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Proceedings of Symposia in Applied Mathematics

Nonlinear Regularizing Effect

for Conservation Laws

François Golse

Abstract. Compactness of families of solutions — or of approximate solu-
tions — is a feature that distinguishes certain classes of nonlinear hyperbolic
equations from the case of linear hyperbolic equations, in space dimension
one. This paper shows that some classical compactness results in the con-
text of hyperbolic conservation laws, such as the Lax compactness theorem for
the entropy solution semigroup associated with a nonlinear scalar conserva-
tion laws with convex flux, or the Tartar-DiPerna compensated compactness
method, can be turned into quantitative compactness estimates — in terms
of ǫ-entropy, for instance — or even nonlinear regularization estimates. This
regularizing effect caused by the nonlinearity is discussed in detail on two ex-
amples: a) the case of a scalar conservation law with convex flux, and b) the
case of isentropic gas dynamics, in space dimension one.

Motivations

Consider a parabolic PDE of the form
{

∂tu+ ∂xf(u) = ǫ∂2xu , x ∈ R , t > 0
u
∣

∣

t=0
= uin

with unknown u ≡ u(t, x) ∈ R, and f ∈ C1(R).
For each ǫ > 0, the energy equality

∫

R

1
2u(t, x)

2dx+ ǫ

∫ t

0

∫

R

∂xu(s, x)
2dxds =

∫

R

1
2u

in(x)2dx

implies that u ∈ L∞
t (L2

x) ∩ L2
t (Ḣ

1
x) for each ǫ > 0 — where Ḣ1 designates the

homogeneous Sobolev space. Hence, for each ǫ > 0, the solution dynamics

uin 7→ u(t, ·) maps L2
x into Ḣ1

x for a.e. t > 0.

The energy equality above also implies that, for each ǫ > 0, the solution map

L2
x ∋ uin 7→ u ∈ L2

loc(dtdx)
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2 FRANÇOIS GOLSE

is compact by the Rellich theorem. In other words, for each bounded B ⊂ L2
x and

each K ⊂ R+ ×R compact, the set

{u
∣

∣

K
|uin ∈ B} is relatively compact in L2(K; dtdx) .

The energy dissipation term

ǫ

∫ t

0

∫

R

∂xu(s, x)
2dxds

is obviously at the origin of the parabolic smoothing mechanism in the viscous
conservation law above.

What does remain of this regularizing effect or compactness in the limit as
ǫ→ 0+?

Obviously nothing in the case where f is linear, which leads to a free transport
equation of the form

∂tu+ c∂xu = 0 .

The method of characteristics shows that

u(t, x) = u(0, x− ct) ,

so that u(t, ·) cannot be more regular than uin — in fact, u(t, ·) and uin have exactly
the same regularity.

Let us discuss the same question in the nonlinear case, and for entropy solutions
of the inviscid equation — indeed, entropy solutions of the inviscid equation are
obtained from limits of solutions of the viscous equations in the vanishing viscosity
limit. Consider the conservation law for ǫ = 0:

{

∂tu+ ∂xf(u) = 0 , x ∈ R , t > 0
u
∣

∣

t=0
= uin

with strictly convex flux f ∈ C1(R) such that f ′(z) → ±∞ as z → ±∞.
There are two remarkable compactness results for this Cauchy problem, that

are similar to the one obtained in the parabolic case:

a) in his 1954 paper [L1954] (see p. 190), P. Lax proves that, for each t > 0, the
entropy solution dynamics

uin 7→ u(t, ·)
is compact from L1

x into L1
loc(dx);

b) L. Tartar proved [T] the convergence of the vanishing viscosity method for con-
servation laws, by using compensated compactness [M, T] — the div-curl lemma
— together with the entropy bound satisfied by solution of the parabolic approxi-
mation.

Both results are based on the fact that

un⇀u and F (un)⇀F (u)

in the weak-* topology of L∞ and for some appropriate class of nonlinearities F
implies that

un → u strongly in Lp
loc for 1 ≤ p <∞ .

Unlike the parabolic case, where compactness in the strong L2 topology follows from
the H1 bound entailed by energy dissipation and the Rellich compactness theorem,
this is an example of compactness by nonlinearity: strong convergence results from
the commutation of weak convergence with some appropriate nonlinearity. The
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nonlinearity used in the compensated compactness method is the so-called Tartar
equation.

In 2002, P. Lax raised the following question: can one transform compactness
arguments such as a) above into quantitative compactness estimates? His interest
for this question came from the numerical analysis of conservation laws — we shall
return to this in the next section.

Since the DiPerna-Tartar compensated compactness method is, so far, the only
strategy for obtaining the strong relative compactness of families of solutions and
so little seems to be known about the regularity of entropy solutions of systems of
conservation laws, it is also fairly natural to ask oneself whether the compensated
compactness method can be strengthened into a nonlinear regularization estimate.

A crucial step in turning compensated compactness into a tool for proving
nonlinear smoothing is a coercivity estimate satisfied by the Tartar equation — see
Lemma 2.3 in section 2. A similar coercivity exists in the case of the isentropic
Euler system: see Fact #1 in section 3.

1. ǫ-Entropy estimate for scalar conservation laws

This section reports joint work in collaboration with C. DeLellis [DL-G].

Let f ∈ C2(R) with f ′′ ≥ a > 0, and assume without loss of generality that
f(0) = f ′(0) = 0. Consider the Cauchy problem

{

∂tu+ ∂xf(u) = 0 , x ∈ R , t > 0 ,
u
∣

∣

t=0
= uin .

By using different methods, P. Lax [L1954, L1957] and O. Oleinik [O] construct
a unique, global weak solution of the Cauchy problem above. Among all weak
solutions of this Cauchy problem, this weak solution is the only one satisfying the
Lax-Oleinik one-sided estimate

∂xu ≤ 1

at
, in the sense of distributions for t > 0 and x ∈ R ,

and is called the entropy solution of that problem. The entropy solution of the
Cauchy problem is related to the initial data uin by a nonlinear semigroup (S(t))t≥0.

As recalled in the introduction, P. Lax [L1954, L1957] observed that the
entropy semigroup corresponding with the scalar conservation law above satisfies
the following compactness property: for each t > 0, each bounded B ⊂ L1(R) and
each R > 0, the set

{

S(t)f
∣

∣

(−R,R)
with f ∈ B

}

is relatively compact in L1((−R,R)).
Henceforth, we seek to quantify this compactness result by using the notion of

ǫ-entropy, recalled below.

Definition 1.1 (Kolmogorov-Tikhomirov [KT]). For ǫ > 0, the ǫ-entropy of E
precompact in the metric space (X, d) is :

Hǫ(E|X) = log2Nǫ(E)

whereNǫ(E) is the minimal number of sets in an ǫ-covering of E — i.e. of a covering
of E by sets of diameter ≤ 2ǫ in X

Example 1.2. For instance, Hǫ([0, 1]
n|Rn) ≃ n| log2 ǫ| as ǫ→ 0+.
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With this definition, we present our quantitative estimate based on the Lax
compactness result recalled above.

Theorem 1.3 (DeLellis-Golse, [DL-G]). For each ǫ > 0, one has

Hǫ

(

S(t)BL1(R)(0,m)|L1([−R,R]
)

≤ C1(t)

ǫ
+ 2 log2

(

C2(t)

ǫ
+ C3(t)

)

where

C1(t) =
32R2

at + 32RM(t) , C3(t) = 3 +
2tM(t)cM (t)

R+
√
mat

,

C2(t) =
8R
at

(

R+
√
mat+ 2tM(t)cM(t)

)

,

and with the notations

M(t) =

√

4m

at
and cM = sup

|z|≤M

f ′′(z) .

The proof of this result uses essentially two ingredients.
To begin with, the entropy semigroup satisfies the following regularizing prop-

erty: S(t) maps bounded subsets of L1(R) into bounded subsets of L∞(R) for each
t > 0. More precisely, for each uin ∈ L1(R), one has the following estimate:

‖S(t)uin‖L∞(R) ≤
√

2‖uin‖L1(R)

at
, t > 0 .

This estimate, obtained by P. Lax in [L1973] is a rather direct consequence of his
explicit formula for the entropy solution of a scalar conservation law with convex
flux in space dimension one — see also Proposition 1.1 in [DL-G].

The second ingredient in the proof is an estimate of the ǫ-entropy in L1((0, L))
of the class

IL,M,V = {w : [0, L] → [0,M ] nondecreasing s.t. w(L−)− w(0+) ≤ V } .
One finds that

Hǫ(IL,M,V |L1((0, L))) ≤ 4

[

LV

ǫ

]

+ 2 log2

[

LM

ǫ
+
M

V
+ 2

]

whenever 0 < ǫ ≤ LV
6 .

Using these two ingredients together with the Lax-Oleinik one-sided estimate
recalled above, we arrive at the bound for the ǫ-entropy presented in the theorem.

We do not know whether our bound for Hǫ

(

S(t)BL1(R)(0,m)|L1([−R,R]
)

is

sharp. However, the following observation may be relevant.
In his fundamental paper [L1957], P. Lax describes the asymptotic behavior of

the entropy solution S(t)uin in the long time limit t→ +∞. Specifically, he proves
that

S(t)uin −Np,q(t, ·) → 0 in L1(R) as t→ +∞ ,

where Np,q is the N-wave defined by the following formula

Np,q(t, x) =

{

x/f ′′(0)t if −√
pt < x <

√
qt ,

0 otherwise,

and where

p = −2f ′′(0) inf
y

∫ y

−∞
uin , q = 2f ′′(0) sup

y

∫ ∞

y

uin .
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x

(qt)1/2

−(pt)1/2

Figure 1. The N-wave Np,q

For each t ≥ 0, set

Ut(X) =
√
tu(t,

√
tX) where u(t, ·) = S(t)uin .

Then, the asymptotic behavior of S(t)uin presented above is equivalent to the limit

Ut → Np,q(1, ·) in L1(R) as t→ +∞ ,

since
∫

R

v(x)dx =

∫

R

√
tv(

√
tX)dX

for each v ∈ L1(R). The set of all possible limits of Ut as uin runs through

BL1(R)(0,m) is included in

Nm := {Np,q(1, ·) | 0 ≤ p, q ≤ 2f ′′(0)m} .
Since Nm is a subset of L1(R) with two degrees of freedom — i.e. depending on the
two independent parameters p, q ∈ [0, 2f ′′(0)m], one has, as in the example above,

Hǫ(Nm|L1(R)) ∼ 2| log2 ǫ|
in the limit as ǫ→ 0+.

Our bound on the ǫ-entropy does not capture this behavior; yet it shows that

lim
t→+∞

Hǫ(S(t)BL1(R)(0,m)|L1([−R(t), R(t)])) = O(1)

as ǫ → 0+ whenever R(t) = o(
√
t). This asymptotic estimate is consistent with

the fact that the dependence of the N -wave in p, q can be seen only on intervals of
length at least O(

√
t).

In fact, the convergence

Ut → Np,q(1, ·) in L1(R) as t→ +∞
is in general not uniform in uin as uin runs through BL1(R)(0,m). Consider for
instance the case of the inviscid Burgers equation

∂tu+ ∂x
(

1
2u

2
)

= 0 ,

and notice that, for each λ > 0, the rescaled function (t, x) 7→ λu(λ2t, λx) is a
solution of the inviscid Burgers equation whenever u itself is a solution of this
equation. For each uin ∈ L1(R), set uinλ (x) = λ2uin(λx), so that

λS(λ2t)uinλ = Uλ2t , t > 0 ,

where the profile Ut is defined in terms of the unscaled solution u(t, ·) = S(t)uin as
above. One has

‖uinλ ‖L1(R) = ‖uin‖L1(R) , λ > 0 ,
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and the parameters p, q associated to uin are left invariant by this scaling.
Because of this scaling, the convergence

Uλ2t → Np,q(1, ·) in L1(R) as t→ +∞
is not uniform on BL1(R)(0,m) for m ≥ ‖uin‖L1(R), since

sup
λ>0

‖Uλ2t −Np,q(1, ·)‖L1(R) ≥ ‖U1 −Np,q(1, ·)‖ > 0 ,

as can be seen by taking λ = 1√
t
. Therefore, one cannot conclude that

lim
t→+∞

Hǫ(S(t)BL1(R)(0,m)|L1(R)) ≤ Hǫ(Nm|L1(R)) ∼ 2| log2 ǫ| .

as ǫ→ 0+, since the approximation of Uλ2t by Np,q(1, ·) as t→ +∞ is not uniform

on BL1(R)(0,m).
Before closing the present section, we recall that P. Lax suggested the idea of

using the notion of ǫ-entropy to measure a notion of “resolving power” of a numerical
scheme for the conservation law above: see [L1978]. His conclusion is striking: in
his own words, “[. . . ] in the nonlinear case [. . . ] the construction of high resolution
methods is easier than in the linear case. It is in this sense that approximating
solutions of nonlinear initial value problems is easier than approximating solutions
of linear ones.”

2. Regularity by compensated compactness:

scalar conservation laws in space dimension 1

Let f ∈ C2(R) with f ′′ ≥ a > 0, and assume without loss of generality that
f(0) = f ′(0) = 0; consider then the Cauchy problem

{

∂tu+ ∂xf(u) = 0 , x ∈ R , t > 0
u
∣

∣

t=0
= uin .

An adaptation of Tartar’s compensated compactness method [T] leads to the fol-
lowing regularization estimate.

Theorem 2.1. Assume that f ′′ ≥ a > 0, and f(0) = 0. For each uin ∈ L∞(R)
such that uin(x) = 0 a.e. in |x| ≥ R, the entropy solution satisfies the Besov

estimate u ∈ B
1/4,4
∞,loc(R

∗
+ ×R), i.e.

∫ ∞

0

∫

R

χ(t, x)2|u(t, x)− u(t+ s, x+ y)|4dxdt = O(|s|+ |y|) ,

for each χ ∈ C1
c (R

∗
+ ×R).

Before sketching the proof of this bound, let us compare the theorem above
with previously known results.

First, the Lax-Oleinik one-sided estimate

∂xu ≤ 1

at
in the sense of distributions for t > 0 and x ∈ R ,

implies that u ∈ BVloc(R
∗
+ × R). However, this argument is specific to the only

case of scalar conservation laws in space dimension 1, with f ′′ ≥ a > 0.
In the case of scalar conservation laws in space dimension higher than one, there

is no BV regularization mechanism similar to the case of a convex flux in space
dimension one: see [Conw] on pp. 56–57 for a counter-example. Variants of the
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Lax-Oleinik estimate have been proposed by C. Dafermos [D1985] for degenerate
fluxes; analogues in the higher dimensional case are discussed in [Chev].

Another method for obtaining a regularization estimate has been proposed by
P.-L. Lions, B. Perthame and E. Tadmor [LPT-a]. They use a kinetic formulation
of the scalar conservation law above, together with a velocity averaging regularity
estimate. Let us briefly recall their theory: the kinetic formulation of the scalar
conservation law

∂tu+ ∂xf(u) = 0

is
(∂t + f ′(v)∂x)χ(u(t, x), v) = ∂vm,

where

χ(u, v) =

{

1 if 0 < v < u and 0 if 0 < u < v ,
−1 if u < v < 0 and 0 if v < u < 0 ,

and
m is a nonnegative measure on R∗

+ ×R×R .

Velocity averaging regularity bounds are a class of estimates of quantities of the
form

∫

R

φ(t, x, v)dv

in Sobolev or Besov spaces with positive regularity exponents, assuming appropriate
Lp-type estimates on both

φ ≡ φ(t, x, v) and (∂t + f ′(v)∂x)φ(t, x, v)

whenever f ′(v) effectively depends on v — this being the case if f ′′(v) ≥ a > 0 for
each v ∈ R as assumed here. Regularization by velocity averaging was observed for
the first time in [A, GPS] and later improved in a series of papers, beginning with
[GLPS]. More general classes of velocity averaging estimates were later obtained
in [DP-L-M], and more recently in [TT]. A compendium of velocity averaging
regularity bounds can be found in chapter 1 of [BGP].

With this method, P.-L. Lions, B. Perthame and E. Tadmor [LPT-a] prove
that u ∈ W s,p

loc (R
∗
+ × R) for s < 1

3 and 1 ≤ p < 5
3 — somewhat later, P.-E.

Jabin and B. Perthame slightly improved their regularity estimate to all s < 1
3 and

1 ≤ p < 3
2 : see [JP].

Although the Lions-Perthame-Tadmor theory based on kinetic formulations
and velocity averaging fails to capture the BV regularity predicted by the Lax-
Oleinik theory, it has many advantages over the latter: for one thing, it can be
generalized to treat degenerate fluxes, scalar conservation laws in space dimension
higher than one, and one very special 2 × 2 system in space dimension 1, namely
the isentropic Euler with adiabatic exponent γ = 3 — see below.

Shortly after the Jabin-Perthame paper appeared, C. DeLellis and M. West-

dickenberg proved in [DL-W] that one cannot obtain better regularity than B
1/r,r
∞

for r ≥ 3 or B
1/3,r
r for 1 ≤ r < 3 by using only the fact that the entropy production

is a bounded Radon measure without using that it is a positive measure.
This remarkable observation explains why all proofs based on kinetic formula-

tions and velocity averaging, such as the Lions-Perthame-Tadmor or the Perthame-
Jabin proof, or on compensated compactness, such as our proof, fail to reach the
BV regularity predicted by the Lax-Oleinik one-sided estimate. It also shows that
the regularity index 1

3 in the Lions-Perthame-Tadmor or Jabin-Perthame Sobolev
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estimate is optimal — but not the integrability index 1 ≤ p < 5
2 . Notice finally

that our Besov estimate based on the compensated compactness method, leading

to B
1/4,4
∞,loc belongs to the optimality class of DeLellis-Westdickenberg (even though

the regularity index is 1/4, i.e. less than the optimal value 1/3.)

Unlike the method based on the Lax-Oleinik one-sided estimate, the compen-
sated compactness method allows treating degenerate convex fluxes — as does the
method based on velocity averaging (see for instance [TT] on p. 1506).

Assume now that f ∈ C2(R) satisfies f(0) = f ′(0) = 0 and

(H)







f ′′(v) > 0 for each v ∈ R \ {v1, . . . , vn} ,

f ′′(v) ≥ ak|v − vk|2βk for each v near vk, for k = 1, . . . , n,

for some v1, . . . , vn ∈ R and a1, β1, . . . , an, βn > 0.

Theorem 2.2. Assume that the flux f satisfies the condition (H) and (without
loss of generality) f(0) = f ′(0) = 0. For all initial data uin ∈ L∞(R) such that

uin(x) = 0 a.e. in |x| ≥ R, the entropy solution u ∈ B
1/p,p
∞,loc(R

∗
+ ×R), with

p = 2 max
1≤k≤n

βk + 4 ,

i.e.
∫ ∞

0

∫

R

χ(t, x)2|u(t, x)− u(t+ s, x+ y)|pdxdt = O(|s|+ |y|)

for each χ ∈ C1
c (R

∗
+ ×R)

However, the interest of compensated compactness as a tool for establishing
regularization effects in the context of nonlinear conservation laws is not limited to
the scalar case.

Compensated compactness is of course even more promising in the more com-
plex case of systems, for which so little is known about the existence and regularity
of solutions in general, and especially 2×2 hyperbolic systems of conservation laws,
since it was used by R. DiPerna in [DP1983b, DP1983a, DP1985] to construct
global solutions in the large for a rather general class of such systems. In the case of
genuinely nonlinear 2× 2 systems, J. Glimm and P. Lax established some analogue
of the Lax-Oleinik estimate, in the case of solutions with small initial oscillations
only (see [GL], or chapter 12 of [D2000].)

In order to understand how Tartar’s compensated compactness method can be
adapted to establish regularization by nonlinearity in the simplest case of a scalar
conservation law with convex flux, we give the proof of Theorem 2.1.

Proof. We shall only use the fact that the entropy solution u satisfies






∂tu+ ∂xf(u) = 0 ,

∂t
1
2u

2 + ∂xg(u) = −µ ≤ 0 ,

where

g(v) :=

∫ v

0

wf ′(w)dw

and µ is a positive Radon measure such that
∫∫

R+×R

µ ≤
∫

R

1
2 |uin|2dx <∞ .
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Notation: Henceforth, we denote

τ(s,y)φ(t, x) = φ(t− s, x− y) , and J =

(

0 −1
1 0

)

.

Step 1: the div-curl argument. Set

B =

(

u
f(u)

)

, E = (τ(s,y) − I)

(

1
2u

2

g(u)

)

.

One has

E,B ∈ L∞
t,x , divt,xB = 0 , divt,x E = µ− τ(s,y)µ .

In particular, there exists

π ∈ Lip(R∗
+ ×R) , such that B = J∇t,xπ .

Integrating by parts shows that
∫ ∞

0

∫

R

χ2E · J(τ(s,y)B −B)dtdx = −
∫ ∞

0

∫

R

χ2E · ∇t,x(τ(s,y)π − π)dtdx

=

∫ ∞

0

∫

R

∇t,xχ
2 ·E(τ(s,y)π − π)dtdx

+

∫ ∞

0

∫

R

χ2(τ(s,y)π − π)(µ− τ(s,y)µ) .

Therefore, one has the upper bound
∫ ∞

0

∫

R

χ2E · J(τ(s,y)B −B)dtdx

≤
(

‖∇t,xχ
2‖L1‖E‖L∞ + 2‖χ2‖L∞

∫∫

|µ|
)

Lip(π)(|s| + |y|) ,

which leads to an estimate of the form
∫ ∞

0

∫

R

χ2
(

(τ(s,y)u− u)(τ(s,y)g(u)− g(u))

− 1
2 (τ(s,y)u

2 − u2)(τ(s,y)f(u)−f(u))
)

dtdx≤C(|s|+|y|) .
Step 2: the coercivity estimate. Next we give a lower bound for the integrand in
the left-hand side of the inequality above.

Lemma 2.3. Assume that f ∈ C2(R) satisfies f ′′(w) ≥ a > 0 for each w ∈ R.
For each v, w ∈ R, one has

(w − v)(g(w) − g(v))− 1
2 (w

2 − v2)(f(w) − f(v)) ≥ a
12 |w − v|4 .

In [T] — see Remark 30, p. 208 — L. Tartar mentions the inequality

(w − v)(ψ(w) − ψ(v))− (φ(w) − φ(v))(f(w) − f(v)) ≥ 0 , v, w ∈ R ,

whenever f and φ are convex C1 functions defined on R while ψ is a C1 function
on R satisfying

ψ′(w) = f ′(w)φ′(w) , w ∈ R .

The inequality in the lemma corresponds to the choice

φ(w) = 1
2w

2 , ψ(w) = g(w) since g′(w) = wf ′(w) , w ∈ R .
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Proof of Lemma 2.3. Without loss of generality, assume that v < w, and
write the left-hand side of the inequality above as a double integral:

(w − v)(g(w) − g(v))− 1
2 (w

2 − v2)(f(w)− f(v)) =
∫ w

v

dξ

∫ w

v

ζf ′(ζ)dζ−
∫ w

v

ξdξ

∫ w

v

f ′(ζ)dζ .

Hence

(w − v)(g(w) − g(v))− 1
2 (w

2 − v2)(f(w) − f(v)) =

∫ w

v

∫ w

v

(ζ − ξ)f ′(ζ)dξdζ

= 1
2

∫ w

v

∫ w

v

(ζ − ξ)(f ′(ζ) − f ′(ξ))dξdζ ≥ a
2

∫ w

v

∫ w

v

(ζ − ξ)2dξdζ

where the second equality follows from symmetrizing the first integral above in ζ
and ξ, while the final inequality follows from the mean value theorem and the lower
bound f ′′ ≥ a > 0. �

Step 3: conclusion. Putting together the upper bound for the integral in Step
1 and the lower bound for the integrand of the left hand side obtained in Step 2,
we find that

a
12

∫ ∞

0

∫

R

χ2|τ(s,y)u− u|4dtdx ≤ C(|s|+ |y|) ,

which is the announced B
1/4,4
∞,loc estimate for the entropy solution u. �

3. Regularity by compensated compactness:

the isentropic Euler system in space dimension 1

3.1. The isentropic Euler system. First we recall the Euler system of com-
pressible fluid dynamics for isentropic flows and in space dimension 1.

This is a 2 × 2 system, whose unknowns are ρ ≡ ρ(t, x), the fluid density at
the position x and at time t, and u ≡ u(t, x), the (one-dimensional) velocity field
in the fluid at the position x at time t.

The isentropic Euler system is






∂tρ+ ∂x(ρu) = 0 ,

∂t(ρu) + ∂x
(

ρu2 + κργ
)

= 0 .

Here, the equation of state for the pressure is

p(ρ) = κργ , ρ > 0 ,

where γ is the adiabatic index and κ > 0 is a constant that can be eliminated by a
proper choice of physical units.

In classical gas dynamics, the adiabatic index satisfies γ ≥ 1. It is well known
that this condition implies that the isentropic Euler system above is a hyperbolic
system with characteristic speeds

{

λ+ ≡ λ+(ρ, u) := u+ θρθ ,
λ− ≡ λ−(ρ, u) := u− θρθ .

Here we have chosen

κ =
(γ − 1)2

4γ
,
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so that
√
κγ =

γ − 1

2
;

henceforth we define

θ :=
√
κγ =

γ − 1

2
.

Whenever the isentropic Euler system has a C1 solution (ρ, u), this system can
be put in diagonal form as follows







∂tw+(ρ, u) + λ+(ρ, u)∂xw+(ρ, u) = 0 ,

∂tw−(ρ, u) + λ−(ρ, u)∂xw−(ρ, u) = 0 ,

where w± are the Riemann invariants defined by
{

w+ = w+(ρ, u) := u+ ρθ ,
w− = w−(ρ, u) := u− ρθ .

R. DiPerna proved in [DP1983a] that, for each initial data (ρin, uin) satisfying

(ρin − ρ̄, uin) ∈ C2
c (R) and ρin > 0 ,

there exists an entropy (weak) solution (ρ, u) of the isentropic Euler system satis-
fying the L∞ bound

0 ≤ ρ ≤ ρ∗ = sup
x∈R

(

1
2 (w+(ρ

in, uin)− w−(ρ
in, uin)

)1/θ

inf
x∈R

w−(ρ
in, uin) =: u∗ ≤ u ≤ u∗ := sup

x∈R

w+(ρ
in, uin)

DiPerna’s argument applied to the case of adiabatic indices of the form

γ = 1 + 2
2n+1 , for each n ∈ N∗ .

His argument was later improved by G.Q. Chen [Chen] and, more recently,
generalized by P.-L. Lions, B. Perthame, P. Souganidis and E. Tadmor [LPT-b,

LPS], by using a kinetic formulation of Euler’s isentropic system.

Problem: is there a nonlinear regularizing effect for the isentropic Euler system?

3.2. Admissible solutions. An important feature in DiPerna’s construction
of global entropy solutions of the isentropic Euler system in space dimension 1 is
the distinction between weak and strong entropies for that system.

In the present section, it is easier to write the isentropic Euler system in terms
of m = ρu, the momentum density:















∂tρ+ ∂xm= 0 ,

∂tm+ ∂x

(

m2

ρ
+ κργ

)

= 0 .

We recall that an entropy φ ≡ φ(ρ,m) of the isentropic Euler system is called
a weak entropy if φ

∣

∣

ρ=0
= 0.

An important example of a weak entropy for the isentropic Euler system is the
energy

E(ρ,m) := 1
2

m2

ρ
+ κ

γ−1ρ
γ ,
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the energy flux being given by the formula

G(ρ,m) =
m

ρ
(E(ρ,m) + κργ) .

DiPerna’s solutions are obtained from solutions of the parabolic system














∂tρǫ + ∂xmǫ = ǫ∂2xρǫ ,

∂tmǫ + ∂x

(

m2
ǫ

ρǫ
+ κργǫ

)

= ǫ∂2xmǫ ,

— i.e. a compressible Navier-Stokes type system with artificial viscosity ǫ > 0 —
in the limit as ǫ → 0+. The solutions (ρ,m) of the isentropic Euler system with
m = ρu obtained in this way satisfy

∂tE(ρ,m) + ∂xG(ρ,m) = −M ,

where

ǫ(∂xρǫ, ∂xmǫ) ·D2E(ρǫ,mǫ) ·
(

∂xρǫ
∂xmǫ

)

→M in D′(R∗
+ ×R) as ǫ→ 0+ .

One can check that E is a convex function of (ρ,m) since

D2E(ρ,m) =
1

ρ







m2

ρ2 + κγργ−2 m
ρ

m
ρ 1






is positive definite,

so that
M ≥ 0 is a Radon measure,

and the convergence of the dissipation term above holds in the weak topology of
Radon measures.

Now, each weak entropy φ ≡ φ(ρ,m) has its dissipation dominated by the
energy dissipation. Indeed, each weak entropy is of the form

φ(ρ,m) = Aρ

∫

R

g
(

m
ρ + ρθz

)

(1− z2)αdz ,

where g is a C2 function on R and

α = 3−γ
2(γ−1) ,

1

A
=

∫ 1

−1

(1− z2)αdz .

In particular, for g(ξ) = 1
2ξ

2, one finds

E(ρ,m) = A
2 ρ

∫

R

(

m
ρ + ρθz

)2

(1− z2)αdz .

Then, for each compact K ⊂ R+ ×R, there exists Cφ,K > 0 such that

|D2φ(ρ,m)| ≤ Cφ,KD
2E(ρ,m) for (ρ, mρ ) ∈ K .

Hence all DiPerna solutions of Euler’s system constructed as above satisfy, for
each weak entropy φ, the entropy condition

∂tφ(ρ,m) + ∂xψ(ρ,m) = −µ[φ]
where µ[φ] is a bounded Radon measure verifying the bound

|〈µ[φ], χ〉| ≤ Cφ,K〈M,χ〉 , χ ∈ C∞
c (R+ ×R)

where we recall that M is the energy dissipation.
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These considerations suggest the following notion of an admissible solution of
the isentropic Euler system on an open subset in space-time.

Definition 3.1. Let O ⊂ R∗
+ × R open, and ρ∗ > ρ∗ > 0 and u∗ > u∗ four

constants in R. A weak solution (ρ,m) such that

0 < ρ∗ ≤ ρ ≤ ρ∗ and u∗ ≤ m

ρ
≤ u∗ for each (t, x) ∈ O

is called an admissible solution on O if and only if, for each entropy φ, weak or not,

∂tφ(ρ,m) + ∂xψ(ρ,m) = −µ[φ]
is a Radon measure such that

‖µ[φ]‖Mb(O) ≤ C(ρ∗, ρ
∗, u∗, u

∗)‖D2φ‖L∞([ρ∗,ρ∗]×[u∗,u∗]

∫

O
M .

Whether admissible solutions in the large of the isentropic Euler system globally
exist on R∗

+ ×R seems to be an open question at the time of this writing.
For instance, any DiPerna solution whose viscous approximation (ρǫ,mǫ) sat-

isfies the uniform lower bound

ρǫ ≥ ρ∗ > 0 on O for each ǫ > 0

is admissible on O. However, obtaining lower bounds on the density for solutions of
the compressible Navier-Stokes system with artificial, diagonal viscosity uniformly
as the viscosity ǫ→ 0+ seems to be a nontrivial question.

3.3. Nonlinear regularizing effect for isentropic Euler. The proof of
nonlinear regularization by compensated compactness sketched in the previous sec-
tion can be adapted to the isentropic Euler system, following the work of R. DiPerna
[DP1983b] who succeded in adapting Tartar’s compensated compactness method
to treat the case of 2× 2 systems.

Theorem 3.2. Assume that γ ∈ (1, 3) and let O be any open set in R∗
+ ×R. Any

admissible solution (ρ,m) of Euler’s isentropic system on O satisfies
∫∫

O
|(ρ, u)(t+ s, x+ y)− (ρ, u)(t, x)|2dxdt ≤ Const.| ln(|s|+ |y|)|−2

whenever |s|+ |y| < 1
2 , where u = m

ρ .

In the special case γ = 3, the same method gives

Theorem 3.3. Assume that γ = 3 and let O be any open set in R∗
+ × R. Any

admissible solution of Euler’s isentropic system on O ⊂ R∗
+ ×R satisfies

(ρ, u) ∈ B
1/4,4
∞,loc(O)

Before sketching the proof of Theorem 3.2, a few remarks are in order.
For γ = 3, by using the kinetic formulation and velocity averaging, P.-L. Lions,

B. Perthame and E. Tadmor [LPT-b] obtained a first regularizing effect, later
improved by P.-E. Jabin and B. Perthame [JP], who found that

ρ, ρu ∈ W s,p
loc (R+ ×R) for all s < 1

4 , 1 ≤ p ≤ 8
5

for any entropy solution of the isentropic Euler system — without having to assume
any admissibility condition as above.
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The reason why the case γ = 3 is so special in the theory of the isentropic Euler
system can be explained as follows.

According to Lions-Perthame-Tadmor [LPT-b], the kinetic formulation of the
isentropic Euler system is of the form

∂tχ+ ∂x[(θξ + (1− θ)u(t, x))χ] = ∂2ξm, with m ≥ 0 ,

and χ = [(w+ − ξ)(ξ − w−)]
α
+ , for α = 3−γ

2(γ−1) .

Because of the presence of u(t, x) in the advection velocity — which is just bounded,
and not smooth— classical velocity averaging lemmas [A, GPS, GLPS, DP-L-M,

Gér] . . .— do not apply, except in the case where

θ =
γ − 1

2
= 1 or equivalently γ = 3 .

In that case, the kinetic formulation above becomes

∂tχ+ ξ∂xχ = ∂2ξm, with m ≥ 0 ,

to which the usual velocity averaging results can be applied without difficulty.
The Lions-Perthame-Tadmor kinetic formulation of the p-system for γ ∈ (1, 3]

was used subsequently by P.-L. Lions, B. Perthame and P. Souganidis, who proved
strong compactness for bounded families of entropy solutions for all γ ∈ (1, 3],
thereby completing the earlier results by R. DiPerna and G.Q. Chen on that prob-
lem.

3.4. Proof of nonlinear regularizing effect for isentropic Euler. In this
section, we briefly sketch the proof of Theorem 3.2.

The div-curl bilinear inequality. Perhaps the best known example of com-
pensated compactness is the Murat-Tartar div-curl lemma [M, T]:

Lemma 3.4 (Div-curl lemma). Let Ω be an open subset of R3 and En ≡ En(x)
and Bn ≡ Bn(x) be two sequences of functions in L2(Ω) satisfying

En → E weakly in L2(Ω) ,

Bn → B weakly in L2(Ω) ,

as n→ +∞, while

divEn relatively compact in H−1
loc (Ω) ,

curlBn relatively compact in H−1
loc (Ω) .

Then
En ·Bn → E ·B in D′(Ω)

as n→ +∞.

A variant of the Murat-Tartar div-curl lemma is the following bilinear estimate,
which we state in the two dimensional setting needed in the context of hyperbolic
systems of conservation laws.

Let O be an open subset of R∗
+×R, and let χ ∈ C∞

c (O). Let E ≡ E(t, x) ∈ R2

and B ≡ B(t, x) ∈ R2 be two vector fields on O satisfying E,B ∈ L∞(O;R2). Then
one has the
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Div-curl bilinear inequality

∣

∣

∣

∣

∫∫

O
χ2E · JBdtdx

∣

∣

∣

∣

≤ ‖χE‖Lp(O)‖χ divt,xB‖W−1,p′(O)

+ ‖χB‖Lp(O)‖χ divt,x E‖W−1,p′(O)

+ ‖χE‖L2(O)‖∇t,xχ · B‖H−1(O)

+ ‖χB‖L2(O)‖∇t,xχ · E‖H−1(O)

where p ∈ (1,∞), p′ = p
p−1 is the dual exponent of p, and J designates the rotation

of an angle π
2 :

J =

(

0 −1
1 0

)

.

How this bilinear inequality is related to the Murat-Tartar div-curl lemma is
obvious: if En → 0 and Bn → 0 weakly in L2, then En and Bn are bounded in L2

by the Banach-Steinhaus theorem. Besides, if both divt,x En and divt,x(JBn) —

the two-dimensional analogue of curlBn — are relatively compact in H−1
loc , then

divt,x En and divt,x JBn → 0 in H−1
loc as n→ +∞ .

After replacing Bn with JBn, the bilinear estimate above implies indeed that
∫∫

O
χ2En ·Bndtdx→ 0

for each χ ∈ C∞
c (O) as n→ +∞, meaning that

En · Bn → 0 in D′(O) as n→ +∞ .

In other words, the bilinear inequality above is a quantitative variant of the
Murat-Tartar div-curl compactness lemma.

Returning to the isentropic Euler system, we apply this bilinear inequality with

E = (τ(s,y) − I)

(

φ1(ρ, u)
ψ1(ρ, u)

)

B = (τ(s,y) − I)

(

φ2(ρ, u)
ψ2(ρ, u)

)

where (φ1, ψ1) and (φ2, ψ2) are two entropy pairs for the isentropic Euler system,
while (ρ, u) is an admissible solution of isentropic Euler on O, and supp(χ) is a
compact subset of O.

The admissibility condition implies that

divt,xE = −(τ(s,y) − I)µ[φ1] ,

divt,xB = −(τ(s,y) − I)µ[φ2] ,

with

‖µ[φj ]‖Mb(O) ≤ C‖D2φj‖L∞([ρ∗,ρ∗]×[u∗,u∗]) ,

where we recall that






0 < ρ∗ ≤ ρ ≤ ρ∗

u∗ ≤ u = m
ρ ≤ u∗

on O .

By Sobolev embedding W r,p(R2) ⊂ C(R2) for r > 2
p ; then by duality

‖χ divt,x E‖W−1,p′ ≤ Cr‖D2φj‖L∞([ρ∗,ρ∗]×[u∗,u∗])(|s|+ |y|)1−r
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and likewise for B. Applying the bilinear div-curl inequality implies that
∣

∣

∣

∣

∫∫

χ2E · JBdtdx
∣

∣

∣

∣

≤ Cr‖D2φj‖L∞([ρ∗,ρ∗]×[u∗,u∗])(|s|+ |y|)1−r .

This first step in the proof of nonlinear regularization for isentropic Euler can
be summarized as follows: the div-curl bilinear estimate provides an upper bound
on the quantity E · JB arising in Tartar’s equation for entropy-entropy flux pairs.

The Tartar equation for Lax entropies. Define

T [φ1, φ2](U, V ) : = (φ1(V )− φ1(U))(ψ2(V )− ψ2(U))

− (ψ1(V )− ψ1(U))(φ2(V )− φ2(U)) , U, V ∈ R+ ×R

for two entropy pairs (φ1, ψ1) and (φ2, ψ2), so that

E · JB = T [φ1, φ2](τ(s,y)(ρ,m), (ρ,m)) .

Therefore, for each χ ∈ C1
c (O), step 1 leads to an upper bound for

∫∫

O
χ2T [φ1, φ2](τ(s,y)(ρ, u), (ρ, u))dtds =

∫∫

O
χ2E · JBdtds

≤ Cr‖D2φj‖L∞([ρ∗,ρ∗]×[u∗,u∗])(|s|+ |y|)1−r .

As in the case of a scalar conservation law, we need a lower bound of that same
quantity.

We shall analyze the quantity T [φ1, φ2] for a particular class of entropies, the
Lax entropies — introduced by Lax in [L1971]. These entropies are best expressed
in Riemann invariant coordinates w = (w+, w−):

φ±(w, k) = ekw±

(

A±
0 (w) +

A±
1 (w)

k
+ . . .

)

, with entropy flux

ψ±(w, k) = ekw±

(

B±
0 (w) +

B±
1 (w)

k
+ . . .

)

, k → ±∞

P. Lax observed that these entropies always exist for strictly hyperbolic systems
[L1971]; this is one of the reasons why we need a uniform lower bound on the
fluid density, of the form ρ ≥ ρ∗ > 0 on O, since the characteristic speeds of the
isentropic Euler system satisfy

λ+(ρ, u)− λ−(ρ, u) = 2θρθ .

Let us consider the leading order term in Tartar’s equation: as k → +∞. With
the notation

U = (ρ1,m1) , V = (ρ2,m2) ∈ R∗
+ ×R ,

one has

T [φ+(·,+k), φ+(·,−k)](U, V ) = 2A+
0 (w(U))A+

0 (w(V ))

× (λ+(U)− λ+(V )) sinh(k(w+(U)− w+(V ))) + . . .

T [φ−(·,+k), φ−(·,−k)](U, V ) = 2A−
0 (w(U))A−

0 (w(V ))

× (λ−(U)− λ−(V )) sinh(k(w−(U)− w−(V ))) + . . .

At this point, we use two important, special features of Euler’s isentropic sys-
tem.
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Fact #1.
We recall the notation θ = γ−1

2 . Then
(

λ+
λ−

)

= A
(

w+

w−

)

with A = 1
2

(

1 + θ 1− θ
1− θ 1 + θ

)

and for γ ∈ (1, 3) one has θ ∈ (0, 1), leading to the coercivity estimate
(

sinh(a)
sinh(b)

)

· A
(

a
b

)

≥ θ (a sinh(a) + b sinh(b))

for each a, b ∈ R. Thus

(λ+(U)− λ+(V )) sinh(k(w+(U)− w+(V )))

+ (λ−(U)− λ−(V )) sinh(k(w−(U)− w−(V )))

≥ θ

(

(w+(U)− w+(V )) sinh(k(w+(U)− w+(V )))

+ (w−(U)− w−(V )) sinh(k(w−(U)− w−(V )))

)

.

This coercivity estimate suggests seeking a lower bound for linear combinations
of the quantities T [φ+(·,+k), φ+(·,−k)] and T [φ−(·,+k), φ−(·,−k)] of the form

c2+T [φ+(·,+k), φ+(·,−k)](U, V ) + c2−T [φ−(·,+k), φ−(·,−k)](U, V ) .

Since the div-curl bilinear estimate presented in the previous section bears on
integrals of the terms,

χ2T [φ+(·,+k), φ+(·,−k)]((ρ,m), τs,y(ρ,m)) ≃ 2χ2A+
0 (w((ρ,m)))A+

0 (w(τs,y(ρ,m)))

×(λ+((ρ,m))− λ+(τs,y(ρ,m))) sinh(k(w+((ρ,m))− w+(τs,y(ρ,m))))

and

χ2T [φ−(·,+k), φ−(·,−k)]((ρ,m), τs,y(ρ,m)) ≃ 2χ2A−
0 (w((ρ,m)))A−

0 (w(τs,y(ρ,m)))

×(λ−((ρ,m))− λ−(τs,y(ρ,m))) sinh(k(w−((ρ,m))− w−(τs,y(ρ,m))))

to leading order in k as |k| → ∞, while the coercivity estimate above bears on

(λ+((ρ,m))− λ+(τs,y(ρ,m))) sinh(k(w+((ρ,m)) − w+(τs,y(ρ,m))))

+(λ−((ρ,m)) − λ−(τs,y(ρ,m))) sinh(k(w−((ρ,m)) − w−(τs,y(ρ,m)))) ,

we can hope to use the div-curl bilinear estimate together with this coercivity
estimate, provided that the leading order terms in Lax entropies are proportional
and positive:

c+A
+
0 (w) = c−A

−
0 (w) > 0 .

Fact #2:
Fortunately, Euler’s isentropic system satisfies the relation

∂w+

(

∂w−λ+
λ+ − λ−

)

= ∂w−

(

∂w+
λ−

λ− − λ+

)

.

Hence there exists a function Λ ≡ Λ(w+, w−) such that

∇Λ =





∂w+
Λ

∂w−
Λ



 =







∂+λ−

λ−−λ+

∂−λ+

λ+−λ−






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so that one can take

A+
0 (w+, w−) = A−

0 (w+, w−) = eΛ(w+,w−) > 0 ;

see for instance fla. (12.2.11) in [D2000].
Here we choose

A+
0 (w+, w−) = A−

0 (w+, w−) = (w+ − w−)
1−θ
2θ > 0

since the isentropic Euler system is assumed to be uniformly strictly hyperbolic:

w+ − w− = 2ρθ ≥ 2ρθ∗ > 0 , on O .

Putting together the upper bound obtained from the div-curl bilinear esti-
mate, and the lower bound coming from the coercivity estimate, and optimizing in
k → +∞ as |s| + |y| → 0+, one arrives at the logarithmic modulus of continuity
announced in Theorem 3.2. A complete proof can be found in [Go].

Conclusions and perspectives

At variance with the original DiPerna argument (1983) for genuinely nonlinear
2 × 2 system, the proof of the nonlinear regularizing effect above is based on the
coercivity of the leading order term in the Tartar equation — whereas DiPerna’s
argument uses the next to leading order term in that same equation. More precisely,
the proof of nonlinear regularization presented above is based on the coercivity
inequality

(

sinh(a)
sinh(b)

)

· A
(

a
b

)

≥ θ (a sinh(a) + b sinh(b)) ,

where

A := 1
2

(

1 + θ 1− θ
1− θ 1 + θ

)

=
∂(λ+, λ−)

∂(w+, w−)
.

This condition is stronger than assuming that A is positive definite — which
corresponds to keeping only the leading order terms in the inequality above as
|a| + |b| → 0. In DiPerna’s paper [DP1983b], the assumption is even weaker:
the system should be genuinely nonlinear, meaning that the diagonal coefficients of
the matrix A are positive (a condition obviously weaker than assuming that A is
definite positive, not to mention our coercivity assumption above.)

Not all Lax entropies are convex, or weak entropies — i.e. vanish for ρ = 0. The
reason why we have introduced this notion of admisssible solution of the isentropic
Euler system in an open domain in space-time is the need for a control of the
entropy production

∂tφ±(w, k) + ∂xψ±(w, k) =: −µk
±

in terms of the energy dissipation.
Perhaps the same regularizing effect can be obtained by using only weak en-

tropies — as in the original proof of compactness by DiPerna. This would require
refining significantly the present argument, and is the subject of ongoing investiga-
tions.

Finally, it would be also interesting to know whether compensated compactness
can be used to prove regularization estimates for hyperbolic problems — scalar
conservation laws — in space dimension higher than one. Recent results, such as
[TRB, KRT] suggest that this could be the case.
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