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26 SUMMARY

% The purpose of this article is to give an upscaling tool vétidthe wave equation in
ég general elastic media. The present paper is focused on P&¥ propagation in 2D,
g; but the methodology can be extended without any theoretitfadulty to the general 3D
gi case. No assumption on the heterogeneity spectrum is madgn@amedium can show
gg rapid variations of its elastic properties in all spatiakdtions. The method used is based
g; on the two-scale homogenization expansion, but extend#dtetaon-periodic case. The
39 scale separation is made using a spatial low pass filter. atieof the filter wavelength
40

41 cutoff and the minimum wavelength of the propagating walefiefines a parameteg
42

43 with which the wavefield propagating in the homogenized medconverges to the ref-
44

45 erence wavefield. In the general case, this non periodinsxte of the homogenization
46

47 technique is only valid up to the leading order and for thealted first order corrector.
48

49 We apply this nonperiodic homogenization procedure to timdkof heterogeneous me-
50 _ . : . :

51 dia: a randomly generated, highly heterogeneous mediunthengharmousi2 geological
52 . .

53 model. The method is tested with the Spectral Element Me#isod solver to the wave
54 . . : . . " : .

55 equation. Comparing computations in the homogenized nwetliethose obtained in the
g? original ones, shows the expected convergence ayiind even better. The effects of the
58

59
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leading order correction to the source and first correctiotihe receivers’ location are

shown.

1 INTRODUCTION

Seismic waves are widely used to study or image the Earthiontat all scales. In the seismological
or seismic exploration fields, one current challenge is weustand and take into account of, the ef-
fect of heterogeneities much smaller than the minimal vength of a wavefield propagating through
complex media. Indeed, geophysical elastic medium are dfighly heterogeneous, at least at the
crust scale and lower. Nevertheless, it is well known thrasdme cases at least, one can obtain quite
accurate ground displacement predictions when using sipnglpagation media, even if the real ones
show a high complexity in the spatial distribution of themstic properties at smaller scale than the
minimum propagating wavelength. For example, very longogesurface waves at the global Earth
scale can be modeled within a reasonable accuracy usingsiraple spherically symmetric elastic
models, and yet, the crust is highly heterogeneous at swelkts What happens is that waves nat-
urally “upscale” (or, equivalently, “homogenize” or “ser affective medium of”) the real medium.
Being able to understand in what sense a wave is upscalingl anedium is important for both the
imaging techniques (the inverse problem) and for waveformdeting (the forward problem). For the
seismic imaging inversion perspective, in order to exglugt information on the medium carried by
the wavefield, it is indeed of importance to understand intvgease the wavefield upscales the real
medium to be able to interpret the imaging results. As forftmevard problem, small scale hetero-
geneities are a difficulty for all numerical wave equatiotvers. Replacing the original discontinuous
and very heterogeneous medium by a smooth and more simplésomgudicious alternative to the
necessary fine and difficult meshing of the original mediguired by many wave equation solvers,
that usually leads to very high computing time.

In the geophysical community, taking into account smallescés known as finding the “effective
medium” of a complex medium and in the seismic community kriswn as to “upscale” a medium.
In solid mechanics, this procedure is known as “to homogettiz medium”. In geophysics, a the-
oretical effort on effective medium has been going on siheesixties with some works as those of
Hashin & Shtrikman (1963) or Hill (1965) whose purpose waddtine upper and lower bounds for
the effective elastic properties of heterogeneous assgyabl Other and more recent contributions to
this topic are described in Mainpria al. (2000). For wave propagation in the seismic exploration
context, an important contribution was that of Backus (39880 showed how to compute effective

properties for a wave propagating in finely layered medias Work is still widely used within the
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seismic community but since then, some works have been doabtain a more general upscaling
theory (see, for example, Grechka (2003), Getdal. (2000) or Tiwaryet al. (2009) for a review
of some upscaling methods used in the exploration indusimyinechanics, the method used is the
so-called two scale homogenization. The latter is unfateiy often restricted to periodic media (for
applications of the homogenization to the dynamic case,noag refer to Sanchez-Palencia (1980),
Willis (1981), Auriault & Bonnet (1985), Moskow & Vogeliud097), Allaire & Conca (1998), Fish &
Chen (2004), Lurie (2009) or Allairet al. (2009)) or dedicated to the formal mathematic fundations
of the non-periodic case (e.g. Nguetseng (2003), March&rkbruslov (2005)). When considering a
layered medium, it is possible to extend the two scale homiagBon method to the non periodic case
(Capdeville & Marigo, 2007) and it can be shown that to thelileg order (the homogenization theory
relies on an asymptotic expansion) gives the same resufteaBdckus (1962) averaging technique.
Nevertheless, even if the two scale homogenization saolusiovell know for higher dimensions prob-
lem and that it is has been applied to the elastic wave equédig. Fish & Chen 2004), in practice,
it is still limited to the periodic case. The challenge of owork is therefore to extend the two scale
homogenization theory to the non periodic case for a spditiansion higher than 1, for P-SV waves.
The reader is encouraged to read the introductions to tpis given by Capdevillet al. (2010) for a

1D wave propagation, and by (Guillet al,, 2010) in the case of an anti-plane elastic motion in 2D.

The wave equation solver used here is the Spectral ElemahosléSEM) (see, for example, Pri-
olo et al. (1994) and Komatitsch & Vilotte (1998) for the first SEM agliions to the wave equation
and Chaljubet al. (2007) for a review). This method has the advantage to beratector all type of
waves and all type of media, as long as an hexahedral meshjich most of this method implemen-
tations rely, can be designed for a partition of the spaces Miethod can be very efficient, depending
on the complexity of the mesh. Nevertheless, difficultidseawhen encountering some spatial pat-
terns quite typical of the Earth like a discontinuity of méeproperties. In 3D realistic media, the

hexahedral mesh design is often impossible.

We first introduce some concepts of spatial filtering andystudve propagation in two distinct
elastic media for which computing a reference solution \8EM is a possible but difficult and time-
consuming alternative. We apply two naives upscaling soiudnd show they are not accurate. We
then develop the non-periodic homogenization for the P-&Veapropagation in 2D. We then show
with examples that the method is accurate and generatedigldgehat converge very well towards

the reference ones (computed in the original, non-homageninedium, with SEM).
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2 PRELIMINARIES

In this preliminary section, we introduce some spatialtitig notions, we define an elastic model and
suggest two trivial upscaling processes. Finally, we gigngples of wave propagation in two complex

models and compare the results with the one computed in thesponding trivially upscaled models.

2.1 Spatial filtering

For any function., we define its 2D-Fourier transform as

h(k) = / h(x)e™*dx (1)
R2

wherex = (1, z2) is the position vectols = (k1, k») is the wave-number vector ahthe transpose
operator. Lets\ = 1/|k| be the associate wavelength to a wave-number véct@ur development
requires to separate low from high wave-numbers of a givetribliution ~(k) around a given wave-
numberkg. For that purpose, we introduce a low-pass space filter tgpendnich, for any functiorh,
is defined as:

PR () () = [ 6y (o = i )

wherewy, is a wavelet, such

- 1 for|k| <ko;
Wy (k) = @)
0 for|k| > ko.

In practice, in order to have a wavelef,, for which a compact support is a good approximation, we
do not use such a sharp cutoff but a smooth transition formQ@ @mundk,. The design of such a

wavelet is detailed in appendix A and an example of such ale&igeshown in Fig. 1.

2.2 Elastic models

In the following, we consider that, an “elastic model” in whiwe wish to propagate waves, is fully

defined by the spatial distributions of its densifk) and elastic tensor,

c(x) = {eym(x)}, (4,5,k,1) € {1,2}. 4)
The elastic tensor is positive-definite and satisfies tHeviahg symmetries:

Cijki = Cjikl = Cijlk = Cklij » (%)

reducing the maximum number of independent parametersssageto characterize to 6. If the

model is isotropic there are only two independent parareetdrerefore, in the isotropic case, knowing
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Figure 1. Wavelet example on the left and its power spectrum for pasitvavenumbers on the right. The
20 wavelet power spectrum is 1 fgik| < 6.10~3m 1, 0 for [k| > 10.10~3m~! and values in-between are given

by a cosine-taper (see appendix A).

24 the P and S wave velocities and the density, or the two Lamé elasticrpatars and the density, is

26 enough to characterizeand is therefore enough to fully define an elastic model.

29 2.3 Naive upscaling technique based on spatial filtering

31 Assuming the existence of a minimum wavelength for a given wavefield propagating in a given
33 elastic medium(p, c), as mentioned in the introduction, it is known by seismdtgthat, somehow,
this wavefield is insensitive to scales much smaller thanIf an original medium(p, c) has spatial

36 variations on scales much smaller thap, there are at least two naive ways to upscale this model
38 based on the spatial filteF*°, wherek, is a user defined wavenumber, preferentially (much) larger
than1/\,,. This wavenumber cutoff, allows to define the parameter

41 A
42 €0 = —)\O ) (6)
m

44 where)\; = 1/kg, and the two naive upscaling procedures are the followirgson

46 e The “elastic filtering” upscaling. It is based on the low papatial filtering of the density and of
48 the elastic tensor. The effective model is therefgrese, ¢*=0) = (F*o (p) , F*o (c)).

e The “velocity filtering” upscaling. It is based on the low pagpatial filtering of the density and
51 of the elastic wave velocities. The model is computed froendfiective density*<0 = F*o (p) and
53 velocitiesV, "= = F*o (V) andV; % = Fho (V).

55 At this point, a problem already appears with this low-pdssriing idea: filtering velocities or elastic

57 parameters do not produce the same effective media for leigieities contrasts (it would in a medium
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with only weak velocity contrast), therefore which one dddoe chosen (if any)? In the following

subsection these two upscaling procedures are neveghekied on two elastic model examples.

2.4 Two elastic models and naive upscaling examples

In the section, we study the propagation of waves in twortisglastic media, both of them contain-
ing heterogeneities whose size is much smaller than themimi wavelength of the wavefield. As
mentioned in the introduction, the method used to compuedference solution and the solutions in
the upscaled medium is the SEM. The mesh used to computetbience solution match all physical
discontinuities allowing a good precision but for a high ruimal cost which is only possible thanks
to the 2D configuration. We test here three different soh#itm avoid the thin meshing of the original

medium and the resulting high numerical cost:

(i) one based on the velocity filtering upscaling ;

(i) one based on the elastic filtering upscaling;

(iii) one based on a sparser mesh than the one imposed bycphirgierfaces but good enough to
sample the wavefield . In that case, the physical disconidésudf the model are not matched by any

element boundary.

Solutions (i) and (ii) are defined in the previous subsecéind solution (iii) is sometimes used when
the mesh design is too difficult. Komatitsch & Tromp (2002pqeeded in this way to avoid the

difficult meshing of a complex Earth’s crust model.

2.4.1 First example: square random model

The first model is a randomly generated 2D elastic mediunerisists of 80 x 30 km? square matrix
of 300 x 300 elements of constant elastic properties surrounded Wy fan thick strip of constant
elastic properties corresponding to P and S wave veloaifiggm ~! and3.2 km~! respectively and
a density 0f3000 kg m 3 (see Fig. 2). In each element of the matrix, the constantielpsoperties
and density are generated independently and randomlynwthd% of the outer strip elastic values
and density.

The geometrical configuration of the experiment is givenign B. We compute the wave propa-
gation induced by an explosion with a Ricker waveled.Gecond derivative of a Gaussian function)
time function with a central frequency of 1.5 Hz (corresgagdroughly to a corner frequency of
3.6 Hz). Ignoring the fluctuations of wave velocities in theer square and far away enough from
the source, we can estimate the minimum wavelengthof the wavefield generated by the explo-

sion to be roughly equal t800 m. To obtain the promised accuracy of the SEM, we must generate
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Figure 2. Square random model. Density, andV; are presented.
t=8s
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Figure 3. Configuration of the experiment for the random square mdael.source locations A and B are used
(marked with green squares). Pink diamonds labeled frondDtare receiver locations and the line “CD” is a
line of receivers with a 50 m vertical sampling rate. The thisick line square corresponds to the boundary of
the random elastic properties area. The plotted field is atiGrenergy snapshot at t=8 s for a explosion located

in A with a Ricker wavelet in time of central frequency of 1.%.H

a mesh based on square elements that honors all physicahtiisgties of the model. In this case,
the geometry is so simple that the mesh generation is triMabertheless it impose)0 x 100 m?
elements in the random matrix. Knowing that a degree 4 sglegiement (a tensorial product of de-
gree 4 polynomial basis) can roughly handle one wavelengtltelement, the mesh is oversampling
the wavefield by a factor 8 in each direction, leading to adiabtL2 in humerical cost (a factor 8 in
each direction and a factor 8 in time to match the Newmark tmaeching scheme stability condi-

tion). For this simple 2-D case, this factor 512 can readdyhlandled and this allows to compute a
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reference solution. Nevertheless, one can imagine that 39D case, meshing the original model can
quickly be out of reach for a reasonable computing power hadgmptation would be high to either
use a mesh that doesn’t honor the physical interfaces ompli§y the model. We therefore test here
the three simple solutions (i), (i) and (iii) mentioned aboFor the solution (iii), we simply use a
mesh with142 x 142 elements to mesh the matrix instead36f x 300 elements used to compute
the reference solution. Using this sparser mesh, we afeetitsampling the wavefield (by a factor
4 in each direction) but none of the physical interfaces itched by any element boundary. We first
generate a reference solution using the SEM mesh matcHingeafaces. A snapshot of the kinetic
energy of the wavefield generated by the source A is plott&ign3 fort = 8 s. In Fig. 4, we pick for
instance the receiver 22 and compare waveforms obtaingdddhree solutions (i), (ii) and (iii) to the
reference solution. It clearly appears that none of themigeoa good solution, at least for standard
SEM accuracy. It appears that the low-pass filtered solsit{grand (ii) have first arrival propagating
faster than in the original medium. The coda is also fastdrtha time delay increases with time. It
is interesting to note that this time shift observed for tist @arrival is consistent with the “velocity
shift” observed when comparing time arrivals of waves pgapiag in random media compared to
time arrivals computed with the corresponding averagecigi¢Shapiroet al., 1996). Solution (iii),
despite being also slightly too fast, provides a bettertawilfor the first arrival. For coda, amplitude
errors and phase time shifts can clearly be observed. Anwttezesting situation is shown in Fig. 5
for the same explosion as for the previous case, but locatBdsee Fig. 3) at the center of the random
area and recorded outside of the random area at receivem3BeQertical component:(), it can be
clearly seen on the reference solution (black line) a stimalfistic S wave around = 8 s which is
not normally generated by an explosion located in a simplginnme (as it can be seen for source A in
Fig. 4). This is a S wave generated by a strong P to S wave csioweon an interface located very
close to the source. All the solutions proposed in this sadtil to reproduce this effect (see Fig. 5,

where only the elastic filtering upscaling solution is reygrged (red line)).

2.4.2 Second example: the Marmousi2 model

Our second example is derived from the marmousi2 elasticei(dthrtin, 2004; Martiret al,, 2006),
which is itself derived from the famous Marmousi acousticdeladesigned by the Institut Frangais
du Pétrole (Versteeg, 1994). It is a 2-D geological (a saettinodel based upon the real geological
setting from North Quenguela in the Quanza basin of Angadtee Jection is primarily composed of
shale units with some sand and salt layers and a complerdbaitea in the center of the section. From
the technical point of view, 199 horizon lines are provided aach of them correspond to the top of

a layer. When recombined together, it is possible to geaetdb closed objects from the horizons

Page 8 of 36
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X component y component

l -U.
5 10 15 5 10 15
time (s) time (s)

Figure 4. z, (left column) andzs (right column) components of the velocity recorded at nemep?2 for the
source A (see Fig. 3). On each graph, the reference solgipfoited in black. In red, the solution obtained

using solution (i) (top line of graphs), (ii) (middle line gfaphs) and (iii) (bottom line of graphs).

to which constant or depth gradient elastic properties awsity can be assigned. The density, P
and S wave velocities are plotted in Fig. 6. For the originariMousi and Marmousi2 models the
top layer is a water layer corresponding to the ocean. Weacepthis layer by an elastic layer with
the sameP wave velocity but a non zer§ wave velocity. The reason for this modification is to
avoid the occurrence of a solid-fluid interface and the aasedt boundary layer from the point of
view of homogenization which we shall present below. Thisecs similar to the one encountered
close to a free surface (see for example Capdeville & Marig@82 and will be addressed in future
works. We wish to pursue the same experiment as for the preégample for an explosion located
atxg = {(8 km, —100m) (see Fig. 8) with a Ricker time function of 6 Hz central freqog (15 Hz

of corner frequency) and to do so we once again need a retesamhation. Compared to the previous
example, the hexahedral element mesh design if far fronmghteivial and leads to a complex mesh
geometry and a high numerical cost. Because of the 2D coatignt some free softwares can help for
its design; once the necessary closed objects are genénatethe horizon lines, which is the difficult
part here, we use “gmsh” (Geuzaine & Remacle, 2009), an operces mesh generator, to complete

the mesh. A sample of this latter is shown in Fig. 7. Due to &éingd number of layers and some being
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Figure 5. z; (top graph) andc, (bottom graph) components of the velocity recorded at veced38 for the
source B (see Fig. 3). The reference solution is plottedéclblin red, the solution obtained using the elastic

filtering upscaled model.

very thin (less than a meter thick), the computation is vergmy: it took seven days to compute the
reference solution using 64 CPU of a recent PC cluster. Hfésence solution can be computed for
this 2D example, but it would be impossible for a similar bbtrBodel. The mesh would be impossible
to design and even if one manages to do so, the numerical oo e out of reach for a of reasonable
size cluster. Once again we test the three solutions ()afid (iii) proposed at the beginning of this
section. For these three solutions, we use a simple regudahmwith a conforming de-refinement
with depth to take advantage of the vertical velocity gratdi®Vith such a mesh, the numerical cost
is of course much chipper and it took about one hour, stilhved4 CPU, to compute each of these
three solutions. It is worth noting that, for such a modetauese of the vertical velocity gradient, the
minimum wavelength increases with depth (frasp = 25 m at the top of the model ta,,, = 170m

at the bottom). Therefore the spatial filtering we suggeptediously for solutions (i) and (i) may
probably not be well adapted, and for such a case, a varidtdanfy with depth based on wavelet
expansion would certainly be more appropriate. We neviesheuse ther} filtering operator with
Ao = 50m (which impliesey = 2 at the top of the model ang) = 0.3 at the bottom). The filtering
is then too harsh at the top of the model, but, because theityetmntrasts are relatively weak there,
we hope it is good enough (and we will see that the homogeoizarocedure with the same spatial
filtering parameters produces good results). The resultseotomputations for the three solutions

are shown in Fig. 9 for the receiver location shown in Fig. BisTlocation is chosen near a physical
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39 Figure 6. Marmousi2 model. Density/, andV; are presented. Grey lines correspond to physical intesface

42 interface of strong velocity contrast, where the 2D effects expected to be important. Even if this
example is less spectacular than the previous one, it apfearthe first arrival is faster for solutions
45 () and (ii) than for the reference solution and that largéiecences can be observed in the coda. The
47 results for the solution (iii) are of better quality but soaggparent misfits remain. Nevertheless, the
three solutions give a better result for the marmousi mdukh for the square random model. The
50 main reasons are that the propagation distance comparée tmihimum wavelength is shorter in
52 the marmousi model, and that the power spectrum of the elpstperties decreases faster with the
53 wave numbek in the marmousi model than in the square random model. Agtdiai the marmousi2

55 model, the three solutions can provide a very good resuityslecreasing for solutions (i) and

57 (i), or by using a mesh that over-samples even more the vasddir solution (iii). Nevertheless,
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28 Figure 9. x (left column) and z (right column) component of the velgeicorded at receiver shown in Fig. 8.
30 For all graphs, the reference solution is plotted in blackeld is plotted the solution obtained using solution (i)

31 (top line of graphs), (ii) (middle line of graphs) and (iidttom line of graphs).

3 THEORETICAL DEVELOPMENT

38 3.1 Notations

40 Let us first define some notations that will be used in thisieecFor any 4th-order tensok and

42 second order tensdr, we note

a4 [A :blij = Ajjribrr )
47 where the sum over repeated subscripts is assumed. Forlaoydér tensord andB , we note

[A : Blijkr = AijmnBmnki - (8)

52 We will use the following compact notation for partial detiives with respect to any variahleof a

54 given functiong:

56 Opg = == . 9)
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Finally, we will sometimes use the classical notation fordipartial derivative: for any

du
ot

U

(10)

3.2 Problem set up

We consider an infinite elastic plane characterized by thtiliitions of density’(x), and elastic
tensorc’(x). The plane is considered as infinite in order to avoid thetrreat of any boundary
condition that normally would be necessary in the followdtgyelopment. The boundary condition
problem associated with homogenization has nevertheless dddressed by Capdeville & Marigo
(2007) and Capdeville & Marigo (2008) for layered media, anlll be the purpose of future works
for a more general case. No assumption on the spatial viftyiatifi p°(x) andc®(x) is made, which
implies that they can vary at any scale and in any directidre plane is submitted to an external
source forcef = f(x,t) and we wish to study the displacemeritx, t) = *(u1,u2)(x,t) associated
to the wave propagating in the plane. We assumefttait) has a corner frequendgy which allows to
assume that, in the far field, it exists a minimum wavelengthto the wavefielda. The displacement

u is driven by the wave equation,
poﬁttu -V o= f, (11)

associated to the following constitutive relation betwéenstresg and the straire(u) = 2 (Vu +

tVu) tensors:
o=c’:e(u). (12)

The initial conditions at = 0 are assumed to be zero and radiation boundary conditiohs atftnity

are assumed (actually modeled using Perfectly Matchedrsasgsion of Festat al. 2005).

3.3 Homogenization problem set up

To solve the so-called two-scale homogenization problerrsnall parameter is classically intro-

duced :
A
= — l
b (13)

where is a spatial wavelength or a scale. For a periodic mediumould be the length defining the

periodicity of the model. In the non periodic case, anottameter is required

_ N

= 14
€0 )\m ) ( )
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; where)\q is the user defined scale below which a wavelength is coreides belonging to the small
3 scale (microscopic) domain. Reciprocally, wavelengtigéarthan)\, is considered as belonging to
4
5 the large scale (macroscopic) domain. The parametés user defined, but it makes sense to assume
? that the wavefield does interact with heterogeneities wisosées are smaller thaky,,. Therefore,
8 choosing arxy << 1, which means considering as microscopic, heterogeneitiese size is much
9
10 smaller than the minimum wavelength, is probably a good gues
g In order to explicitly take microscopic scale heterogeasitnto account, a fast space variable is
13 introduced:
14
15 _X
16 Y=z (15)
17
18 y is the microscopic variable andis the macroscopic one. When— 0, any change ity induces a
;g very small change ix. This leads to the separation of scalgsand x are treated as independent
21 variables. This hypothesis implies that partial derivatives withpest tox become:
22
23 1
” Ve = Vot -V, (16)
25
26 whereV, =1 (9,,,0,,) andV, =" (d,,,0y,).
% We define the waveleb,, (y) = wy,, (y) wherewy,  is the low pass filter wavelet defined in (3) or
29 in appendix A and:,,, = 1/\,,. We assume that the supportof, in the space domain is contained
30
31 in [—a\n, +a)\,]? wherea is a positive number that depends upon the specific design (ske
gg appendix A for details).
34 Let Yy = [ B\n, BAn]? be a square dk? whereg is a positive number larger thanand Y the
35 . L
36 same square but translated by a vestdry. We defineZ = {h(x,y) : R* — R, Yg-periodic iny}
g; the set of functions defined in on Y, and extended t®? by periodicity. We define the filtering
39 operator, for any functioh € 7:
40
41 _ / / /
42 F(h) (x,y) —/ h(x, ¥y )wm(y —y')dy . (17)

]RQ
43
44 Finally let V be the set of functionf(x, y) such that, for a givex, they part of i is periodic and
jg contains only spatial frequency higher thiap, plus a constant value i
47
48 V=_{heT/F ) (xy)=(h) )}, (18)
49
50 where
51
52 1

0

54
55 is still they average of.(x,y) over the periodic cell.
g? In this section and the next one, we proceed in the same way @apdevilleet al. (2010) and
58
59



©CoO~NOUTA,WNPE

Geophysical Journal International
16 Y.CAPDEVILLE

Guillot et al. (2010). We first assume that we have been able to dgfféx, y), c*°(x,y)) in 7 with

the conditions

P (x,%/20) = p"(x)

(20)
c®(x,x/gg) = c(x)
that set up a sequence of models indexed by
X
PO () = 50 ).
: (21)

0% (x) = ¢ (x, ),
E

and that, with such a set of parameters, a solution to thdgaroblescribed below exists. This assump-
tion is by far not obvious and the construction of suctp@ (x,y), c®(x,y)) from (p%(x), c’(x)),

which is the critical point of this article, is left for seoti 3.5.

We look for the solutions of the following wave equation awhstitutive relation

POEDUEE — V. g0 = f 2
o50F = O ; g(u0F),

wheree(u®>¢) = 1(Vu< 4+ 'Vu<). The initial conditions at = 0 are assumed to be zero and

radiation boundary conditions at the infinity are assumedalve this problem, the fast space variable

y, defined by (15), is used. In the limit— 0, x andy are treated as independent variables, implying

the transformation (16), or similarly, with strain operato

e(u) — €;(u) + éey(u) ) (23)

wheree, (u) = 1(V,u +'V,u) andey(u) = 1(V,u+ 'V, u).
The solution to the wave equations (22) is then sought asyangetic expansion im with u®-* and

ocotin V:

[o¢] [o¢]

W, ) = 3 e/ ) = 3 ey, ),
i=0 i=0

o°f(x,1) = Z ot (x,x/e,t) = Z o (x,y,1).

i=—1 i=—1
Note that the condition fon®>* ande€°+ to be inV is a strong condition which mainly means that
slow variations only ik and fast variations only igr are required. It is the equivalent to thgeriodic
condition in the periodic case. Introducing the expansi@43 in the wave equations (22) and using
(23) we obtain:

psoattuso,i - Va: : Jso’i - Vy : UEO’iJrl = .f(si,O ) (25)

o_so,i — ¢%0 - (Ex (uso,i) + €, (uso,i+1)) . (26)

Page 16 of 36



Page 17 of 36 Geophysical Journal International
2D nonperiodic homogenization, PSV casel7

% To solve this homogenization problem up to the or@er25) and (26) need to be solved for edch
3 up toig. This is the purpose of the next section.
4
5
6
7
8 3.4 Resolution of the homogenization problem
9
ig 3.4.1 Order 0 solution and first order corrector
ig The resolution of the system (25,26) is classical and carobed for example in Sanchez-Palencia
14 (1980) or in Guillotet al. (2010). We therefore just recall the main results and onggeter to Guillot
15
16 et al.(2010) for a complete development. Solving (25) and (263, fitst found thai—! = 0 and that
g u®? = (u™0). The last equality implies that* doesn’t depend upon the fast varialgleThis is
19 an important result that is intuitively well known: to theder 0 the displacement field doesn’t contain
20 . .. . .
21 any fast variation (that is, is insensitive to small scaletageneities). Neverthelegss®? # (o=0:0)
gg to the contrary of the 1D case (Capdevideal, 2010). It can be shown thaito? is solution of the
24 following effective equations:
25
26 *EQ €0,0 €0,0\ __

p o =V - (o =7,
27 { ) (27)
28 0-5070 = c*0 . ¢ qu,O ’
28 (o)  (ur?)
32 wherec*s° andp*“© are the order 0 effective elastic tensor and densityxetbe the so-called first-
32 order corrector, a 3rd order tensor build of the collectiohfirst order correctors (which are vectors),
33 L
34 solution inV of
35
36 Oy, Hi5y =0, (28)
37
o with
40
j; H50 = hmn Gl » (29)

1

4 Gl = 5 (0adin+ i + 0,0 + 0, (30)
45 : . : .
46 It can be shown that the effective elastic tensor simply is
47
48 ¢ (x) = (H) (x). (31)
49
50 I .
51 For the density, it can be shown that we simply hate = (p®°).
gg At this stage, solving the effective equations (2i@)?° and the average stre$&50’0> can be
54 found. To obtain the complete order O stress tenstr” needs to be computed using
55
gs o%x,y) = H(x,y) : & (u"°(x)) . (32)
58
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The order 1 solution can be written as

a5 y) = XM,y ) + (w2 (). (33)

wheree®? = ¢, (u€070). In this paper, we stop our development to the order 0 andofider correc-
tion, which means we do not solve fou=o:!). For the 1D caseju®') is always equal to zero (see
Capdevilleet al. 2010), but for higher dimension problems like the one weltabkre,(u®-!) is not
equal to zero in general. Nevertheless we will notice in tkengples that it might be very small, in
some cases at least.

Finally, note that the physical interpretation of the efifex elastic tensor formula (31) is not
obvious. It can be interpreted as the average of the elastiot, plus a correction made of the average
of the elementary stresses associated to the displacemp@rits This interpretation can be linked
to an heuristic approach to obtain an effective elasticaeby computing the average stresses and
strains associated to a set of elementary static probleoh§irading the average tensor linking them.
This approach is known as the “average method”, and wasajeelby Suquet (1982). This idea has
been used in the dynamical case by Grechka (2003), but fdra seementary problems based on a

set of boundary conditions applied to the unit cell instebal set of external forces.

3.4.2 Practical resolution

Practically, to solve the homogenized equations, predentie previous section, with classical wave
equation solver like SEM, different orders are combinectogr (Fish & Chen, 2004; Capdeville &
Marigo, 2007; Capdeville & Marigo, 2008; Capdevitie¢al., 2010):

(@07 (x) = u0(x) + £ (uT) (%) + . e (u0) (x), (34)
(6505) (x) = (000 (x) + & (@01) (x) + ... + € (0°00) (), (35)
where(<") and(a-*+*) are solutions of an ordéccombined effective equation. Knowirgo=-),

a5 can be found using an high corrector operator that we womlieikhere and it can be shown
that

w0l (x) = 0505 (x) + O(e). (36)

In the present article, because we stop the expansion atdee® (i=0=°) and(6<"=") are simply
u®>? and(o“-?) and the combined effective equation is simply the equa@di. (At the order 0, the
solutionstco-=0 andé<0= are

ﬁso,s,O(X) —_ <ﬁ50,s,0> ’ (37)
°0°0(x) = H (x,x/e) : €, (07%(x)) (38)
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% Applying the first order corrector ta*0-=°(x), we can obtain a partial order 1 solution

3

4 a2 (x) = (07°0) (x) + X7 (x, x/e) : € (7)) (%), (39)

5

s where thel /2 superscript means “partial order 1”. To obtain a completieoil solution,<u50’1>

8 should be computed, which we won'’t do here. Because, it ig @plartial order 1 solution, we do not
9 .

10 have in general

11

12 w0t (x) = w02 (x) + O(e?), (40)
13

ig on the contrary of the 1D case (in the 1D ca&e?>>!) can be shown to be 0, see Capdevéteal.
16 (2010)), unlesgu®-!) is very small, which appears to be the case at least for thdorarsquare
g example presented in this paper.

-'218 Finally, the onlye that is of practical interest is = ¢( as, thanks to (20), it is the only case
21 for which u®o is equal to the solution of the original probleai®/. Note that, for allsg, we have
gg u"¢/ = uf0°0, Using the above development, we therefore hafifé (x) = 0500 (x) + O(go).

24

25

g? 3.4.3 External source term

gg We have shown in a previous work (Capdevieal, 2010) that, for an external point source, the
30 original force or the moment tensor should be corrected.mAthis article we stop the asymptotic
31 . . L

32 expansion at the order 0, nothing needs to be done for a vewrie, which is not the case for a
gi moment tensor. For a moment tensor locatesljnthe external force is

35

36 F(x,t) = g(t)M - Vi(x — xo) (41)
37

38 whereg(t) is the source time wavelet aid the symmetric moment tensor. As shown by Capdeville
39

40 et al. (2010), we need to find a moment tenddro-=-* such that

41

42 (s, f) = ((uo0) | fo=0) + O(e), (42)
43

j‘é where( . , .) is the L% inner product and

46

47 Foel(x,t) = g(H)M==0 - Vi(x —x0). (43)
48

gg Using an integration by parts and the symmetry of the monesrsdr, (42) becomes

51

5o M : € (u0F) |x, = M0 1 g, ((u50)) |, 4+ Ofe). (44)
53

54 Using (23) and (33), one finally finds, at the order O

55

g? ME=050 = G0 (xq, x0/2) : M. (45)
58
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3.5 Construction of p°°(x,y) and c*°(x,y)

The next (and essential) step, is to byifd andc® (x, y) such that®?, uso-! ando¥ are inV.
It can be seen from (33) and (32) th&t-°, uso:! anda®0-? are inV if ¢ (x, y) can be build such
thatx0 andH®° are in). Note that if this is the cas€z“° is also inV (gradients of function ifY are

also inV). Therefore, we seek fgr° (x,y) andc® (x, y) such that

(i) p%o, H andx*** are inV;
(i) p®0 andct® must be positive definite;

(iii) p®o(x,x/g0) = p°(x) andc® (x,x/gp) = c"(x).

The construction 0p (x,y) is trivial. To do so, we introduce a initiafF°-* (x,y) = p"(eoy) defined
onR x Y, and then extended f&? in y by periodicity. p°** depends o because the cell domain
used iny, Yy, depends ox. If the Y cell is chosen as a the whole domain, then #hidependence

disappears. We can then define

P (x,y) = F (p7°) (x,x/e0) + (07 = F (p77°)) (%, y) - (46)

We indeed have®* is in 7, p*(x,x/eg) = p'(x) andp is in V and is a positive function with a

well chosen wavelet,,,. Moreover, with such a definition, we have,

p0 = {p7) = F(p™*) (47)

Forc®o, the process is not trivial and we follow the procedure dbsdry Capdevilleet al. (2010) and
Guillot et al. (2010) which is inspired by the homogenization procedureadadom media (Papani-
colaou & Varadhan, 1979). The main idea is to search for twerinediate field&° andH®0 in V

such thaiG®° can be written as

1
Geo — 5 (Vyxao "‘tVyXaO) 4 14’ (48)
and
H® = c* : G%, (49)
Vv, -H® =0, (50)
(G™) =T, (51)

kl kl
Where[Vyxso]ijkl = @in;m ) [tVyxso]ijkl = @y.xfo’ andI;‘jkl = % (51']4:5]'1 + 53145(511)

J

To do so, we propose the following procedure:

e Step 1: build a stat®e:* defined ag***(x,y) = c’(goy) for y in Y, and then extended t®?

by periodicity. Then solve (28) with periodic boundary citiahs in Yy to find x5 (x, y).
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% e Step 2: compute

3 1

g G (x,y) = 5 (Vyx=% + 'V x*%) + I, (52)

6 HO(x,y) = ¢ (x,y) : GO¥(x,y). (53)

g F (G*2*) beeing symmetric and, for well chosen wavelg},, positive definite, it can be inverted.
ig This allows to build, for any € Yy,

12

13 G (x,y) = [(G™® — F (G**)) (x,y)] : [F (G™) (x,x/20)] " +T*, (54)

15 H (x,y) = [(H* — F (H*)) (x,y) + F (H) (x,x/e0)] : [F (G*) (x,x/e0)] ' . (55)

16

g The G®° andH*®° extension fromY, to R? in y in then done by periodicity.

leg e Step 3: From (49) we can build

21 €0 _ €0 . go\—1

22 c(x,y) = (H® : (G*) ") (x,). (56)
23

gg Using (54) and (55) in (56), it can be seen that the tensor tonmted in the above equation, is in
26 fact (G0 — F (G*0%)) (x,y) + F (G*°*) (x,x/ep). The latter is symmetric and positive definite
% for well chosen wavelet,,, meaning it can be inverted and that (56) can be computednlbe also
ég note that

31

2 ¢ (x) = (H) (x) = (F (H) : F (G%) 1) (x,%/20).. (57)
gg e Step 4: once®°(x,y) is known, the whole classical homogenization procedurebegoursued.
2? Remark: in pratical cases, the domain is finite aWg can be chosen to enclose the whole domain. In
gg that case, the dependence to the macroscopic Iocatinrxio’kl, G0 He05 andc®0-* disappears.
40 Following these steps, we indeed have by construationx, x/sq) = c”(x) andc® is positive
j; definite for a well chosen wavelet,,. It is also important to check that, at the end of the procgdur
ji x°* is indeed inY (H is in V' by construction). At step 2, we have, by constructi@o, G=0) ¢

45 V and(G®) = I*. G can be written under the from (48) if, and only ¥,,, x G0 = 0. Knowing
j? that for anyh, V, x 7 (h) = ¥ (V, x h), and thatV, x G** = 0, we indeed hav&/ , x G*° = 0.

jg It therefore exists a correcty0** such that (48) can be written. Furthermore, knowing thaafor
50 h andg suchh = V,g, h € V with (h) = 0 implies thatg lies inV, we indeed havg:>* in V. At
g; this stage we have fourdds® andG=°, unique solutions to our problem, and we know it exisig "’

gj in V satisfying (48). We ensure the uniquenesx®f*' by imposing({x-*") = 0. To findx**"*, we
55 can either solve (48), or fineFo with (56) and solve again (28). We have chosen this lastredte.
g? An illustration of the process is sketched in Fig. 10. It carsben that the power spectrum component
58
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of the corrector which is represented (lower right graphggsal to zero fork|/cy < 6.1073m !
which implies it belongs td/.

One can notice that the symmetry of the effective elastisdedoes not appear to be obvious from
(57). Though we can show that, in the periodic case and faré/media, (57) analytically gives a
symmetric elastic tensor (Guill@tt al, 2010). We are not able to prove it in the general case for the

time being. Let us define the skewness of the effective eltstisor as

_ max (c* — tc*)

d(x) = (%), (58)

mazx(c*)
where thenax operator applies to the tensor components. In practicagla skewness of the effective
elastic tensor can be observed for the examples studiedsipaiper: typicallyd takes values below
10~ with some localized peaks attainirig—2. Using the same algorithm on periodic or layered
media, we get values of the order of—>. At this point, we do not know if the effective tensor
indeed has a slight skewness for general media or if thistsju accuracy issue. This important point

deserves to be studied in a future work.

4 VALIDATION TESTS

In order to validate our development, we apply the homogsitiz procedure to the two model ex-
amples studied in subsections 2.4.1 and 2.4.2. To do so wetnesolve the cell problem (28) on
the whole domain with periodic boundary conditions (we &d®¥9, as the whole domain). Note that
one could rather choose to solve the cell problem on mulspialler domains. This solution is not
necessary in 2D but might be interesting in 3D or for verydaggmains in 2D. We use a relatively
high order finite element method based on a triangular mesblte the weak (or variational) form
of the cell problem equations. The finite element interpotais based on the Fekete points (Pasquetti
& Rapetti, 2004; Merceratt al, 2006) and we employ an high order integration quadratueth@l

et al, 2004). In the following two examples, the polynomial exgian used over each element corre-

sponds to a degree 5 polynomial order on elements’ edge.

4.1 First example: square random model

We first apply the non-periodic homogenization procedurthéorandom square model described in
section 2.4.1. The spatial low-pass filter is the same, arnsl the value of they parameter (which is
then equal t@.3). In figure Fig. 11 are showi (left plot) and the total anisotropy (right plot) com-
puted from the order 0 homogenized coefficigsits® andc™0. At any given locatiorx, the maximum

anisotropy is defined bynaxz{|c*<0 —c;°|} /maz{c;°}, wherec;:*° is the closest isotropic elastic

150 S0 150
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Figure 10. lllustration of the construction of the correctorslin On the left column are plotte;glifl’”(yl, Y2),
GE9 (1, y2), G941 (%0, 91, 92) and x5 (xo,y1,12) as a function ofegy; for egys = 20 km and
xo = (20 km,20 km). On the right column are plottefts'!|(k,), |G53111(ky), |G3%111(x0. ky) and
105" (%0, ky) atxg = (20 km, 20 km) and for positive wavenumbers. The actaglcorresponds to the

wavelet shown in Fig. 1.
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Figure 11. Leading order homogenized model of the “square” model (3. V; = /555, /p0* and

the total anisotropy are presented. The total anisotrogpiisputed, at a given location, asmaxz{|c* 0 —

c; 20|}/ maz{c;:5"}, wherec! ;2" is the closest isotropic elastic tensorcto™.
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Figure 12.Black line: 1D section oV atxy = 32 km as a function ofz; or the original “square” model (see
Fig. 2). Red line: 1D section df; = /5%, /p0* atzs = 32km as a function ofr; for the homogenized

model (see Fig. 11.)

to c*°0 (in the sens of, for example, Browaeys & Chevrot 2004). Thexdgenized quantities also
show rapid spatial variations, but these are smoother taiihé original medium as can be seen for
V; along a section in Fig. 12. The apparent anisotropy is saifiwith average values around 2.5%
and peak values up to 11%. In Fig. 13 is shown a comparisoneobrther 0 homogenized solution
with the filtered wave velocities solution (alternativedf)section 2.4.1) for source A and receiver 22.
In the left column plots, we compare thg component of the order 0 homogenized velociiﬁ'o(),

in red line) to the reference solution (black line) as a fiorcof ¢ (from 2.4 to 0.3). On the right
column is presented the same but for the filtered wave veasablution. It appears clearly, that when

both upscaling processes are used with a laggehat is too much smoothing with respectXg,;,,
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Figure 13.z; component velocity traces computed for the source A atvec&2 for the reference solution
(black line), for the order 0 homogenized solutioi’i"(o, left column, red line) and for the velocity filtering

upscaled model (right column, red line) fay = 2.4,1.2, 0.6 and0.3.

the coda of the direct wave disappears. Nevertheless, tigtibd wave has a correct time arrival for
the homogenized solution, whereas this not the case forltheel wave velocities solution. When
go decreases, that is when more and more details are incaggairathe upscaled model, the coda
wave appears. Nevertheless, once again, the phase cppeadicted only for the homogenized so-
lution and it seems that the filtered velocities solutionehawery poor convergence with. To look
more closely at the convergence issue, we define the £gfar) of a solution in velocitya at a given

receiver;

Ve (i — e )2 (i, 1) de
Vi ared)? (x;, t)dt

whereu”¢/ is the reference solution amgl,, is here 20 s. We defined the combined error from receiver

E;(q) = (59)

5 to receiver 35 (see Fig. 3) as

35
Fu() = o > Fi(i). (60)
=5
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ernor

0.1 N

o- -0 order 0 homogenization
A—A order 0 homogenization + corrector
o—a velocity average

Figure 14. Combined error as defined by equation (60) as a functian d6r an explosion located in A (see
Fig. 3) for the solution computed in the velocity filteringagaled model (blue line), for the order 0 homogenized
solution @, in red line) and for the order 0 homogenized plus first orderection (i°°:1/2 as defined by
(39), in dashed black line) .

In Fig. 14 is shown the error as defined above for a wave prajpmgeomputed for source A (see
Fig. 3) as a function ofy. It clearly appears that the error for the filtered wave vigyamodel solution

has a very poor convergence with Furthermore, as it could already be seen in Fig. 13, thiz ésr
much larger than the one obtained for the homogenized salutor the order 0 homogenized solution,
the errorE<(u0%) decreases first slowly for largg. This can be understood in Fig. 13, left column:
the coda is fully constructed only fep < 0.6. Once the coda is fully constructed, the convergence is
unexpectedly fast (in betweef) ande}) whereas we should expect a convergencs ionly. This fact
certainly implies that, at least for this specific exampighkr order terms of the asymptotic expansion
are very small with respect to the leading term. This is cordit by the introduction of the first order
correction in the calculation of the errdi,(0-1/2): its effect can be observed only for the smallest
go values. For very smally, we expect that the error convergence of the leading termdadrcrease
asey, rather than as3. The effect of the first order correction can neverthelesarty be seen by
improving the fit for small values afy. This can also be seen in Fig. 15 where the error for the order 0
homogenized solutiorfz; (=°-°), and for the order 0 homogenized solution supplementedédfirtt
order correctionE;(t0:1/2), for receivers 5 to 35 are plotted as a function of their liocaglong

the z; axis and forey = 0.15. It clearly appears that, when adding the first order caoedo the
leading term of the expansion, the error is, as expectedyalminimized. An interesting observation
is that the error determined for the sole leading term variese rapidly withz; than when the first
order correction is taken into account. This is expectedesthe fast scaley) dependence of the first
order correction implies variations of the wavefield at theroscopic scale. Note that this error as a

function ofz is largely under-sampled in Fig. 15 as we only have one receiery 1km compared to
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Figure 15. Error for the order 0 homogenized solutiCEt,(ﬁEO’O), (black line) and for the order 0 homogenized
solution plus first order COFreCtQEi(ﬁ50’1/2), (red line) for receivers 5 to 35 (see Fig. 3) plotted as ationc
of their location along the; axis and forzy = 0.15.
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Figure 16. Cut along the line CD (see Fig. 3) far</ — a=0-° (black line) and forae:1/2 — G- (red line)
att = 5.5s. On the left graph is plotted the; component normalized by the maximumdf,..; and on right

graph ther, component normalized by the maximumiof,..;.

the 100m long of the edge of a random element. To investigate morelsidke first order correction
effect, in Fig. 16 is plotted the first order correctiaf?-1/2 — 00 along the line CD (see Fig. 3) for
t = 5.5 s, and compared ta’¢/ — G0, It appears that the fast oscillations are the same for both
curves. The remaining differences are due to un-computgtehiorder asymptotic terms.

Finally, in Fig. 17 is shown the leading order moment tensorection (45) effect for the source B.
It can be seen that the moment tensor correction and the @fdenogenized model allow to correctly
reproduce the observed strong S wave with the correct timaksras well as the full waveform.

In the above study, the random model was generated sucththdensity and the Lamé parame-
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Figure 17.Velocity traces recorder at receiver 38 for source B. Theregfce solution (black line) is compared
to the elastic filtering upscaling solution (green line) dadhe order 0 homogenized solution with moment

tensor correction (45) (red line).

ters were uncorrelated. Other tests were realized usirgy &ihds of correlations between parameters
and they all give similar results. We nevertheless show tiereesult when only the density varies
randomly, theP and.S waves velocities being kept constant in the whole domaiis Tase is inter-
esting because it is known as a difficult case for anotheralipgcmethod developed by Gokt al.

(2000). For our approach, such a case presents no spedificiityf as it can be seen in Fig. 18.

4.2 Marmousi2 model example

The same homogenization procedure is applied to the Marn@ousdel described in section 2.4.2.
The spatial filter is the same as the one used in section 2/4iéh, due to the change in velocities with
depth (and then of the minimum wavelengths), implies anutia of the values of they, parameter
from 2 at the top of the model t0.3 at the bottom. This is a strong limitation of our filtering heique
which doesn't allows to obtain a roughly constant valuesfathroughout the whole domain. This is an
aspect that should be investigated in a future work and affifjdbased on wavelet decomposition, then
allowing to adapt locally the cutoff of the filter, is probgitdn interesting lead to follow. In Fig. 19
are plotted the S velocity and the total anisotropy of theen@ homogenized model. This smooth
model allows to use a very simple mesh compared to the ofigieah presented in Fig. 7. A sample
of this mesh, with the homogenized S wave velocity in backgd) is presented in Fig. 20. As already

mentioned in section 2.4.2, the simulations with such a kmpesh are much faster and it took only
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19 Figure 18. z; velocity component recorded at receiver 22 and source ARgpe8) computed using SEM in
20 a model with randomly generated density variations but withstantP and.S velocities (reference solution,
22 black line), in the corresponding order 0 homogenized nmadiith ¢y = 0.6 (red line) and in velocity averaged
23 model still withey = 0.6 (green line). Note that for the velocity averaged modelydhé density is low pass

25 filtered withey = 0.6 as the wave velocities remain constant.

one hour to compute the homogenized solution compared tgawen days required to obtain the
29 reference solution using the same computing power. Tramssded at the receiver location shown
31 in Fig. 8 are shown in Fig. 20. The traces obtained using tberd homogenized medium are more
accurate than the velocity filtering solution based on thmesapatial filter. The fact the results are
34 not as spectacular here as for the square random model exanmgpinainly due to the heterogeneity
36 spectrum of the Marmoursi2 model which roughly decreases/agk being the wavenumber of
37 heterogeneities), while it is almost flat in the case of thedoan square model. Unfortunately, we
39 can not pursue the same convergence analysis as it was daihe fmndom square model example,
mainly because of the presence of absorbing boundary comslitindeed, the Perfectly Matched
42 Layers we are using (Festa & Vilotte, 2005) are not adaptéakimanisotropy into account. Therefore,
44 the anisotropy created by the homogenization at the donmaindaries is an issue that prevents to lead
a precise convergence analysis as the one done for the resgi@re example. Nevertheless, the result

47 are good enough to show the interest of the procedure in stabea

51 5 CONCLUSIONS AND PERSPECTIVES

53 We have presented a two scale homogenization procedurd waicbe applied to the upscaling pro-
55 cess in non-periodic media. The critical point of this picha® is the practical construction of the fast

57 (microscopic) part of the density and elastic tens6(x, y) implied in well-known classical homog-
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Figure 19.0Order 0 Marmousi2 homogenized model for= 50 m. Top graph: S velocity\/c3,,,/p*) Bottom
graph: total anisotropy as defined Fig. 11.

enization procedures (in periodic media). Once this is dtme homogenization expansion is very
similar to the one of classical two scale periodic homogaion. In the general case, it is not possible
to go beyond the calculation of the leading order of the egjoem and that of the first order corrector.
This nevertheless allows to find an effective medium to amega elastic medium with fast variations
in all spatial directions. It also allows to retrieve thedawy order corrector to a moment tensor source
type as well as the first order correction at a receiver looatnd then to take into account local struc-
ture effects. The study of two examples in this article, #nedom model, as well as the marmousi2

geological model, demonstrates the efficiency and accuwhttye method. This is an important step
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Figure 20. Sample of the spectral element mesh (black lines) used ve s$o¢ wave equation with the order 0
homogenized Marmousi2 model . The background color is theesponding order 0 homogeniz&drelocity

with the same color code as for Fig. 19.
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Figure 21.Velocity traces recorder at receiver 48. The referencdisolblack line) is compared to the velocity
filtering upscaled model (green line) and to the order O hanagpd solution (red line). Both vertical (top graph)

and horizontal (bottom graph) components are shown .
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forward since the results of Backus (1962), which are applie to non-periodic but layered media,
and compared to the classical two scale homogenizatiomyth&hich is applicable to media showing

fast variations in their physical properties in higher sgatimensions, but only in the periodic case.

As already mentioned when studying wave propagation througthe marmousi2 model, the
spatially-constant, low pass filtering we used, may not hg@piate when applied to media where
strong variations in the heterogeneity spectrum, arisbeOkinds of filtering, like ones involving
wavelets for instance, may be more pertinent - and this \eilthe topic of a future work. The issue
of boundary conditions in an homogenization procedure 'hasen treated in this article. It will be
important to tackle this problem in a future work as it is kmothiat the boundary conditions are im-
portant for surface waves and that the subsurface strigcstmengly influence waveforms (Capdeville
& Marigo, 2007; Capdeville & Marigo, 2008).

The practical extension to 3D is obviously a priority. It gltbnevertheless not be a problem as
the theoretical difficulties were faced when going from 12® and that no specific difficulty from
2D to 3D is expected.

The range of applications of such a development seems wide. d then is the waveform
modeling in complex media: for a given medium being able tecafe its properties to the wanted
scale (knowing the corner frequency of the source) and tathesdéeading order effective medium
(peo-*, c®0-*) in the favorite wave equation solver of a user, like finitdediénces or the Spectral Ele-
ment Method, is an important alternative to the classicatgex, and often impossible, meshing of
the original medium. Note that, if the difficulty of the mesgifor the forward problem and its conse-
guences on the numerical cost can be avoided when using egemimed model, the design of a mesh
(or of multiple small meshes) for the homogenized problesalitcan not be avoided. Nevertheless,
the design of this mesh can be based on tetrahedron elenssets if the wave equation solver is
based on a hexahedral mesh), the mesh sampling is indepemdire frequency cutoff of the seismic

sources that will be used and this, or these, meshes will & aisly once for a given elastic model.

Another application is related to the study of the time afriof the ballistic phase, in seismic
exploration or geophysical imaging. It is known that thiseiarrival is only sensitive to a very smooth
version of the real medium. A natural question is theref@éhis smooth medium the elastic model
(pfo-*, c®0-*) for a larges(? Fig. 13 seems to suggest it, but this should be studied neeqayas it is

probably not the case.

Using our homogenization procedure for applications toitlverse problems is also in sight.
A major and well-known result of our work is that microscaglg (with respect to the wavefield)
isotropic media, are macroscopically fully anisotropiad ahis should be taken into account in tomo-

graphic studies for instance. Moreover, when inverting\vii@veforms, it may also not be a very good
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idea to track for interfaces as they are homogenized (thahsjesmoothed) by the wavefield anyway.
Finally, let us notice that this development gives the opputy to build a multi-scale parametrization
for the elastic properties and a well posed parametrizatidake into account local effects on sources

and receivers, of the inverse problem.

Some applications to other fields but with similar equatidike the stress loading of a complex

geological structure, could also be considered.

A patent (Capdeville, 2009) has been filed on the non-peribdmogenization process by the

"Centre national de la recherche scientifique” (CNRS) (#ix/ no mean a restriction to any academic

research on the subject).
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APPENDIX A:

Spatial low-pass filter design. To be able to separate tHessaeound\y, we introduce a mother filter

waveletw(x) such that its power spectrum is
fork <a;

(1 + cos (W'ifj)) for |k| €]a,b]; (A1)
for |k| > b.

w(k) =

S = =

wherek = |k|, a andb are two real around 1 defining the tapper transition from 1abtbe low pass

filter. The space wavelet in the space domain is obtainedamtHankel transform:
wx) = [ (k) Ikl R (A2)
0

where.J; is the Bessel function of the first kind of order 0. Note thathese [, w(x)dx = 1. We
definewy, (x) = ko w(xko) the same but contracted @ > 1) wavelet of corner spatial frequency
ko. We still havefRQ w, (x)dx = 1. If a = b = 1, the low pass filter has a perfectly sharp cutoff for
k = ko. In that case the drawback is the space suppou;pfis infinite and cannot be truncated with
a good accuracy. A solution is to chogsmaller than 1 and larger than 1 knowing that the largest
|b — a| is, the best a compact support foy,, is an accurate approximation. An example of such a

wavelet is shown in Fig. 1.



