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Abstract

This work is devoted to the analysis of the stability of the homogeneous states of a bar made of a brittle
strain softening material submitted to a tensile loading. We distinguish two types of damage models: local
damage models and gradient damage models. We show that a local damage model necessarily leads to the
unstability of the homogeneous response once the first damage threshold is reached. On the contrary, in the
case of a gradient damage model, viewed as a regularization of the underlying local model, the homogeneous
damage states of “sufficiently small” bars are stable.

1 Introduction

Prior to their complete rupture, many engineering materials such as concrete, rocks, wood or various compos-
ites show a strain-softening behavior when they are deformed beyond a certain limit. The theory of damage is
generally used to model this behavior at a continuum level. Limiting our analysis to rate independent behav-
iors, we can distinguish two types of damage models: (i) the so-called local models where the only variables
characterizing the state of the material point are the strain and the damage variable; (ii) the so-called non
local models where additional information on the neighborhood of the material point are involved.

From the theoretical viewpoint, the boundary-value problem associated with local models is mathemat-
ically ill posed (Benallal et al. 1989 [2], Lasry and Belytschko, 1988 [7]) and lead to multiple (and even an
infinite number of) solutions. From the numerical viewpoint, the computations give rise to spurious mesh
dependences: upon refinement of the meshsize, no convergence is observed or more precisely the deformation
is localized into narrow bands whose thickness corresponds to the meshsize (Bažant, 1993 [1]). Origins of
these pathological localizations are usually understood in terms of bifurcations analyses via wave propaga-
tion phenomena although the loading is quasistatic (Pijaudier and Benallal [15].) All these bad properties
suggest that local models must be revised.

Two main regularization techniques exist to avoid pathological localization, namely the integral (Pijaudier-
Cabot and Bažant, 1987 [14]) or the gradient (Triantafyllidis and Aifantis, 1986 [16]) damage approaches.
Both of them rely on an ad-hoc incorporation of a material lengthscale in the constitutive behavior (Lorentz
and Andrieux, 2003 [8], de Borst et al., 1993 [5], Peerlings et al., 1996 [13]). However, despite the introduction
of the gradient of damage as a state variable into the model, the associated initial boundary value remains
ill-posed and does not prevent localized bifurcations.

We revisit here the issues of well-posedness and stability for, first, local models and, then, gradient
damage models by using energetic formulations. Indeed these approaches have gained popularity in the last
decade since they offer a physical and rigorous framework relying on the tools of the calculus of variations.
This global variational approach was first proposed by Nguyen [12] for a large class of rate independent
behaviours, then extended by Francfort and Marigo [6] and Bourdin, Francfort and Marigo [4] to Damage
and Fracture Mechanics . The power of this concept is that the evolution problem and the stability analysis
are understood respectively as a first and second order conditions of optimality of the total energy (Benallal
and Marigo, 2007 [3]). In particular the stable states naturally correspond to local minima of the potential
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energy in a quasi-static loading. Accordingly, the search of stable states seems to be a more relevant approach
than proving the ill-posedness (i.e. non uniqueness) characterization, while bifurcations which can lead to
multiple equilibrium configurations in a non linear material (e.g. softening material) is just the reflection of
the complexity of our world and can not be a discriminated criterion for a model.

In this paper, we investigate under which conditions an homogeneous state of damage in a softening
material is stable and therefore will be observable during an experiment. As a matter of fact a spatially
homogeneous damage evolution is experimentally significant since it does not result in a brutal fracture of
the specimen but instead offers the possibility to identify some of the damage material parameters. The paper
is structured as follows. Section 2 describes the statement of the problem and how a local damage approach
of a softening behavior is bound to fail. Sections 3 shows how the regularization of the local model brings
size effects and improvements in the stability results of homogeneous states.

We use the following notation: the prime denotes the spatial derivative or the derivative with respect to
the damage parameter, the dot the time derivative, e.g. u′ = ∂u/∂x, E′(α) = dE(α)/dα, α̇ = ∂α/∂t.

2 Case of a local damage model

2.1 The damage evolution problem

We consider a homogeneous bar of length L, made of a softening material. The end x = 0 of the bar is fixed
while the displacement of the end x = L is controlled by a hard device so that the displacement field ut at
time t satisfies

ut(x = 0) = 0, ut(x = L) = tL, t ≥ 0 (2.1)

where t denotes the loading parameter growing from 0 and identified with the time. The damage state of
the bar at time t is characterized by the scalar field x 7→ αt(x). The evolution of the displacement and the
damage in the bar with the time is obtained via an energetic formulation, see [9] and [10] for a justification
of a such energetic approach by thermodynamical arguments. Specifically, let E(α) be the Young modulus
of the material in the damage state α and w(α) the energy dissipated when the material is damaged up
to α. The functions α 7→ E(α) and α 7→ w(α) are respectively positive decreasing and positive increasing.
Because of the irreversibility of damage, αt can only increase with t. The evolution of the damage of a point
is governed by a local yield criterion formulated in terms of the concept of critical elastic energy release rate.
That leads to the following system of (in)equalities (sometimes called Kuhn-Tucker conditions) which must
hold at each time and each point:

Irreversibility condition : α̇t(x) ≥ 0 (2.2)

Damage criterion : −1

2
E′(αt(x))εt(x)2 ≤ w′(αt(x)) (2.3)

Energy balance : α̇t(x)

(

1

2
E′(αt(x))εt(x)2 + w′(αt(x))

)

= 0 (2.4)

where εt(x) denotes the strain state of the point x at time t, εt = u′
t. Considering only quasi-static evolution,

the bar must be at equilibrium at each time. That leads to

σ′
t(x) = 0, σt(x) = E(αt(x))εt(x). (2.5)

The initial condition α0(x) = 0 saying that the bar is undamaged at t = 0 completes the formulation of the
evolution problem.

2.2 Variational formulation of the evolution problem

Let us introduce the state function W0 giving the strain work (or the total energy density) associated with
an evolution of the state of a material point from (0, 0) to (ε, α)

W0(ε, α) =
1

2
E(α)ε2 + w(α). (2.6)
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Let Ct and D be respectively the kinematically admissible displacement fields at time t and the convex cone
of admissible damage fields

Ct = {v : v(0) = 0, v(L) = tL}
C0 = {v : v(0) = 0, v(L) = 0} (2.7)

D = {β : β ≥ 0}

where C0 is the linear space associated with Ct. Then with any admissible pair (u, α) in Ct ×D, we associate
the total energy of the bar

P0(u, α) =

∫ L

0

W0(u
′(x), α(x)) dx =

∫ L

0

1

2
E(α(x))u′(x)2 + w(α(x)) dx (2.8)

The set of admissible displacement rates u̇ can be identified with C1, while the set of admissible damage rates
α̇ can be identified with D. Under the assumption that the bar is sound at the initial time t = 0, the damage
evolution problem is strictly equivalent to the following variational problem

Find (ut, αt) in Ct ×D such that

For all (v, β) ∈ C1 ×D, P ′
0(ut, αt)(v − u̇t, β − α̇t) ≥ 0 (2.9)

where P ′
0(u, α)(v, β) denotes the derivative of P0 at (u, α) in the direction (v, β) and is given by

P ′
0(u, α)(v, β) =

∫ L

0

E(α)u′v′ dx +

∫ L

0

(

1

2
E′(α)u′2 + w′(α)

)

β dx (2.10)

Let us verify that (2.9) implies (2.2)–(2.5). Indeed, by inserting β = α̇t and v = u̇t + w with w ∈ C0 in (2.9),
we obtain the variational formulation of the equilibrium of the bar,

∫ L

0

E(αt(x))u′(x)w′(x) dx = 0, ∀w ∈ C0 (2.11)

from which we deduce that the stress along the bar is homogeneous and depends only on time t

σt = E(αt(x))u′
t(x), ∀x ∈ (0, L) (2.12)

and hence (2.5). Dividing (2.12) by E(αt(x)), integrating over [0, L] and using boundary conditions (2.1), we
find

σt

∫ L

0

dx

E(αt(x))
= tL (2.13)

The damage problem is obtained by inserting (2.11)–(2.13) into (2.9) which leads to the variational inequality
governing the evolution of the damage

∫ L

0

1

2
E′(αt)u

′2
t β dx +

∫ L

0

w′(αt)β dx ≥ 0 (2.14)

where the inequality (2.14) holds for all β ∈ D and becomes an equality when β = α̇t. Again, by performing
an integration by parts and using classical tools of the calculus of variations, we recover the local formulation
of the damage problem (2.2)–(2.4).

2.3 Homogeneous evolutions

As it is pointed out in [3], the evolution problem can admit an infinite number of solutions. We are interested
here in particular solutions, the so-called homogeneous evolutions, for which the damage field and the strain
field are uniform (εt and αt depend on t but not on x). In such a case we have

σt = E(αt)t, ut(x) = tx, εt = t (2.15)

3



Then the damage criterion (2.3) and the energy balance condition (2.4) read as

1

2
E′(αt)t

2 + w′(αt) ≥ 0, α̇t

(

1

2
E′(αt)t

2 + w′(αt)

)

= 0 (2.16)

Assuming that the whole bar is undamaged at the beginning of the loading (α0 = 0), we obtain that the first
time te when the damage criterion becomes an equality is given by

te =

√

−2w′(0)

E′(0)
(2.17)

If te is strictly positive (i.e. if w′(0) > 0), then we observe an elastic phase in the time interval [0, te): during
this phase, the softening material is sound and its rigidity is E0. For t > te, the damage criterion is an
equality, and the damage grows homogeneously in the bar (α̇t > 0). Finally, the value at any time t of the
homogeneous damage is given by

αt = 0 if t ≤ te, −2w′(αt)

E′(αt)
= t2 otherwise (2.18)

We remark that the homogeneous damage problem is well posed if the function α → −2w′(α)/E′(α) is strictly
monotone. If this monotonicity condition is satisfied then there exists a unique homogeneous damage state
which verifies the evolution problem. However, this condition does not prevent bifurcation and appearance
of non-homogeneous damage in the bar. To illustrate our study, we consider the following particular damage
law for the softening material

E(α) = E0(1 − α)2, w(α) =
σ2

0

E0
α, α ≥ 0 (2.19)

As w′(0) > 0 in (2.19) then there exists an elastic phase. For this law, the monotonicity condition above is
satisfied and (2.18) admits a unique solution at each time t

αt = max

(

0, 1 −
(

te
t

)2
)

with te =
σ0

E0
(2.20)

Finally the relation between the stress of the homogeneous solution and the prescribed displacement at x = L
is given by

σt =

{

σ0
t
te

if t ≤ te

σ0

(

te

t

)3
otherwise

(2.21)

We plot on (Fig.1) the stress in the bar versus the time (which is also the homogeneous strain) for the
homogeneous damage solution. After the elastic phase the stress decreases, which is characteristic of the
strain softening property of the material.

2.4 Unstability of homogeneous states

We see that the homogeneous damage evolution defined by (2.18) is always a solution of the evolution problem
in the case of the local model. However, this response will be physically acceptable and experimentally
observable if and only if, at each time, the corresponding state (ut, αt) is stable. Following [12] and [4],
the stability of a state is defined in terms of local minimization of the total energy (2.8) at each time or
more precisely, because of the irreversibility condition on the damage evolution, in terms of unilateral local
minimization (see [6],[12]). We briefly recall this definition of stability hereafter.

Let α be an admissible damage field and uα
t be the displacement field equilibrating the bar in this damage

state at time t. Then the total energy of the bar can read as

Et
0(α) ≡ P0(u

α
t , α) = min

v∈Ct

P0(v, α) (2.22)
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Figure 1: Stress vs time for the homogeneous damage response of the bar

A damage state α (not necessarily homogeneous) will be Et
0-stable (at time t) if and only if it exists a

neighborhood of admissible states in which any accessible state has a greater potential energy. This condition
can be written formally as follows

Et
0-stability: ∃r > 0,∀β ∈ D : ‖β‖ = 1,∀h ∈ [0, r] Et

0(α) ≤ Et
0(α + hβ) (2.23)

It is important to notice that the test directions are chosen in D and therefore must be positive as we cannot
violate the irreversibility condition (α(x) + hβ(x) ≥ α(x) for every x). The displacement uα

t is obtained by
solving the variational formulation of the equilibrium of the bar for the given damage α in D i.e.

∫ L

0

E(α(x))uα
t
′(x)w′(x) dx = 0 ∀w ∈ C0 (2.24)

After integrating by parts we find

σα
t = E(α(x))uα

t
′(x), ∀x ∈ (0, L) with σα

t =
tL

∫ L

0
dx

E(α(x))

(2.25)

By inserting (2.25) in (2.8), we finally obtain the expression of Et
0(α)

Et
0(α) =

t2L2

2
∫ L

0
dx

E(α)

+

∫ L

0

w(α) dx (2.26)

Now in practice, to check the stability inequality (2.23), we develop, for a given direction β, the functional
h → Et

0(α + hβ) with respect to h around h = 0 up to the second order

Et
0(α + hβ) = Et

0(α) + hEt
0
′
(α)(β) +

h2

2
Et
0
′′
(α)(β) + o(h2) (2.27)

where the first derivative Et
0
′
(α) is given by

Et
0
′
(α)(β) =

∫ L

0

(

w′(α) +
(σα

t )2

2

E′(α)

E(α)2

)

β dx (2.28)

and the second derivative by

Et
0
′′
(α)(β) =

∫ L

0

(

w′′(α) −
(

2E′(α)2

E(α)3
− E′′(α)

E(α)2

)

(σα
t )2

2

)

β2 dx +
(σα

t )3

tL

(

∫ L

0

E′(α)βdx

E(α)2

)2

(2.29)
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We see that the stability condition consists in finding the sign of each derivative of Et
0.

Let us study the stability of the homogeneous damage state αt. Firstly, we focus on the first derivative
and analyze under which condition it is positive or not. Using the homogeneous property of αt, we obtain

Et
0
′
(αt)(β) =

∫ L

0

(

w′(αt) +
1

2
E′(αt)t

2

)

β dx =

(

w′(αt) +
1

2
E′(αt)t

2

)
∫ L

0

β dx (2.30)

If t < te, then αt = 0 and the damage criterion for the homogeneous damage state (2.16)1 is a strict inequality.
The first derivative (2.28) is then strictly positive if β is not equal to 0 and we conclude to the stability of
the homogeneous state during the elastic phase. Now if t ≥ te, then from (2.18), we deduce that the first
derivative is equal to zero in any direction test β ∈ D. Then the stability issue is given by the sign of the
second order derivative (2.29). By using the non dependence of αt on x, (2.29) can be simplified and read as

Et
0
′′
(αt)(β) =

t2E′(αt)
2

LE(αt)

(

∫ L

0

β dx

)2

−
((

2E′(αt)
2

E(αt)
− E′′(αt)

)

t2

2
− w′′(αt)

)
∫ L

0

β2 dx (2.31)

Inserting the damage law (2.19) into (2.31), we find for t ≥ te

Et
0
′′
(αt)(β) =

4E0t
2

L

(

∫ L

0

β dx

)2

− 3E0t
2

∫ L

0

β2 dx (2.32)

Despite the presence of the first term in (2.32) which is positive, it is always possible to find a damage state
for which (2.32) is negative and therefore leads to instabilities. Indeed, let (βn) be the following sequence of
admissible damage state defined by

βn(x) =

{

1 if 0 ≤ x ≤ L
n

0 otherwise

Then we obtain the following estimates when n → ∞
(

∫ L

0

βn dx

)2

∼ 1

n2
,

∫ L

0

β2
n dx ∼ 1

n
(2.33)

We conclude that for n large enough Et
0
′′
(αt)(βn) will be strictly negative and the state αt + hβn will have a

smaller energy than αt. Therefore at time t > te, the homogeneous state is not stable.

3 Gradient damage model

3.1 Presentation

A way to prevent strong variations of the constitutive variables at the scale of the microstructure is to
regularize the model by introducing some gradient effects. As the damage variable causes strain softening
and localization in the evolution, we apply the regularization only to the damage variable. In the previous
section, we see that the local formulation of the damage problem (2.2)–(2.4) and the equilibrium (2.5) were
strictly equivalent to a global variational approach based on the strain work W0 (2.6). This variational
approach also permitted to define rigorously a stability criterion for a damage state in terms of unilateral
local minimas of the potential energy. Now, (re-)starting from this variational framework, we introduce the
non locality of our model directly in the postulated strain work Wℓ as follows

Wℓ(ε, α, α′) =
1

2
E0ℓ

2α′2 + W0(ε, α) (3.1)
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where α′ is the space derivative of the damage field at the material point x, ℓ denotes the internal length of
the material and E0 is the Young modulus of the sound material (E0 = E(0)). Then the total energy of the
bar becomes

Pℓ(u, α) =

∫ L

0

Wℓ(u
′, α, α′) dx =

∫ L

0

1

2
E0ℓ

2α′2 +
1

2
E(α)u′2 + w(α) dx (3.2)

We remark that we obtain the energy of the local model by putting ℓ equals to 0 in (3.2). All the notions
of “evolution” (2.9) and “stability” (2.23) which were introduced in the previous section are now being
transposed to Wℓ. In particular the evolution problem for the gradient damage model now reads as

Find (ut, αt) in Ct ×D such that

For all (v, β) ∈ C1 ×D, P ′
ℓ(ut, αt)(v − u̇t, β − α̇t) ≥ 0 (3.3)

where P ′
ℓ(u, α)(v, β) denotes the derivative of Pℓ at (u, α) in the direction (v, β) and is given by

P ′
ℓ(u, α)(v, β) =

∫ L

0

E0ℓ
2α′β′ dx +

∫ L

0

E(α)u′v′ dx +

∫ L

0

(

1

2
E′(α)u′2 + w′(α)

)

β dx (3.4)

On the one hand, as the regularization does not affect the kinematic variable, the equilibrium of the bar is not
changed and is still given by (2.12) and (2.13). On the other hand because of the regularizing damage term,
the obtention of the strong formulation for the damage evolution is slightly different than for the underlying
local model though it is still deduced from the variational inequality (3.3). By inserting v = u̇ and β = α̇+γ,
with γ in D into (3.3), we obtain the variational inequality governing the damage field evolution

∫ L

0

(

E′(αt)
ε2

t

2
+ w′(αt)

)

γ + E0ℓ
2α′

tγ
′ dx ≥ 0 (3.5)

where the inequality must hold for all γ ∈ D and becomes an equality when γ = α̇. By integrating by part
(3.5), we obtain

∫ L

0

(

E′(αt)
ε2

t

2
+ w′(αt) − E0ℓ

2α′′
t

)

γ dx + [ℓ2α′
tγ]L0 ≥ 0 (3.6)

Using classical arguments of calculus of variations, the strong formulation of the evolution of the damage
now reads as

Irreversibility condition : α̇t ≥ 0 (3.7)

Damage criterion : −E0ℓ
2α′′

t +
1

2
E′(αt)ε

2
t + w′(αt) ≥ 0 (3.8)

Energy balance : α̇t

(

−E0ℓ
2α′′

t +
1

2
E′(αt)ε

2
t + w′(αt)

)

= 0 (3.9)

Boundaries conditions : α′
t(0) ≥ 0, α′

t(L) ≥ 0, α̇t(0)α′
t(0) = 0, α̇t(L)α′

t(L) = 0 (3.10)

Following the same variational approach than for the local model, we investigate for the gradient damage
model the behavior and the stability of homogeneous states of damage. From (3.7)–(3.10), we deduce imme-
diately that the evolution in time of homogeneous states is exactly governed by the same set of equalities and
inequalities as for the local damage model. Indeed in the case of homogeneous states, the spatial derivatives
are equal to 0 (α′

t = α′′
t = 0). Therefore, the value of the homogeneous damage (2.20) at time t remains the

same for the enhanced gradient damage model. However significant differences happen when we focus on the
stability analysis. Indeed in the case of the local model, the instability of any solution is the consequence of
the possibility to localize the damage on a vanishing length. As a result, the presence of gradient damage
terms in the energy (3.2) should prevent from this kind of localization of zero energy and thereby we expect
some improvements in the stability results.
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3.2 Stability issue for homogeneous states

As the stability of a damaged state relies on its energy and because we modified the energy itself by in-
corporating gradient terms, we define for the non-local damage model the Et

ℓ -stability where Et
ℓ is given

by
Et

ℓ(α) ≡ Pℓ(u
α
t , α) = min

v∈Ct

Pℓ(v, α) (3.11)

as follows

Et
ℓ-stability: ∃r > 0,∀β ∈ D : ‖β‖ = 1,∀h ∈ [0, r] Et

ℓ(α) ≤ Et
ℓ(α + hβ) (3.12)

From (2.24)-(2.25) which remain true, we deduce

Et
ℓ(α) =

∫ L

0

1

2
E0ℓ

2α′2 +
t2L2

2
∫ L

0
dx

E(α)

+

∫ L

0

w(α) dx (3.13)

Using the same approach as for the underlying local model (see Section 2.4), we calculate the successive
derivatives of Et

ℓ at state αt. The first derivative is given by

Et
ℓ
′
(αt)(β) =

∫ L

0

E0ℓ
2α′

t(x)β′(x) dx +

∫ L

0

(

w′(αt) +
1

2
E′(αt)t

2

)

β dx

=

(

w′(αt) +
1

2
E′(αt)t

2

)
∫ L

0

β dx (3.14)

where we use the fact that α′
t(x) = 0 over the whole bar. Then the first derivative is the same as for the

underlying local model and we deduce with the same arguments that the elastic phase is stable. For t > te,
Et

ℓ
′
(αt)(β) = 0 for any β ∈ D and the stability is given by the sign of the second derivative. Here the second

derivative reads as

E ′′
ℓ (αt)(β) = E0ℓ

2

∫ L

0

β′2 dx +
t2

L

E′(αt)
2

E(αt)

(

∫ L

0

βdx

)2

−
((

E′(αt)
2

E(αt)
− E′′(αt)

2

)

t2 − w′′(αt)

)
∫ L

0

β2 dx (3.15)

By introducing the Rayleigh ratio Rt
ℓ defined on D\{0} by

Rt
ℓ(β) =

E0ℓ
2
∫ L

0
β′2 dx + t2

L
E′(αt)

2

E(αt)

(

∫ L

0
βdx

)2

((

E′(αt)2

E(αt)
− E′′(αt)

2

)

t2 − w′′(αt)
)

∫ L

0
β2 dx

(3.16)

we deduce that for t > te

αt is Et
ℓ -stable at time t ⇔ λt

ℓ = inf
β∈D

Rt
ℓ(β) > 1 (3.17)

After some calculations which are not reproduced here, we find

λt
ℓ =

1
(

E′(αt)2

E(αt)
− E′′(αt)

2

)

t2 − w′′(αt)
· min

(

E′(αt)
2

E(αt)
t2,

(√
E0πt2E′(αt)

2

E(αt)

ℓ

L

)2/3
)

(3.18)

By putting the internal length ℓ to 0 we recover the instability result of the underlying local model for
t > te since λt

0 = 0. On the contrary, if ℓ 6= 0 then we have λt
ℓ > λt

0: the condition of localisation from the
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homogeneous state in the local damage model is always a lower bound of the criterion of localization in the
non-local one. Moreover, the non-local damage model introduces a size effect which involves the length of the
bar in the stability results. More precisely, depending on the value of the ratio η = ℓ/L, we distinguish two
different behaviors in the evolution of the bar after the end of the elastic phase. In particular, if we consider
the damage law (2.19), then the stability criterion (3.18) reads as

λt
ℓ = min

(

4

3
,
4

3

(

2πE0te
σ0t

ℓ

L

)2/3
)

(3.19)

Using (3.17) and (3.19), we can identify for any given ratios t/te and η = L/ℓ the zone of stability (i.e.

!= L\!

t/te1

UNSTABLESTABLE

0

Figure 2: Stability diagram of the homogeneous states of the bar

λt
ℓ > 1) and unstability (i.e. λt

ℓ < 1) (Fig.2). While in the underlying local model any homogeneous state
after the elastic phase is unstable for any length of bar, certain homogeneous states beyond the elastic phase
are Et

ℓ -stable if the bar is small enough. It means that it is physically possible to observe them during a
tensile test provided that the length of the bar is sufficiently small. On the contrary, if the length of the
bar exceeds a critical length, we see on Fig.2 that all homogeneous states remain unstable for t > te and a
non-homogeneous state necessarily appears at t = te.

4 Conclusion

A comparison between a local damage model and a gradient damage model has been carried out in the
one-dimensional context of a bar made of a softening material and submitted to a tensile test. Even if for
both models, the same homogeneous response is solution of the corresponding damage evolution problem, the
properties of stability of such a response drastically depends on the model. In the case of a local model the
homogeneous state is unstable once the first damage threshold is reached, while in the case of the enhanced
gradient model the stability analysis is not so trivial and can be interpreted in terms of size effect. Specifically,
for sufficiently “short bars” (i.e. for L/ℓ small enough), the homogeneous state is stable, at least in a certain
time interval after the elastic phase. On the other hand, for long bars (L/ℓ large enough), all homogeneous
states beyond the elastic phase are unstable (like for a local model) and the structure localizes its damage.
A way to preserve the stability of the homogeneous damage in the bar in the full range of the test and for
any bar length should be to modify the experimental procedure in the spirit of Mazars et al. work. Indeed,
in [11], by sticking aluminium bars to a concrete specimen, Mazars et al. showed that a certain homogeneity
of the strain is preserved during the tensile test. We could account for these added aluminium bars in our

9



gradient damage model by introducing a residual elastic energy (the Young modulus will never fall to 0) and
analyze their consequences on the stability of the homogeneous states. This quite appealing work is under
investigation.
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