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Following Kimura’s neutral theory of molecular evolution �M. Kimura, The Neutral Theory of
Molecular Evolution �Cambridge University Press, Cambridge, 1983� �reprinted in 1986��, it has
become common to assume that the vast majority of viable mutations of a gene confer little or no
functional advantage. Yet, in silico models of protein evolution have shown that mutational
robustness of sequences could be selected for, even in the context of neutral evolution. The
evolution of a biological population can be seen as a diffusion on the network of viable sequences.
This network is called a “neutral network.” Depending on the mutation rate � and the population
size N, the biological population can evolve purely randomly ��N�1� or it can evolve in such a
way as to select for sequences of higher mutational robustness ��N�1�. The stringency of the
selection depends not only on the product �N but also on the exact topology of the neutral network,
the special arrangement of which was named “superfunnel.” Even though the relation between
mutation rate, population size, and selection was thoroughly investigated, a study of the salient
topological features of the superfunnel that could affect the strength of the selection was wanting.
This question is addressed in this study. We use two different models of proteins: on lattice and off
lattice. We compare neutral networks computed using these models to random networks. From this,
we identify two important factors of the topology that determine the stringency of the selection for
mutationally robust sequences. First, the presence of highly connected nodes �“hubs”� in the
network increases the selection for mutationally robust sequences. Second, the stringency of the
selection increases when the correlation between a sequence’s mutational robustness and its
neighbors’ increases. The latter finding relates a global characteristic of the neutral network to a
local one, which is attainable through experiments or molecular modeling. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2992853�

I. INTRODUCTION

In silico simulations have provided in-depth insights into
the underlying mechanisms of molecular evolution.1,2 These
models rely on the physical properties of simplified protein
or RNA molecules, making use of the thermodynamic stabil-
ity in most cases and allow the researcher to examine a
population’s genetic history in the greatest detail. Many as-
pects of evolution can be simulated: from the scale of the
gene or protein3–5 to the scale of the genome,6 and from the
rate of substitution7–9 to the link between functionality and
stability.5,10–12

Maynard Smith introduced the concept of “protein
space” in an attempt to understand how evolution
proceeded.13 Evolution occurs through mutation, and this
prompts us to investigate which sequences may perform a
given function �for instance, catalyzing a given enzymatic
reaction� and which of them are reachable via mutations.
Lipman and Wilbur addressed this question using a lattice
model of a protein where each residue corresponds to one
bead on the lattice and may be either hydrophilic or polar
�HP model�.14–16 Though simple, the HP model led to the
first observation that different isoalleles corresponding to a

same phenotype were clustered in sequence space and con-
nected via mutations. These clusters were named “evolution-
ary networks” and will be hereafter referred to as “neutral
networks.” “Neutral” refers to the absence of intrinsic selec-
tive advantage of any sequence as first formulated by
Kimura:17 all viable sequences perform equally well. The
nature and structure of the neutral networks were further in-
vestigated and it was discovered that, for a given phenotype,
viable sequences were organized into a “superfunnel.”1,5,18–22

This was achieved using in silico models and thereafter con-
firmed experimentally.10,23 Briefly, the superfunnel topology
consists of a core of alleles, “the prototype sequences,” these
are sequences that encode thermodynamically stable proteins
and that are highly robust to mutations. By “sequence robust
to mutations,” we mean that mutations are unlikely to disrupt
the structure and function of the protein encoded by the se-
quence. In other words, the mutation of a robust sequence is
more likely to produce a sequence which still belongs to the
neutral network. The core is surrounded by a large halo of
alleles which are less robust to mutations and encode less
stable proteins.

How the sequences are organized is not only interesting
by itself but it also determines the usage of the sequences
within a population of individuals. In other words, the net-
work topology affects the long-term probability for each se-
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quence to appear within the population.19 Two limiting re-
gimes exist depending on the total mutation rate. When the
total mutation rate is small, evolution essentially resembles a
random walk on the network and all the viable sequences are
equiprobable. However, when the total mutation rate is large,
evolution favors the alleles that are more robust to mutations;
under such circumstances, the stability is indirectly selected
for by reason of the superfunnel topology. More rigorously,
the transition occurs when �N�1, where � is the mutation
rate �per gene and per generation� and N is the population
size.9,24–26

It was rapidly realized that, alongside the parameters �
and N, the superfunnel topology determined the statistical
properties of evolution. Nonetheless, little work was devoted
to investigating the extent to which the topology could skew
the probability of a particular sequence.18 This is the ques-
tion that we address in this study through the use of two
models: a two-dimensional �2D� on-lattice and a three-
dimensional �3D� off-lattice model. We first compare the re-
sults from the two models and demonstrate that both models
give rise to the same qualitative degree distribution for a
neutral network. This suggests that the superfunnel topology
does not depend strongly on the details of the structural
model. We then compare typical neutral networks to null
models of networks, namely, Erdős–Rényi random networks
and random scale-free networks, to help pinpoint the topo-
logical features that are important in increasing the selection
for mutationally robust sequences. Finally, by generating
random networks with the same degree distribution as a neu-
tral network, we show that the extent of selection for robust
sequences is highly correlated with the smoothness of the
mutational robustness across the network. This observation
allows us to relate a global property of the network, the
selection for mutational robustness, to a local one, and the
smoothness of the mutational robustness across the network.

II. MATERIALS AND METHODS

A. Structural models

A neutral network is a network where the nodes are the
sequences able to perform a vital function. The edges of the
network connect pairs of sequences which differ from each
other at only one position. We shall assume that, for a protein
sequence, to perform the vital function is equivalent to fold-
ing stably into a given conformation. The rationale behind
the choice of foldability is the observation that preserving the
three-dimensional �3D� structure is a necessary condition for
an enzyme to be functional. To evaluate the foldability and
the thermodynamic stability, it requires a structural model of
the protein. Sections II A 1 and II A 2 introduce two such
models.

1. Two-dimensional on-lattice model

The first model and its variations were employed by
many researchers in the past.4,5,25,27 In this model, the pro-
teins are made up of 25 amino acids, which can be either
hydrophobic �H� or polar �P�. The protein chain is considered
to have a direction; for instance, the sequences HPP and PPH
are different. The amino acids are treated as beads and the

conformations are restricted to a 5�5 lattice. Thus, confor-
mations that are not maximally compact are discarded. There
are 1081 such conformations that are unrelated by symmetry.
The energy of a sequence s in a particular conformation c is
given by

E�s,c� = �
i�j

eij�ij , �1�

where �ij is equal to 1 if the ith and jth amino acids are in
contact, that is, if they are neighbors in the grid but not
within the sequence and to zero otherwise; furthermore,
eij =eHH if both amino acids i and j are hydrophobic,
eij =ePP if both amino acids are polar, and eij =eHP otherwise.
Following Li et al.,27 the following values were used:

eHH = − 2.3, eHP = − 1.0, ePP = 0.0. �2�

These values ensure that the proteins display a hydrophobic
core and a preferentially hydrophilic surface. The native con-
formation of a sequence s is the conformation c which mini-
mizes the energy E�s ,c� and such a conformation must be
unique with respect to s. In other words, for a sequence to
fold, its ground state has to be nondegenerate.

If one focuses one’s attention onto a particular confor-
mation c which is supposed to carry out a vital function, a
neutral network can be constructed by connecting any pair of
sequences that fold into c and which differ from each other at
only one position in their amino acid sequence. There might
exist several connected network components. However, a gi-
ant component generally gathers the vast majority of the vi-
able sequences. Furthermore, the smallest components are of
little interest, since the sequences cannot “jump” from one
component onto another. We therefore concentrate, without
loss of generality, on the giant component of each neutral
network. The mutational robustness of a sequence is equal to
the number n of neighbors this sequence possesses within the
network. Additionally, the thermodynamic stability of a se-
quence is evaluated by computing the folding temperature
T f, which is the temperature at which the Boltzmann prob-
ability of the native conformation is equal to 0.5.

2. Three-dimensional off-lattice model

The second structural model is a three-dimensional �3D�
off-lattice protein description.5,28,29 Three proteins are con-
sidered: the 69-residue SH3 domain of Vav, the 57-residue
SH3 domain of Grb2 �PDB accession number: 1gcq�, and the
20-residue TRP-cage �PDB accession number: 1l2y�. The
TRP-cage peptide, thanks to its very small size, allows more
thorough computations. For each of these three structures, a
set of decoy structures is prepared: 1135 for Vav; 1285 for
Grb2; 1791 for TRP-cage. These decoy structures are pre-
pared by threading the amino-acid sequences through unre-
lated protein structures selected from the Protein Data
Bank.30 Furthermore, 100 additional decoy structures are
prepared for Vav and Grb2 by means of molecular dynamics
in vacuo at 310 K using CHARMM.31 The latter structures
possess more nativelike contacts.

The energy of a sequence s in a conformation c is given
by the same equation �1� as above. However, there are im-
portant differences with respect to the on-lattice model. First,
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the elementary terms eij may be taken from a more complex
energy matrix. Depending on the degree of accuracy desired,
the amino acids may be classified into 2, 3, 4, 6, or 20 cat-
egories, at which point the maximum degree of resolution
with this model is reached. These various classifications are
called “folding alphabets.”32 Given an alphabet, the value eij

only depends on the classes of the amino acids i and j. The
values E= �eij� form the “energy matrix.” The alphabets,
along with the associated matrices, were optimized earlier.28

Second, a contact between the ith and jth amino acids occurs
��ij =1� if at least one of i’s heavy atoms is within 4.5 Å
from one of j’s. The positions of the atoms are computed by
grafting the most frequent rotamer onto the backbone.5,28,33

We discard any contact occurring between two amino acids
which are separated by fewer than two residues along the
protein sequence. When a two-class alphabet is used the op-
timization converges toward the following set of
parameters:28

eHH = − 8.5, eHP = + 9.0, ePP = − 3.5 �3�

corresponding to the following classification: LVIMCAST-
PGFWY are considered hydrophobic and EDNQKRH are
considered polar.

For a particular protein, the sequence s is said to fold
into the native conformation c if the following conditions are
met:

�1� the energy of the sequence in the native conformation is
lower than in any decoy conformation,

�2� the energy gap �E between the native conformation
and any decoy conformation must be greater than a
threshold �E0, and

�3� the Z-score of the native conformation must be lower
than a threshold Z0�0.

The values �E0 and Z0 are evaluated by computing the
energy gap and the Z-score for a sequence derived from the
native sequence by a short minimization �in sequence space�.
This minimized sequence will be referred to as the “refer-
ence sequence.” Minimization is achieved by mutating ran-
domly and iteratively the original sequence as found in the
PDB and by keeping the mutations that stabilize the native
structure. The native �N� and minimized �M� sequences are
as follows:

TRP-cage
N: NLYIQWLKDGGPSSGRPPPS
M: PNLQTYFTLWIPSYRYPPPD
Grb2
N: TYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNR
M: TYVQWLFQYFPKAQCYPIHIRQGFPVWVACKRKHWGIVLLQDPWCMISRNYVTNMLQ
Vav
N: GSHMPKMEVFQEYYGIPPPPGAFGPFLRLNPGDIVELTKAEAEHNWWEGRNTATNEVGWFPCNRVHPYV
M: DIDMPYCFPHHWGCAKDWMHAHRSYCSLLCHPSLAELGKWQAKGGYYWGRYSLFARDLYMQIERYHPYV.

The energy gap as well as the Z-score are estimators of
the stability of the sequence in the native conformation.

Additional sequences are generated by a Monte Carlo
procedure using the reference sequence as a starting point.
The reference sequence s0 is viable, since it necessarily
meets the conditions listed above. At each step t, the se-
quence st+1 is obtained by substituting one amino acid in the
sequence st and checking that the mutated sequence still
folds into the desired conformation; if it does not, st is re-
used.

When a two-class alphabet is used, the hydrophobic pro-
file primarily determines whether a sequence does or does
not fold into the target conformation �although the 3D extent
of the side chain plays a role as well�. The sequences gener-
ated by the Monte Carlo sampling can therefore be conve-
niently replaced by the hydrophobic profiles themselves.
This step corresponds to a projection into the HP space. Neu-
tral networks can be constructed by considering either the
hydrophobic profiles or the more complex alphabets.

B. Infinite population model

The neutral network is an abstract object that recapitu-
lates information regarding viable sequences and how they
relate to each other. A population-dynamics model is needed
to assess the likelihood for a sequence to be actually present
within a population. Generally speaking, a population-
dynamics model details the rules that govern births, deaths of
individuals within a population, as well as the sort of muta-
tion that can alter an individual’s genome. An uneven distri-
bution of sequence probability, as a result of the population
dynamics, also entails a shift in the other properties in the
population, such as average thermodynamic stability and av-
erage robustness to mutations. This shift resulting from the
population dynamics will be termed “population effect.” Al-
though, in reality, the sequence space for any gene is cer-
tainly much larger than any population size, an infinite but
constant population is assumed in this study, for the statistics
drawn from the infinite-population model are correct as soon
as N��1, where N is the population size and � is the
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mutation rate per gene and per generation.24 While the rela-
tion N��1 does not hold in all situations, here, our focus is
on the topology of the neutral network rather than on the
population size, whose role was already investigated in other
studies.9,24

We use a simple discrete-time model of evolution. In the
following, pi�t� will denote the fraction of individuals which
carry the sequence si at time t, while ni will stand for the
number of neighbors that are connected to sequence i. The
quantity ni can also be interpreted as the mutational robust-
ness of the sequence si. The population at time t+1 is drawn
from the population at time t by repeating the following op-
erations until the size of the new generation t+1 has reached
N.

�1� An individual is picked randomly in generation t.
�2� With probability 1−�, the individual reproduces accu-

rately and its offspring partakes in generation t+1.
�3� With probability �, the individual reproduces but the

gene of interest undergoes a single mutation. If the mu-
tated sequence is viable, that is, encodes a protein that
folds into the target conformation, the offspring carry-
ing the mutated allele is included in the next genera-
tion. Otherwise, it is discarded.

One can easily derive the following expression:

pi�t + 1� = pi�t� + ����
j�i

p j�t� − 	n
� , �4�

where the summation involves j� i, the sequences j that
neighbor the sequence i within the neutral network; �� is the
mutation rate per generation and per amino acid; and 	n
 is
the average mutational robustness at time t:

	n
 = � pi�t�ni. �5�

Under these assumptions, regardless of the initial condi-
tions, the population ultimately converges toward a stable
steady state p�.34 The vector p� can be characterized math-
ematically as follows. If A denotes the adjacency matrix of
the neutral network, p� is an eigenvector associated with the
highest positive eigenvalue of A, which is unique. This ei-
genvalue turns out to be the value 	n
 at steady state and will
be referred to as 	n
�. The steady state and the average mu-
tational robustness can be efficiently computed using a
shifted power method algorithm.

A convenient measure of the increase in mutational ro-
bustness is given by the “enhancement factor” �:

� = 	n
�
/	n
0, �6�

where 	n
0 is the average mutational robustness when the
distribution of the sequences is uniform �when N��1�:

	n
0 =
1

N
� ni. �7�

For example, a value �=1.4 means that the population dy-
namics increases the average mutational robustness by 40%
compared to what would be expected if sequences were uti-
lized randomly.

C. Rewiring neutral networks

Producing random graphs with a specified degree distri-
bution is a common problem. Two main approaches exist:
the matching algorithms and the switching algorithms.35

Here, the former method is developed. By exchanging pairs
of connections, it is possible to preserve a network’s degree
distribution while shuffling its topology. This is done by it-
eratively exchanging the edges between the two pairs of con-
nected nodes, denoted �i , j� and �k , l� in this paragraph. A
number of criteria must be met before the exchange is per-
formed. �1� All nodes i, j, k, and l must be distinct. �2� The
resulting network must be fully connected. Without this pre-
caution, the network could evolve toward an ensemble of
small disconnected components.

A third criterion may be added to explore topologies
which favor a given property of the network. Three situations
are envisaged: �3a� no additional criterion, �3b� the resulting
rewired network at time t+1 must have a higher mutational
robustness 	n
� at steady state than the network at time t, and
�3c� the resulting rewired network at time t+1 must have a
lower mutational robustness 	n
� at steady state than the net-
work at time t. In the first case, the procedure will generate
random connected networks having the desired degree distri-
bution. In the second and third cases, the procedure will gen-
erate connected networks, biased toward topologies favoring
high and low robustnesses, respectively, at steady state. Be-
cause the degree distribution is preserved, 	n
0 is common to
all networks generated and the enhancement � will therefore
evolve proportionally to 	n
�.

III. RESULTS

The findings presented in this study are of two types:
first, by using different protein models, we examine the ro-
bustness of some observations drawn from previous simula-
tions; second, we explore the features of a neutral network
that determine the enhancement of mutational robustness, �,
due to the population dynamics.

A. Degree distribution of the neutral network

In general, the degree distribution of a network is the
first global property analyzed, for it conveys information
about the composition of the network, even though it tells
little about the topology itself. We first compare the degree
distributions resulting from various models. Three comple-
mentary results were obtained. The first degree distributions
were computed from neutral networks constructed using
the 2D on-lattice protein model as described in Sec. II.36

Figure 1�a� shows a typical degree distribution �see also
Refs. 4 and 5�.

The second degree distribution was computed by gener-
ating the neutral networks from the HP profiles of the se-
quences sampled using the 3D off-lattice protein model. For
that purpose, the following simulations were conducted: for
each of the proteins Vav and Grb2, a 100�106 step Monte
Carlo simulation generated about 107 viable sequences �start-
ing from the reference sequence and using the two-class en-
ergy matrix provided in Sec. II�. Converting these viable
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sequences into HP profiles, we obtained 29 667 and 20 840
different HP profiles for Vav and Grb2, respectively. The
neutral networks were computed using these profiles. The
same unimodal distribution emerges from the networks, re-
gardless of the protein considered �see Supplementary Mate-
rial and Ref. 5�.

It could be argued that the two previous distributions are
alike because of the projection of 20-dimensional objects
into a 2D space. A third distribution was therefore drawn
from thorough computations carried out within the 20-class-
alphabet space. About 50�106 sequences were generated us-
ing a 20-class energy matrix, of which 11 455 666 were vi-
able. Every 15th sequence from this list was subjected to
systematic mutation and the number of viable neighbors re-
corded, again using a 20-class energy matrix. By doing this,
the estimation is as accurate as it can possibly be using this
family of three-dimensional models. The resulting degree
distribution can be seen in Fig. 1�b�.

Using these two complementary models �2D and 3D�,

we could also establish the existence of a superfunnel. In
other words, a funnel shape results when the stability of the
sequences is represented as a function of their distance from
the prototype sequence. This was done for the 2D protein
model �see Fig. 2�a��, the HP profiles of Vav and Grb2 �see
Supplementary Material36�, and the full-alphabet model of
TRP-cage. The method used in the latter case requires further
explanations. The superfunnel topology is centered around
the prototype sequence; though in full-alphabet space, it is
probably more plausible to refer to “a group of prototype
sequences.” The vastness of the sequence space prevents us
from directly sampling these prototype sequences. However,
according to Bornberg-Bauer, the prototype sequence coin-
cides with the consensus sequence.18 As a result, it is reason-
able to use the consensus sequence that emerged from the
simulation to that purpose �NYMNNWTDGYFPRYKYP-
PPT�. The stability of the sequences is measured, thanks to
the Z-score as defined in Sec. II. The results are presented in
Fig. 2�b�.
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B. Topological features favoring
mutational robustness

1. Neutral networks versus random networks

“Random networks” may be prepared in many ways de-
pending on the properties that are desired. The study of ran-
dom networks originates from the late 1950s, with Erdős and
Rényi’s model.37 Even though this model is rarely used in
practice, for most real-life networks significantly depart from
it, it is still useful to set a null model for comparison to our
neutral networks.

Using the 2D model, 2977 neutral networks were con-
structed and the enhancement � of mutational robustness
through population dynamics computed for 40 of them �sizes
range from 1 to 67 614�. In parallel, 40 random networks
were constructed according to Erdős and Rényi’s model.
This was done in order for their size and connection number
to match roughly the neutral networks’. Figure 3�a� presents
an example of degree distribution of two matching networks.
The two distributions look fairly similar, apart from the pres-
ence of rare but essential “hubs”—highly connected
nodes—in the neutral network �see inset of Fig. 3�a���.

The enhancements of the mutational robustness through
population dynamics for these random networks were subse-
quently computed. Figure 3�b� shows how the enhancement
� of Erdős–Rényi random graphs compares to the neutral
networks’ as a function of the network size.

Figure 3�b� suggests that, as size increases, a neutral
network departs more and more from the Erdős–Rényi
model, with respect to the enhancement �. Up to a size
N=1000, the enhancements in both situations remain fairly
comparable and increase as size increases. However, beyond
N=1000, while it still increases for neutral networks, the
enhancement computed on Erdős–Rényi graphs starts to drop
down.

The existence of hubs seems to be of importance as well:
similar computations were carried out for scale-free net-
works generated using the algorithm proposed by Babarási
and Albert.38 For equivalent sizes, scale-free networks can
lead to much higher enhancements �, up to 10 within the

size range considered, than neutral networks �see Supple-
mentary Material36�. However, the number of edges in a
scale-free network of size N is much lower than a neutral
network’s: the former is of the order of N whereas the latter
increases as a function of N log N �data not shown�. This
observation considerably limits the scope our comparison be-
tween scale-free and neutral networks.

2. Autocorrelation of the mutational robustness

The results discussed in Sec. III B 1 naturally prompt us
to investigate the topological features underlying high en-
hancements of mutational robustness. Since the degree dis-
tribution seems remarkably stable across the different protein
models, we generated random networks that had a degree
distribution typical of neutral networks. This was achieved
by using a switching algorithm,35 as described in Sec. II.
This approach generates random networks with a given de-
gree distribution by rewiring randomly the network. The
original network, at time t=0, is a 504-node network ob-
tained with the 2D model. Two simulations were performed
that allowed us to direct the rewired networks toward high-
enhancement and low-enhancement topologies. Another
simulation was left unconstrained. In each case, 500 000
Monte Carlo steps were performed.

The evolution of the mutational robustness 	n
� as a
function of the number of Monte Carlo steps is shown in Fig.
4�a�. The unconstrained simulation as well as the directed
downward simulation have converged after 500 000 steps,
and the directed upward one is close enough to convergence.
The values 	n
� attained range from 6.520 to 10.713. The
typical values sampled when rewiring unconstrainedly the
network are around 6.594	0.025 �standard deviation�. Inter-
estingly, the mutational robustness computed for the original
neutral network is 6.924, which is significantly higher than
that of the networks generated by the unconstrained Monte
Carlo procedure. A neutral network’s topology is therefore
prone to more marked effects, owing to the population dy-
namics and to the selection of sequences robust to mutations.
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To clarify the main topological feature underlying these
higher population effects, we considered the correlation that
exists between the mutational robustnesses of neighbors
within the network. This correlation, hereafter denoted 
, is
defined by


 =
	�ni − 	n
� · �	n j
 j�i − 	n
�
i

var�n�
, �8�

where 	¯
k symbolizes the average over the indices k and
j� i indicates the neighbors of sequence i within the net-
work. The correlation 
 indicates how smoothly the muta-
tional robustness varies across the neutral network. A value
close to 1 means that a highly connected node is generally
surrounded by highly connected nodes and, conversely, a
poorly connected node is generally surrounded by poorly
connected nodes �the mutational robustness varies
smoothly�. A value close to −1 indicates that highly con-
nected nodes are surrounded by poorly connected nodes and
vice versa �the mutational robustness varies extremely rug-
gedly but regularly�. Finally, a value close to 0 indicates the
absence of any clear influence of one node on its neighbors
�the mutation robustness varies ruggedly�.

The results for all three simulations are represented in
Fig. 4�b�. The correlation 
 varies from −1 to +0.8. There
appears to be a simple relation between 
 and �. The uncon-
strained simulation leads to correlation values 
, located
around zero, indicating that this simulation can effectively
maintain a given degree distribution and lose the correlation
that was initially present in the neutral network. The directed
simulations clearly demonstrate that the correlation across
the network, with respect to the mutational tolerance, is the
main factor in determining the extent of the enhancement
factor �. Interestingly, all the results drawn from the three
simulations perfectly line up. Remarkably, this is also the
case of the unconstrained simulation �see the inset in

Fig. 4�b��. The relation is thus unlikely to result from the
artificial and stringent selection operated during the directed
simulations.

IV. CONCLUSIONS AND DISCUSSION

Since Kimura’s seminal work,17 it has become common
to assume that the vast majority of mutations that are not
lethal confer little or no functional advantage. Yet, the pic-
ture of a completely random genetic drift on a neutral net-
work had to be altered: when the mutation rate becomes
high, sequences that are robust to mutations are positively
selected. Apart from the mutation rate �, the other elements
that determine the intensity of the selection for higher muta-
tional robustness are the population size N and the organiza-
tion of the viable sequences in sequence space. By favoring
mutationally robust sequences, selection increases the aver-
age mutational robustness and accordingly reduces the num-
ber of unproductive lethal mutations �mutational load�.

On the one hand, the viable sequences were shown to be
organized in a superfunnel;18,19 on the other hand, the influ-
ence of the mutation rate �, the population size N, or the
sorts of mutations considered on the strength of the selection
for higher mutational robustness was investigated.4,9,24

Nonetheless, the salient topological features of the superfun-
nel that could affect the strength of the selection remained to
be explored. The question of these features was addressed in
this study.

Assuming that functionality coincides with thermody-
namic stability, two different models led to a clear consensus
picture of what the typical degree distribution of a neutral
network must look like. The distribution consistently appears
unimodal. According to these results, a sequence is rarely
very poorly connected. Also, the superfunnel topology
emerges from all models: from the on-lattice model and the
off-lattice model, considering either HP profiles or full-
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FIG. 4. �a� Evolution of the mutational robustness at steady state 	n
� as a function of the number t of edges exchanged. Three simulations are performed: �a�
the edges are exchanged without any other constraint than the network’s full connectivity �in black�; �b� the edges are exchanged only if the mutational
robustness in the resulting network increases �in dark gray�; �c� the edges are exchanged only if the mutational robustness in the resulting network decreases
�in light gray�. �b� Mutational robustness at steady state 	n
� as a function of the local autocorrelation 
 within a network. During the three simulations
discussed above, networks were collected periodically to perform further analyses �unconstrained in black, increasing robustness in dark gray, and decreasing
robustness in light gray; the original neutral network is represented by a black triangle, labeled “NN”�. In particular, we can compute the mutational robustness
at steady state, 	n
� as a function of the autocorrelation 
. Because � is proportional to 	n
�, any property of 	n
� can be extended to �.
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alphabet sequences.
One distinctive feature of the superfunnel topology is the

existence of sequences that are highly robust to mutations.
These sequences, which have many neighbors within the
neutral networks, are commonly referred to as hubs. Random
networks generated using the model of Erdős and Rényi do
not possess hubs. We showed that the reduction of the mu-
tational load is more marked in the case of the neutral net-
works, as soon as the size of the networks is large enough. In
contrast, hubs are frequent in scale-free random networks
generated using Barabási and Albert’s method.38 In these net-
works, the selection for mutational robustness is extremely
marked. Hubs therefore appear to be involved in increasing
the selection for mutational robustness and in the subsequent
decrease in mutational load. However, whereas the Erdős–
Rényi random networks were prepared so as to have a com-
parable number of connections, scale-free networks are much
sparser networks. Their limited number of connections may
artificially limit the sequences’ ability to drift away from the
hubs.

Within the superfunnel, it has to be expected that the
neighbors of a mutationally robust sequence are robust too
and that, conversely, the neighbors of a mutationally nonro-
bust sequence are nonrobust. Mathematically, the mutational
robustness of a sequence is correlated with that of the se-
quence’s neighbors. With respect to the selection of muta-
tionally robust sequences, the relevance of the correlation 

in mutational robustness was further investigated by gener-
ating random networks having the same degree distribution
as a neutral network. The networks generated, in particular,
possess the same number of hubs as the original neutral net-
work. We related the factor 
 to the mutational robustness
	n
� and demonstrated that the network’s “smoothness” 


directly affects the mutational robustness 	n
� �see Fig. 4�b��.
Since � and 	n
� are directly proportional, the network’s
smoothness 
 directly affects the increase in mutational ro-
bustness � too.

In relating the correlation factor 
 and the mutational
robustness, the networks we used were rather small because
of computational limitations. It would be valuable to extend
our comparison between the neutral and random networks to
larger network sizes. It also has to be remarked that Erdős–
Rényi random networks also differ from neutral networks by
the lack of smoothness. The difference observed between
neutral networks and Erdős–Rényi random networks is a
combined effect of the absence of hubs and smoothness in
the latter.

The correlation between � and 
 is striking. The relation
obtained through computations is very clear, even in the case
of the unconstrained simulation, and it demonstrates that one
can relate a global characteristic of neutral networks �,
which is an eigenvalue of the graph, to a local characteristic

, which tells how likely is a sequence to be as robust as its
neighbors. This observation is important for potential appli-
cations of this theory: the mutational robustness enhance-
ment can hardly be experimentally estimated, for one should
cover most of the neutral network of a gene. However, it
might be assessed through the correlation 
 observed for a
limited but statistically large enough number of sequences

�experimentally or computationally using software such as
FOLDX

39�. Alongside other factors,10 this may be useful, for
instance, when designing structures de novo.
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