberg [2]. See Ref. [6].

3. The Euler system for polytropic compressible fluids

The Euler system governs the evolution of the density ρ ≡ ρ(t, x) ≥ 0
and velocity field u ≡ u(t, x) ∈ R of a polytropic compressible fluid:

(2)

{

∂tρ+ ∂x(ρu) = 0 , ρ
∣

∣

t=0
= ρin ,

∂t(ρu) + ∂x (ρu
2 + κργ) = 0 , u

∣

∣

t=0
= uin .

We assume that this Cauchy problem is posed for all x ∈ R and t > 0.
The pressure is p(ρ) = κργ, and, by a convenient choice of units, one
can assume that κ = (γ−1)2/4γ. This system is known to be hyperbolic
with characteristic speeds

λ± = u± θρθ , where θ =
γ − 1

2
.

Besides, along C1 solutions (ρ, u), Euler’s system assumes the diagonal
form

{

∂tw+ + λ+∂xw+ = 0 ,
∂tw− + λ−∂xw− = 0 ,



REGULARIZING EFFECT FOR HYPERBOLIC PDES 5

where w± ≡ w±(ρ, u) are the Riemann invariants

w+ := u+ ρθ > u− ρθ =: w− .

In 1983, DiPerna [3, 4] managed to extend Tartar’s method to a certain
class of nonlinear hyperbolic systems with two equations in space di-
mension one including Euler’s system (2). He proved that, given ρ̄ > 0
and assuming that ρin − ρ̄ and u are of class C2 and compactly sup-
ported on R, and that ρin > 0 on R, there exists a least one entropy
solution of (2) defined for all t ≥ 0 and x ∈ R. DiPerna’s original proof
could handle only exponents of the form γ = 1 + 1/(2n + 1) for each
n ∈ N. The case of an arbitrary γ ∈ (1, 3] was subsequently settled by
Chen [1] and Lions-Perthame-Souganidis [11].

Definition 3.1. Given an open set O ⊂ R∗

+ ×R, an entropy solution
(ρ, ρu) of Eq. (2) is called admissible on O if and only if there exist
constants C > 0, u∗ > 0 and 0 < ρ∗ < ρ∗ such that ρ∗ ≤ ρ ≤ ρ∗ and
|u| ≤ u∗ on O, and, for each smooth entropy-entropy flux pair (φ, ψ)
for the system Eq. (2),

∫∫

O

|∂tφ(ρ, ρu) + ∂xψ(ρ, ρu)| ≤ C‖D2φ‖L∞([ρ∗,ρ∗]×[−ρ∗u∗,ρ∗u∗]) .

Any DiPerna solution whose artificial viscous approximation with
viscosity ǫ > 0 satisfies ρǫ ≥ ρ∗ uniformly on O as ǫ → 0 is admissible
on O. Yet, the global existence of admissible solutions for initial data
of arbitrary size remains an open problem at the time of this writing.

Theorem 3.2. Assume that γ ∈ (1, 3) and let O ⊂ R∗

+ ×R be open.
Any admissible solution of Euler’s system (2) on O satisfies

∫∫

O

|(ρ, u)(t+ s, x+ y)− (ρ, u)(t, x)|2dxdt = O(ln(|s|+ |y|)−2)

as |s|+ |y| → 0.

The only regularity result for large data known prior to this one is
due to Lions-Perthame-Tadmor [10] and Jabin-Perthame [7], for the
only case γ = 3. Using a kinetic formulation of Eqs. (2) and some
appropriate velocity averaging argument, they proved that ρ and ρu ∈
W s,p

loc (R+ × R) for all s < 1
4
and 1 ≤ p ≤ 8

5
. Unfortunately, the

structure of the compressible Euler system (2) prevents any obvious
extension of their method to the case γ ∈ (1, 3). While we doubt that
the regularity obtained in Theorem 3.2 is optimal, some depletion of
nonlinear interactions may occur when γ = 3, since the Euler system in
Riemann invariants coordinates is then decoupled into two independent
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Hopf (i.e. inviscid Burgers) equations. This could account for the
better regularity obtained when γ = 3.
The proof of Theorem 3.2 (see Ref. [5]) is again inspired from the

compensated compactness method in Ref. [3] for hyperbolic systems.
It uses two special features of Eq. (2).
First, the characteristic speeds are linear in terms of the Riemann

invariants:
(λ+, λ−) = (w+, w−)A ,

where the matrix A is symmetric. Moreover A is definite positive
for γ > 1, and, whenever γ ∈ (1, 3), satisfies the stronger coercivity
property

(sinhX, sinhY )A

(

X
Y

)

≥ γ−1
2
(X sinhX + Y sinh Y ) ,

for each X, Y ∈ R.
The second property of the Euler system (2) used in the proof is that

the vector field
(

w+

w−

)

7→







∂w
−
λ+

λ+−λ−

∂w+
λ−

λ−−λ+







is a gradient.

4. Final remarks

Thus the Tartar-DiPerna compensated compactness method can be
used to establish new regularizing effects in the context of hyperbolic
systems of conservation laws. Open questions include (a) the case of
scalar conservation laws in space dimension larger than one, (b) the
case of more general pressure laws in the Euler system, and (c) the
case of solutions of the Euler system with vanishing density.
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