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The initiation of a crack in a sound body is a real issue in the setting of Griffith's theory of brittle fracture. If one uses the concept of critical energy release rate (Griffith's criterion), it is in general impossible to initiate a crack. On the other hand, if we replace it by a least energy principle (Francfort-Marigo's criterion), it becomes possible to predict the onset of cracking in any circumstance. However this latter criterion can appear too strong. We propose here to reinforce its interest by an argument of continuity. Specifically, we consider the issue of the initiation of a crack at a notch whose angle ω is considered as a parameter. The result predicted by the Griffith criterion is not continuous with respect to ω, since no initiation occurs when ω > 0 while a crack initiates when ω = 0. In contrast, the Francfort-Marigo's criterion delivers a response which is continuous with respect to ω, even though the onset of cracking is necessarily brutal when ω > 0. The theoretical analysis is illustrated by numerical computations.
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Griffith's theory of fracture [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] remains the most used in Engineering, [START_REF] Bui | Mécanique de la rupture fragile[END_REF], [START_REF] Cherepanov | Mechanics of Brittle Fracture[END_REF], [START_REF] Lawn | Fracture of Brittle Solids -Second Edition[END_REF], [START_REF] Leblond | Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures[END_REF]. Its main advantage is its simplicity in terms of material behavior, because it only requires the identification of the two Lamé coefficients λ, µ and the surface energy density Gc for an isotropic brittle material. However, there exist several ways to set the problem of crack propagation while staying within the framework of Griffith's assumptions. (This lack of uniqueness is in fact the mark that none of those ways is perfect.) We are interested here in two of them. The first one, called in this paper the G-law, which is also the most used, is the law based on the concept of critical energy release rate requiring that a crack can propagate only when the potential energy release rate G is equal to Gc. One of the drawbacks of the energy release rate criterion is its incapacity to account for crack initiation in a body which does not contain a preexisting crack. That leads Francfort and Marigo in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] to reformulate the law in terms of minimization of the total energy of the body. This revisited Griffith energy principle, the so-called FM-law, is equivalent to the critical energy release rate in a certain number of cases, as it is recalled in this paper, but is (in general) quite different as far as the crack initiation is concerned. In particular, with the least energy principle, it becomes possible to predict the onset of cracking in a sound body. However, the price to pay is that the onset of cracking is necessarily brutal in the sense that a crack of finite length appears at a critical load. The reason is that the elastic response (without any crack) is always a (local) minimum of the energy. Therefore the body has to jump from a local minimum to another (local or global) minimum. This revisited Griffith theory, which simply consists in formalizing the seminal Griffith idea, provided the adequate mathematical framework to obtain new results by inserting fracture mechanics into a modern variational approach, [START_REF] Dal Maso | A Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results[END_REF], [START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF], [START_REF] Dal Maso | Quasistatic crack growth in nonlinear elasticity[END_REF]. In return, several criticisms can be made against this principle of least energy when it is applied to predict the crack initiation. One of them is that the body must cross over an energy barrier to jump from one well to the other. The presence of that energy barrier (which ensures the stability of the elastic response) is essentially due to the fact that Griffith's theory does not contain a critical stress and allow singular stress fields. Of course it is possible to introduce this concept of critical stress by leaving Griffith's setting. It is the essence of cohesive force models ( [START_REF] Needleman | Micromechanical modelling of interface decohesion[END_REF], [START_REF] Del Piero | One-Dimensional ductile-brittle transition, yielding and structured deformations[END_REF], [START_REF] Del Piero | Macro-and micro-cracking in one-dimensional elasticity[END_REF], [START_REF] Marigo | Global approach, relative minima and yield criterion in Fracture Mechanics[END_REF], [START_REF] Charlotte | Initiation of cracks with cohesive force models: a variational approach[END_REF], [START_REF] Ferdjani | Insensitivity to small defects of the rupture of materials governed by the Dugdale model[END_REF]) in the spirit of Dugdale's and Barenblatt's works, cf. [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF], [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF] and [START_REF] Bourdin | The variational approach to fracture[END_REF]. But that leads to a complexification of the modeling which can be considered as unnecessary when one is only interested in the introduction of an initiation criterion within Griffith's theory.

In this paper we do not leave Griffith's setting and will continue to compare the two formulations. We will show that the latter, the FM-law, based on energy minimization, enjoys the fundamental property of delivering a continuous response with respect to the data whereas the former one, the G-law, formulated in terms of the energy release rate, does not. This major difference appears in particular when it is question of crack initiation. This result greatly militates in favor of the minimization principle. Specifically, we consider the case of a two-dimensional body which contains a notch the opening ǫ of which is taken as a parameter. The limit case ǫ = 0 corresponds to an initial crack. Assuming that the crack will appear (or propagate) at the tip of the notch (or of the preexisting crack) and that the crack path is known, the problem consists in determining the evolution ℓ ǫ (t) of the crack length with the loading parameter t. The evolution depends of course on ǫ and on the chosen criterion of propagation. Since the concept of crack in Continuum Mechanics-where a crack is considered as a surface of discontinuity-is an idealization of the reality, a criterion of initiation or of propagation can be considered as physically acceptable only if it is stable under small perturbations. In other words, the law is acceptable only if it delivers a response which continuously depends on the geometrical or material parameters of the problem. In the present case that means that the initiation and the propagation of a crack from the tip of a notch whose angle is small must be close to those corresponding to the evolution from a preexisting crack. In mathematical terms that means that the function t → ℓ ǫ (t) must converge (in a sense to be precised) to t → ℓ 0 (t) when ǫ goes to 0. Unfortunately, the critical energy release rate criterion does not enjoy this continuity property. On the contrary, the least energy criterion does.

Let us summarize here the reasons of these differences (they will be developed in the paper). Since the singularity at the tip of a notch (ǫ > 0) is "weak", the energy release rate Gǫ(t, ℓ) associated with a crack of small length ℓ (starting from the tip of the notch) goes to 0 when ℓ goes to 0, i.e. lim ℓ→0 Gǫ(t, ℓ) = 0, ∀t. Consequently, no crack will appear if we use the critical energy release rate criterion, i.e. ℓ ǫ (t) = 0 ∀t. On the other hand, if we consider a preexisting crack (ǫ = 0), then the singularity is strong enough so that G 0 (t, 0) = G 0 0 t 2 with G 0 0 > 0 (in general). Consequently, the critical energy release rate criterion predicts that the crack will propagate at a (finite) critical loading

t 0 i = Gc/G 0 0 .
What happens for t > t 0 i depends on the convexity properties of the potential energy as a function of ℓ, but in any case there is no continuity of the response with respect to ǫ at ǫ = 0. In contrast, we will show that this continuity property holds if we define the evolution from the least energy criterion. In particular, when ǫ > 0, the least energy criterion predicts that a crack of finite length ℓ ǫ i suddenly appears at t = t ǫ i , then propagates continuously with t. Moreover, we prove that lim ǫ→0 ℓ ǫ i = 0 and lim ǫ→0 t ǫ i = t 0 i and that the height of the energy barrier tends to 0 with ǫ. Even if the proofs are given in the restricted setting of anti-plane elasticity, the results and conclusions would remain unchanged in plane elasticity. (The proofs become a little more complicated but the numerical computations are essentially the same.) In the same manner, the quasi-static assumption which is adopted throughout the analysis is not essential. Indeed, as far as the initiation of a crack at the tip of a notch is concerned, Griffith's criterion remains unable to predict the initiation in dynamics, because the singularity is of the same type as in statics and hence the energy release rate vanishes also in dynamics.

The paper is organized as follows. In section 2 we introduce the two evolution laws and compare them within a general framework involving only a few basic regularity conditions for the energies. Sections 3 and 4 are devoted to the problem of tearing of a notch-shaped body. In section 3 we check all the regularity conditions of the energy whereas we present in section 4 the numerical results obtained by the finite element method. A short appendix contains a Lemma which is used several times in section 3.

The notation is quite classic. Derivatives with respect to coordinates are denoted with a comma, like u ,i for ∂u/∂x i . L 2 (Ω) stands for the set of square integral functions over Ω (for the Lebesgue measure), H m (Ω) with m = 1, 2, • • • for the usual Sobolev space of functions which are and whose weak partial derivatives up to the order m are in L 2 (Ω). The qualifiers positive (resp. negative) and increasing (resp. decreasing) are equivalent to strictly positive (resp. strictly negative) and strictly increasing (resp. strictly decreasing).

General setting of Griffith's theory

We recall the main ingredients of Griffith's theory [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] in a quasi-static two-dimensional setting, formulate the two evolution laws of crack propagation that we will compare throughout the paper and establish the first general properties of these laws. The definitions adopted here for the two laws are slightly different from those given in the previous publications [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]. Several results refine the previous ones, the improvement being due to a weakening of the hypotheses on the energies. The interested reader should also refer to other publications devoted to similar comparisons of the so-called Griffith and Francfort-Marigo formulations, e.g. [START_REF] Negri | A comparative analysis on variational models for quasi-static brittle crack propagation[END_REF], [START_REF] Negri | Quasi-static crack propagation by Griffith's criterion[END_REF].

The main ingredients

We consider a two-dimensional brittle-elastic body submitted to a proportional loading and in which a crack initiates and propagates along a predefined path. At this stage, no assumption is made for the loading except its proportional character. The loading can consist in given surface forces as well as in body forces or in prescribed displacements of the boundary. In the same way, the only requirement on the behavior of the medium is to be linearly elastic in its sound parts and to have a surface energy density à la Griffith along the predefined path. The medium can be heterogeneous or anisotropic. Assuming that the path is a (smooth) curve whose arc-length is ℓ, denoting by t > 0 the increasing amplitude of the loading, the problem consists in finding the function t → ℓ(t) giving the evolution of the tip (or equivalently, of the length) of the crack with the loading. For that, we will introduce and analyze two evolution laws, both formulated in energetic terms and in a quasi-static setting.

Due to the fact that the behavior is linearly elastic and that the loading is proportional, the potential energy of the body at equilibrium under the loading t and with a crack of length ℓ can be read as

P(t, ℓ) = t 2 P(ℓ). (1) 
Since the crack path is given and since we adopt the Griffith assumption for the surface energy density, the surface energy of the body only depends on the crack length, say S(ℓ). Therefore, the total energy of the body (at equilibrium under the loading t and with a crack of length ℓ) is given by

E(t, ℓ) = t 2 P(ℓ) + S(ℓ). (2) 
We make the following assumptions on these energies:

Hypothesis 1 The functions ℓ → P(ℓ) and ℓ → S(ℓ) are continuously differentiable in the interval [0, L]. Moreover, P is decreasing, S(0) = 0 and the derivative S ′ of S is positive.

Although these hypotheses are rather natural, they have to be checked in each case because the involved functions depend on the different parameters of the problem (geometry, behavior and loading). For example, when the medium is homogeneous and isotropic, then the surface energy simply reads S(ℓ) = Gcℓ, where Gc is the surface energy density. Thus, the hypotheses on S are satisfied. On the other hand, the continuous differentiability of P and S are not always ensured when the medium is heterogeneous or when the crack path is not sufficiently smooth. Let us note that the derivatives are supposed to exist at the ends of the interval, what means that the following limits exist: The potential energy release rate of the body when the loading is t and the crack length ℓ is given by

P ′ ( 
G(t, ℓ) = -t 2 P ′ (ℓ) (3) 
and is non negative since P is decreasing.

The ratio between the potential energy release rate and the surface energy rate, which characterizes the competition between the two forms of energy, will play a fundamental role in the sequel. That leads to the Definition 2 Let g(ℓ) be the potential energy release by surface energy created at t = 1 when the crack length is ℓ,

g(ℓ) := - P ′ (ℓ) S ′ (ℓ) , (4) 
g is a continuous non negative function of ℓ on [0, L].

The two evolution laws

We are now in position to introduce the two evolution laws. The first one, called the Glaw, is the usual Griffith law based on the critical potential energy release rate criterion, see [START_REF] Bui | Mécanique de la rupture fragile[END_REF][START_REF] Marigo | Constitutive relations in Plasticity, Damage and Fracture Mechanics based on a Work Property[END_REF][START_REF] Leblond | Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures[END_REF]. In essence, this law only investigates smooth (i.e. at least continuous) evolutions of the crack length with the loading. It consists in the three following items: 

Definition 3 (G-law ) Let ℓ 0 ∈ [0, L]. A continuous function t → ℓ(t)
A major drawback of the G-law is to be unable to take into account discontinuous crack evolutions, what renders it void in many situations as we will see in the next subsection.

It must be replaced by another law which admits discontinuous solutions. Another motivation of changing the G-law is to reinforce the second item by introducing a full stability criterion, see [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], [START_REF] Nguyen | Stability and Nonlinear Solid Mechanics[END_REF], [START_REF] Mielke | Evolution of rate-independent systems[END_REF], [START_REF] Francfort | Existence results for a class of rate-independent material models with nonconvex elastic energies[END_REF], [START_REF] Bourdin | The variational approach to fracture[END_REF]. Specifically, let us consider the following local stability condition

∀t ≥ 0, ∃h(t) > 0 : E(t, ℓ(t)) ≤ E(t, l) ∀l ∈ [ℓ(t), ℓ(t) + h(t)], (6) 
which requires that the total energy at t is a "unilateral" local minimum. (The qualifier unilateral is added because the irreversibility condition leads to compare the energy at t with only that corresponding to greater crack length, see [START_REF] Bourdin | The variational approach to fracture[END_REF]). Taking l = ℓ(t) + h with h > 0 in [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF], dividing by h and passing to the limit when h → 0, we recover the critical energy release rate criterion. Thus, the second item can be seen as a first order stability condition, weaker than [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF]. A stronger requirement consists in replacing local minimality by global minimality. It was the condition introduced by Francfort-Marigo in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] and that we will adopt here. Thus, the second evolution law, called FM-law, consists in the three following items 

E(t, ℓ(t)) = t 0 ∂E ∂t ′ (t ′ , ℓ(t ′ )) dt ′ , ∀t ≥ 0.
Let us note that the irreversibility condition is unchanged, while the energy balance condition is now written as the integrated form of ( 5), what does not require that t → ℓ(t) be continuous. Note also that the energy balance implies ℓ(0) = 0 because 0 = E(0, ℓ(0)) = S(ℓ(0)), and that the second item is automatically satisfied at t = 0 because S is increasing.

Some elements of comparison

We establish in this subsection several general results for the two evolution laws under the assumptions made in Section 2.1. Some of those results were also obtained in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF] but with more restrictive assumptions. A comparison between G-law and FM-law is proposed also in [START_REF] Negri | Quasi-static crack propagation by Griffith's criterion[END_REF].

As regards the initiation of cracks with the G-law we have Proposition 1 If P ′ (0) = 0, then the unique solution of the G-law, in [0, +∞) with ℓ 0 = 0, is ℓ(t) = 0, ∀t ≥ 0. If P ′ (0) < 0, then ℓ(t) = 0 satisfies the G-law only in the interval [0, t i ] with

t i = g(0) -1/2 (7)
and is the unique solution in this interval.

Proof. If P ′ (0) = 0, then ∀t ≥ 0, 0 = G(t, 0) < S ′ (0), hence ℓ(t) = 0 is a solution. The uniqueness follows from the initial condition and the energy balance. If P ′ (0) < 0, then 

-t 2 P ′ (0) = G(t, 0) ≤ S ′ (0) if
(t) = g -1 (t -2 ), t f = g(ℓ f ) -1/2 . (8) 
Proof. Let us assume that the G-law admits a solution. Let us first prove that t 2 g(ℓ(t)) = 1 for all t ∈ [t i , t f ]. It is true at t i by virtue of [START_REF] Chambolle | Crack initiation in brittle materials[END_REF]. Let us assume that it is not true for some t and hence that t 2 g(ℓ(t)) < 1 because of the second item of the G-law. By continuity, the inequality holds in an interval (t 1 , t]. Taking for t 1 the lowest bound, we have necessarily t 2 1 g(ℓ(t 1 )) = 1 (because t 2 i g(0) = 1). But, by virtue of the energy balance, we must also have ℓ(t 1 ) = ℓ(t) and we obtain a contradiction with 1 = t 2 1 g(ℓ(t 1 )) > t 2 g(ℓ(t 1 )) and t 1 < t. Hence t 2 g(ℓ(t)) = 1 for all t ∈ [t i , t f ]. Let ℓ 1 and ℓ 2 be such that 0 ≤ ℓ 1 < ℓ 2 ≤ ℓ f . By continuity of t → ℓ(t) and because of the irreversibility condition, there exist t 1 and t 2 with t 1 < t 2 such that ℓ(t 1 ) = ℓ 1 and ℓ(t 2 ) = ℓ 2 . Therefore, the strict monotonicity of g follows from 1 = t 2 1 g(ℓ 1 ) = t 2 2 g(ℓ 2 ). Conversely, let us assume that g is decreasing. By virtue of the first part of the proof, if a solution exists, then it necessarily satisfies t 2 g(ℓ(t)) = 1 for all t ∈ [t i , t f ] and hence is given by [START_REF] Charlotte | Initiation of cracks with cohesive force models: a variational approach[END_REF]. Since this function satisfies the three items, it is the unique solution of the G-law.

Let us now consider the FM-law. We first show that the FM-law is equivalent to the minimization problem min l∈[0,L] E(t, l).

Proposition 3 Under the assumptions of Section 2.1, a function t → ℓ(t) satisfies the FM-law if and only if, at each t, ℓ(t) is a minimizer of l → E(t, l) over [0, L]. Therefore, the FM-law admits at least one solution and each solution grows from 0 to L.

Proof. The proof is divided into 3 steps.

Step 1 : The minimization problem admits at least one solution. Each solution is not decreasing with t, growing from 0 to L. Since l → E(t, l) is continuous on the compact [0, L], it reaches its greatest lower bound. For t ≥ 0, let ℓ(t) be a minimizer of l → E(t, l) over [0, L]. Since E(0, l) = S(l) and since S is increasing, ℓ(0) = 0. For 0 ≤ t 1 < t 2 , let us show that ℓ(t 1 ) ≤ ℓ(t 2 ). Indeed, since t 2 1 P(ℓ(t 1 )) + S(ℓ(t 1 )) ≤ t 2 1 P(ℓ(t 2 )) + S(ℓ(t 2 )) and t 2 2 P(ℓ(t 1 )) + S(ℓ(t 1 )) ≥ t 2 2 P(ℓ(t 2 )) + S(ℓ(t 2 )), we get P(ℓ(t 1 )) ≥ P(ℓ(t 2 )) and hence ℓ(t 1 ) ≤ ℓ(t 2 ) because P is decreasing. Let us now prove that lim t→∞ ℓ(t) = L. Let ℓ∞ := lim t→∞ ℓ(t) ≤ L (the limit exists because ℓ(t) is monotone and even L can be reached at a finite t). We have t 2 P(L) + S(L) ≥ t 2 P(ℓ(t)) + S(ℓ(t)) for all t. Dividing by t 2 and passing to the limit when t goes to ∞, we get P(L) ≥ P(ℓ∞) and the result follows because P is decreasing.

⊡

Step 2 : Any solution of the minimization problem satisfies also the FM-law. Let t → ℓ(t) be a solution of the minimizing problem. As we proved in the first step, it satisfies the irreversibility condition. It satisfies by definition the second item of the FM-law. It remains to check that it satisfies the energy balance. First, since

E(t 1 , ℓ(t 1 )) ≤ E(t 1 , ℓ(t 2 )) ≤ E(t 2 , ℓ(t 2 )) when t 1 ≤ t 2 , t → E(t, ℓ(t)
) is monotone and hence differentiable almost everywhere. Since t → ℓ(t) is also monotone, it is differentiable almost everywhere. Consequently, at almost all t, we have

d dt E(t, ℓ(t)) = 2tP(ℓ(t)) + ∂E ∂ℓ (t, ℓ(t)) l(t). ( 9 
)
Moreover t → E(t, ℓ(t)) is locally lipschitzian (and hence absolutely continuous). Indeed, for all t ≥ 0 and all h > 0 we have

E(t + h, ℓ(t + h)) -E(t, ℓ(t)) ≤ E(t + h, ℓ(t)) -E(t, ℓ(t)) = (2ht + h 2 )P(ℓ(t)) ≤ (2ht + h 2 )P(0).
Since E(t, ℓ(t)) ≤ E(t, ℓ(t ± h)) for t > 0 and h > 0 sufficiently small, dividing by h and passing to the limit when h → 0, we obtain for almost all t ∂E ∂ℓ (t, ℓ(t)) l(t) = 0.

Inserting into (9), the energy balance follows by integration.

⊡

Step 3 : Any solution of the FM-law is a solution of the minimization problem. Let t → ℓ(t) be a solution of the FM-law (its existence is ensured thanks to the previous steps) and let E(t) be the minimum of l → E(t, l) over [0, L] with l(t) a minimizer. We have to prove that E(t, ℓ(t)) = E(t) for all t. The third item of the FM-law gives E(0, ℓ(0)) = E(0) = 0 and ℓ(0) = 0 = l(0). Let us assume that E(t 1 , ℓ(t 1 )) > E(t 1 ) for some t 1 . By virtue of the energy balance, t → E(t, ℓ(t)) and t → E(t) are continuous and hence the inequality E(t, ℓ(t)) > E(t) must hold in a non empty interval (t 0 , t 1 ). Taking for t 0 the lowest bound, we have E(t 0 , ℓ(t 0 )) = E(t 0 ). Moreover, ℓ(t) > l(t) for all t ∈ (t 0 , t 1 ). (Indeed, if ℓ(t) ≤ l(t) at some t, then we should obtain from the second item of the FM-law that

E(t, ℓ(t)) ≤ E(t, l(t)) = E(t)
, what is a contradiction with our first hypothesis.) From the energy balance (satisfied both by t → ℓ(t) and t → l(t)) and the strict monotonicity of P, we get for almost all t ∈ (t 0 , t 1 )

d dt E(t, ℓ(t)) = 2tP(ℓ(t)) < 2tP(l(t)) = dE dt (t).
Integrating over the interval (t 0 , t 1 ), we obtain E(t 1 , ℓ(t 1 )) < E(t 1 ) and hence a contradiction.

⊡

Remark 1 After the change of variable s = S(l), the minimization problem becomes min s∈[0,S(L)] {t 2 P • S -1 (s) + s}. The properties of the solution of this equivalent minimization problem strongly depend on the convexity properties of P • S -1 .

Let us note that the equivalence of the FM-law with the minimization problem holds only because we consider an increasing loading. In turn, that ensures the existence of a solution for the FM-law and that the crack length will grow from 0 to L without any reference to convexity properties of the energies. It is a first major difference with the G-law. The next propositions complete the comparison.

Proposition 4

The FM-law admits a continuous solution if and only if ℓ → g(ℓ) is decreasing. In such a case, the solution is unique and is also the unique solution of the G-law.

Proof. Let us assume that t → ℓ(t), solution of the FM-law, is continuous. Let 0 < ℓ 1 < ℓ 2 < L. There exist t 1 and t 2 with t 1 < t 2 such that ℓ(t 1 ) = ℓ 1 and ℓ(t 2 ) = ℓ 2 . By virtue of Proposition 3, ℓ 1 (resp. ℓ 2 ) minimizes the total energy at t 1 (resp. t 2 ) over [0, L]. Since those points are interior points, the derivative ∂E/∂ℓ must vanish at (t

1 , ℓ 1 ) (resp. (t 2 , ℓ 2 )). Hence 1 = t 2 1 g(ℓ 1 ) = t 2 2 g(ℓ 2 ). Setting t i = max{t : ℓ(t) = 0} we obtain by continuity 1 = t 2 i g(0). Let us set t f = min{t : ℓ(t) = L} if
L is reached at a finite time, and t f = +∞ otherwise. In the former case, we obtain by continuity 1 = t 2 f g(L) from which we deduce that g is decreasing in [0, L]. In the latter case, passing to the limit in g(ℓ(t)) = 1/t 2 when t goes to ∞, we obtain g(L) = 0 and we still deduce that g is decreasing in [0, L]. Moreover, in any case, we have obtained that ℓ(t) is the unique solution of the G-law, cf. Proposition 2.

Conversely, let us assume that g is decreasing. Then P • S -1 is strictly convex. Therefore, owing to Remark 1, the solution is unique and we easily check that it is continuous and corresponds to the solution of the G-law.

Comparing Propositions 2 and 4 shows that the evolution of the crack length must be discontinuous when P • S -1 is not strictly convex and that the FM-law only is able to manage this situation. It is in particular the case when P ′ (0) = 0. Indeed, then g(0) = 0 and, since g ≥ 0, g cannot be decreasing near 0. The following Proposition specifies what happens in such a case.

Proposition 5 If P ′ (0) = 0, then, according to whether the line segment joining (0, P(0)) and (S(L), P(L)) is below the graph of s → P • S -1 (s), each solution t → ℓ(t) of FM-law enjoys the following properties:

1. If the line segment is below the graph,

ℓ(t) = 0 if 0 ≤ t < t i = S(L) P(0)-P(L) L if t > t i . ( 10 
)
2. If the line segment is not below the graph, (a) There exists t i > 0 and ℓ i ∈ (0, L) such that ℓ(t) = 0 for t < t i and ℓ(t i +) = ℓ i ;

(b) t i and ℓ i satisfy

P(0) -P(ℓ i ) = g(ℓ i )S(ℓ i ), t i = g(ℓ i ) -1/2 (11)
Proof. The proof rests on the fact that ℓ(t) is a minimizer of t 2 P(l) + S(l), P is decreasing and the energies are smooth. It is geometrical by nature, because narrowly related to the energy convexification. All the geometrical objects refer to the plane (s, p), the s-axis corresponding to surface energy and the p-axis to potential energy. The graph of s → P • S -1 (s) in this plane is referred to as the graph.

Let ℓ ∈ [0, L] and g ≥ 0. The line (segment) through the point (S(ℓ), P(ℓ)) with slope -g is said supporting for the graph at this point if P(ℓ)g(S(l) -S(ℓ)) ≤ P(l) for all l ∈ [0, L]. (In other words, the line is below the graph and they have the point as a common point.) Let us first remark that l ∈ [0, L] is a minimizer of the energy at some t > 0 if and only if the line through (S(l), P(l)) with slope -1/t 2 is a supporting line. (It is a simple rephrasing of the optimality condition.) Moreover, if l ∈ (0, L) is a minimizer of the energy at time t, then the derivative at l of the energy vanishes and hence t 2 g(l) = 1. Therefore the line with slope -g(l) through (S(l), P(l)) is a supporting line. (The graph is above its tangent.)

Let M be the set of all the g ≥ 0 such that the line through (0, P(0)) with slope -g is a supporting line. We have g ≥ (P(0) -P(L))/S(L) > 0, ∀g ∈ M and max l∈[0,L] g(l) ∈ M. Hence M is a closed nonempty interval of the form [g i , +∞), with

g i = min M ≥ P(0) -P(L) S(L) > 0.
Let

t i = g -1/2 i
. When 0 ≤ t ≤ t i , l = 0 is a minimizer and when 0 ≤ t < t i it is the unique minimizer. (Indeed, if another l was a minimizer, then the line through (0, P(0)) with slope -1/t 2 should be also a supporting line at (S(l), P(l)), which is not possible because this point is above the line.) Hence ℓ(t) = 0 for t ∈ [0, t i ). At t = t i , since P ′ (0) = 0, there exists at least one l ∈ (0, L) such that the line through (0, P(0)) with slope -g i is a supporting line both at (0, P(0)) and at (S(l), P(l)). The set of all such l is closed, let ℓ i be its upper bound. All these l's are also minimizers of the energy at t i .

Let us prove that lim t↓t i ℓ(t) = ℓ i . The limit exists because t → ℓ(t) is monotone, say l i . By continuity, l i must be a minimizer of the energy at time t i and hence l i ≤ ℓ i . If l i < ℓ i , then there exists an interval (t i , t i + h) where the line through (S(ℓ(t)), P(ℓ(t))) with slope -1/t 2 is above the point (S(ℓ i ), P(ℓ i )) what is impossible because it is a supporting line.

Let us now distinguish the two cases. Case 1. The line segment joining (0, P(0)) and (S(L), P(L)) is a supporting line at both ends. Therefore g i = (P(0) -P(L))/S(L) and ℓ i = L.

Case 2. Then the line segment joining (0, P(0)) and (S(L), P(L)) is not a supporting line and 0 < ℓ i < L. Therefore, g i = g(ℓ i ).

Let us note that the proof is a little more precise than the statement, since it gives the exact definition of ℓ i .

Remark 2 In other words, the onset of cracking is necessarily brutal when P ′ (0) = 0. At the critical load when the first cracking occurs, the crack will be initiated on all or a part of the length L. In the latter case, the two equations [START_REF] Dal Maso | A Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results[END_REF] giving the initiation length and the initiation loading can be interpreted as follows:

1. The total energy is conserved during the initiation. The release of potential energy exactly supplies the added surface energy; 2. The energy release rate just after the initiation is equal to the toughness. The Griffith criterion is satisfied in terms of the quantities defined not before but after the initiation.

In the second case, what happens after the initiation depends once more on the convexity properties of P • S -1 . The following example, which corresponds to frequent practical cases, illustrates what happens when g is first increasing, then decreasing. It is the case in the problem of tearing of a notch considered in the next section, see also [START_REF] Bilteryst | Initiation of fibre debonding in the pull-out problem[END_REF] or [START_REF] Bilteryst | An energy based analysis of the pull-out problem[END_REF] for an application to a fiber debonding.

g i S( i ) S( * i ) g • S -1 s S( i) P • S -1 s
Fig. 1 Graphical determination of the crack length ℓ i using the convexification of P • S -1 . The slope g i := g(ℓ i ) corresponds to the Maxwell line, i.e. the line giving the equality of the areas in the graph of g • S -1 .

Proposition 6 Let g be such that g(0) = 0, g is continuously differentiable in (0, L), g ′ > 0 in (0, ℓc), g ′ < 0 in (ℓc, L) and P(0) -P(L) > g(L)S(L), with 0 < ℓc < L. Let ℓ i be the unique solution of

ℓc < ℓ i < L, P(0) = P(ℓ i ) + g(ℓ i )S(ℓ i ). ( 12 
)
Then the solution of the FM-law enjoys the following properties 1. As long as 0 ≤ t < t i := g(ℓ i ) -1/2 , ℓ(t) = 0 ; 2. At t = t i , the crack length jumps from 0 to ℓ i ; 3. When t i < t ≤ g(L) -1/2 , the crack length grows continuously from ℓ i to L, t → ℓ(t) satisfying then the G-law: t 2 g(ℓ(t)) = 1.

Proof. We give a direct proof without referring to the previous Proposition. Let us first prove that there exists a unique ℓ i satisfying [START_REF] Del Piero | One-Dimensional ductile-brittle transition, yielding and structured deformations[END_REF]. Let φ(ℓ) := P(ℓ)-P(0)+g(ℓ)S(ℓ).

Then, since φ ′ = g ′ S, φ is increasing in (0, ℓc) and decreasing in (ℓc, L). Since φ(0) = 0 and since φ(L) < 0 (by hypothesis), there exists a unique ℓ ∈ (ℓc, L) such that φ(ℓ) = 0. The initiation length ℓ i may be graphically determined, either by drawing the convexification of P • S -1 or by drawing the Maxwell line which satisfies the rule of equality of areas in the graph of g • S -1 , see Figure 1. Thanks to the hypotheses, we get that, for all l ∈ [0, L], t 2 i (P(l) -P(0)) + S(l) ≥ 0 and that the equality holds if and only if l ∈ {0, ℓ i }. Consequently, for 0 ≤ t < t i and 0 ≤ l ≤ L, we have t 2 (P(l) -P(0)) + S(l) ≥ 0 and the equality holds if and only if l = 0. Hence, l = 0 is the unique minimizer when 0 ≤ t < t i , while l = 0 and l = ℓ i are the two minimizers when t = t i . For t > t i , since t 2 P(0) > t 2 P(ℓ i ) + S(ℓ i ), l = 0 is no more a minimizer. For t < g(L) -1/2 , since t 2 P ′ (L) + S ′ (L) > 0, l = L is not a minimizer. Therefore, when t i < t < g(L) -1/2 , the minimizer l must be in the open interval (0, L) and hence such that t 2 g(l) = 1. Among the two possible solutions, only that greater than ℓ i is relevant.

Tearing of a notch-shaped body

The preceding general analysis is applied to a concrete case. By sake of simplicity of the presentation and of the proofs, we consider a problem where both the geometry and the loading are simple. It is sufficient to illustrate the fundamental differences between the two laws of propagation. It also points out all the mathematical work necessary to check out the relevant properties of the energy.

Hypotheses and definitions

Setting of the problem

N

Γ Ω

D + D - O I L ⊗ ⊗ ⊗
Fig. 2 The notch-shaped body with a crack of length ℓ

Let Ω be the rectangle (-H, L) × (-H, +H), Ω is the natural configuration of a brittle isotropic body with shear modulus µ and toughness Gc. A symmetric triangular sector Nǫ with an angle ω = 2 arctan ǫ, 0 ≤ ǫ < 1, at O = (0, 0) is removed from Ω so that the resulting body is the notch-shaped body Ωǫ, cf Figure 2:

Nǫ = {x = (x 1 , x 2 ) : -H < x 1 ≤ 0, |x 2 | ≤ ǫ |x 1 |}, Ωǫ = Ω \ Nǫ. ( 13 
)
The shape ratio ǫ of the notch will be considered as a parameter of the problem. The case ǫ = 0 corresponds to a body with an initial crack of length H

N 0 = (-H, 0] × {0}, Ω 0 = Ω \ N 0 . ( 14 
)
The body is submitted to an anti-plane loading so that the displacements of the body are orthogonal to the plane (x 1 , x 2 ). Specifically, the anti-plane displacement component u is prescribed on the parts D ± ǫ of the boundary:

u = ±t on D ± ǫ , D + ǫ = {-H} × (ǫH, H), D - ǫ = {-H} × (-H, -ǫH), (15) 
whereas the end I L = {L} × (-H, H) is fixed, i.e. u = 0 on I L . The remaining parts of the boundary (and in particular the edges of the notch) are free. The body forces are neglected. Owing to the symmetry of the geometry and the loading, we assume that a crack will appear at the tip of the notch and will propagate inside the body along the predefined straight path Γ = (0, L] × {0}. When the length of the crack is ℓ, 0 < ℓ ≤ L, we denote by Γ ℓ the (add-)crack and by Ω ℓ ǫ the resulting cracked notch-shaped body

Γ ℓ = (0, ℓ) × {0}, Ω ℓ ǫ = Ωǫ \ Γ ℓ . ( 16 
)
At a loading t and a crack length ℓ corresponds the displacement field u ℓ ǫ (x, t) of the cracked body Ω ℓ ǫ at equilibrium under that loading. By linearity, u ℓ ǫ (x, t) is proportional to t and can read as u ℓ ǫ (x, t) = tU ℓ ǫ (x) where the field U ℓ ǫ has to satisfy

         ∆U ℓ ǫ = 0 in Ω ℓ ǫ , U ℓ ǫ = ±1 on D ± ǫ , U ℓ ǫ = 0 on I L , ∂U ℓ ǫ ∂n = 0 on (∂Ωǫ ∪ Γ ℓ ) \ (D + ǫ ∪ D - ǫ ∪ I L ) . ( 17 
)
The first equation of ( 17) corresponds to the bulk equilibrium equation, the last one contains the condition of non cohesive crack lips.

Remark 3

The displacement field U ℓ ǫ can be seen as the real part of a complex potential f ℓ ǫ holomorphic in Ω ℓ ǫ , see [START_REF] Muskhelishvili | Some basic problems of mathematical theory of elasticity[END_REF]. The imaginary part ψ ℓ ǫ of f ℓ ǫ corresponds to the Airy function related to the stress field σ ℓ ǫ := µ∇U ℓ ǫ by σ ℓ ǫ1 = µψ ℓ ǫ,2 , σ ℓ ǫ2 = -µψ ℓ ǫ,1 , ψ ℓ ǫ is also harmonic in Ω ℓ ǫ . The Neumann boundary conditions ∇U ℓ ǫ • n = 0 read as ∇ψ ℓ ǫ • t = 0 in terms of the Airy function (where n and t denotes the outer unit normal and the unit tangent vector to the boundary). Hence, by fixing the arbitrary constant of ψ ℓ ǫ , the boundary conditions on the lips of the crack and on the edges of the notch can be written ψ ℓ ǫ = 0. Because of the symmetry of the geometry and of the loading, U ℓ ǫ is a odd function of

x 2 , U ℓ ǫ (x 1 , -x 2 ) = -U ℓ ǫ (x 1 , x 2 )
, and hence U ℓ ǫ (x 1 , 0) = 0 when ℓ ≤ x 1 ≤ L. However, we will essentially use this property for the numerical computations only.

The cracked or uncracked notch-shaped body contains several corners where the displacement is a priori singular. Let us give the comprehensive list of such points with their associated singularity by using Grisvard's results [START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF][START_REF] Grisvard | Problèmes aux limites dans les polygones; Mode d'emploi[END_REF].

1. At the tip of the notch O, when there is no (add)-crack, the displacement is a priori singular and can read as

U 0 ǫ (x) = Kǫr αǫ sin(αǫθ) + U 0 ǫ (x) (18) 
where (r, θ) denote the polar coordinates, αǫ = π/(2π -2 arctan ǫ) and U 0 ǫ ∈ H 2 (Ωǫ ∩ Br) for r small enough.

2. At the tip (ℓ, 0) of the crack, when 0 < ℓ < L, the displacement is a priori singular and can read as

U ℓ ǫ (x) = K ℓ ǫ √ r sin θ 2 + U ℓ ǫ (x) (19) 
where (r, θ) denote the polar coordinates with pole (ℓ, 0) and U ℓ ǫ ∈ H 2 (Ω ℓ ǫ ∩ Br) for r small enough. The coefficient K ℓ ǫ is the stress intensity factor. 3. When ǫ > 0, at the corners of the notch (-H, ±ǫH), because of the change of boundary conditions from Dirichlet to Neumann at an angle greater than π/2, the displacement is a priori singular, but this singularity will play no role. 4. At the corners (-H, ±H) and (L, ±H), at (L, 0) when ℓ = L, and at (-H, 0±) when ǫ = 0, there is no singularity (that means that U ℓ ǫ is locally in H 2 ) even if there is a change of boundary conditions. But, since the angle is equal to π/2, we are just at the limit to have a singularity. 5. At the corners of the notch (0, 0±), once a crack has been created, there is no more singularity because the angle is less than π with Neumann boundary conditions.

The elastic energy of the cracked body is given by

Pǫ(t, ℓ) = t 2 Pǫ(ℓ), Pǫ(ℓ) := Ω ℓ ǫ µ 2 ∇U ℓ ǫ • ∇U ℓ ǫ dx
and, by virtue of the theorem of potential energy minimum, we have

Pǫ(ℓ) = min u∈U ℓ ǫ Ω ℓ ǫ µ 2 ∇u • ∇u dx. (20) 
In [START_REF] Francfort | Existence results for a class of rate-independent material models with nonconvex elastic energies[END_REF], U ℓ ǫ is the set of admissible displacements,

U ℓ ǫ = {u ∈ H 1 (Ω ℓ ǫ ) : u = ±1 on D ± ǫ , u = 0 on I L }.
It is a closed affine subset of H 1 (Ω ℓ ǫ ), its associated linear subspace is

V ℓ ǫ = {v ∈ H 1 (Ω ℓ ǫ ) : v = 0 on D + ǫ ∪ D - ǫ ∪ I L }.
Let U 0 be the field defined on Ω 0 by U 0 (x) = sign(x 2 ) max{-x 1 /H, 0} and U ǫ its restriction to Ωǫ, U ǫ ∈ U ℓ ǫ for every ǫ ∈ [0, 1). Decomposing u ∈ U ℓ ǫ into u = U ǫ + v with v ∈ V ℓ ǫ , the potential energy can also read as

Pǫ(ℓ) = min v∈V ℓ ǫ Ω ℓ ǫ µ 2 ∇v • ∇v dx - N c ǫ sign(x 2 ) µ H v ,1 dx + µ(1 - ǫ 2 ) ( 21 
)
where

N c ǫ = (-H, 0] × (-H, H) \ Nǫ. The minimizer in (21) is V ℓ ǫ = U ℓ ǫ -U ǫ.

Notations

Note that t has the dimension of a length, hence U ℓ ǫ is dimensionless and Pǫ has the dimension of a pressure. Throughout the section we will use the following notations. We denote by I l the cross-section of the (sound) body at l ∈ [0, L], i.e. I l = {l} × (-H, H) and by R d l the rectangle delimited by the cross-sections I l and

I d , 0 ≤ l < d ≤ L, i.e. R d l = (l, d) × (-H, H).
The "cracked" cross-section at l is denoted I l , i.e. I l = {l} × ((-H, 0) ∪ (0, H)), and the cracked rectangle between I l and

I d is denoted R d l , i.e. R d l = (l, d) × ((-H, 0) ∪ (0, H)).
If D is a sub-domain of Ω and v is a real-valued field on D, v D stands for the H 1 (D) norm of v whereas |v| D stands for its L 2 (D) norm. Br denotes the ball of center O and radius r > 0.

3.2 Check of the regularity of Pǫ(ℓ) with respect to ℓ 3.2.1 Case 0 ≤ ǫ < 1 and 0 < ℓ < L Throughout this subsection, ǫ is fixed and the explicit dependence on it is sometimes omitted. First, we make a change of variables to send the ℓ-dependent domain Ω ℓ ǫ onto a fix domain. In essence, it is the basic method to prove the existence of the energy release rate, see [START_REF] Destuynder | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF]. In our case, owing to the simplicity of the geometry, we can use a very simple change of variable which renders the proof easier. Furthermore, that allows for obtaining stronger regularity results.

Specifically, let us choose d ∈ (0, L) and let φ ℓ be the following lipschitzian homeomorphism from

Ω ℓ ǫ onto Ω d ǫ x :=φ ℓ (x) = x +      0 if x 1 < 0 (d -ℓ) x1 ℓ e 1 if 0 ≤ x 1 ≤ ℓ (d -ℓ) L-x1 L-ℓ e 1 if ℓ ≤ x 1 < L . ( 22 
)
With each field v defined on Ω ℓ ǫ is associated its push

-forward v = v • φ -1 ℓ defined on Ω d ǫ , see [32]. Hence, v ∈ V d ǫ if and only if v ∈ V ℓ ǫ . Noting that ∇v • ∇v det F ℓ dx = F T ℓ ∇ v • F T ℓ ∇ v d x with F ℓ := ∇φ ℓ = e 2 ⊗ e 2 +      e 1 ⊗ e 1 if x 1 < 0 d ℓ e 1 ⊗ e 1 if 0 ≤ x 1 ≤ ℓ L-d L-ℓ e 1 ⊗ e 1 if ℓ ≤ x 1 <

L and inserting this change of variable into (21) leads to

Pǫ(ℓ) = min v∈V d ǫ 1 2 5 i=1 a i ℓ p i ( v, v) + q( v) + c (23) 
with

                   a 1 ℓ = 1 , p 1 (u, v) = N c ǫ µ∇u • ∇v dx a 2 ℓ = d ℓ , p 2 (u, v) = R d 0 µu ,1 v ,1 dx a 3 ℓ = ℓ d , p 3 (u, v) = R d 0 µu ,2 v ,2 dx a 4 ℓ = L-d L-ℓ , p 4 (u, v) = R L d µu ,1 v ,1 dx a 5 ℓ = L-ℓ L-d , p 5 (u, v) = R L d µu ,2 v ,2 dx c = (1 -ǫ 2 )µ , q(v) = -N c ǫ sign(x 2 ) µ H v ,1 dx (24) 
Note that q(v) = p 1 (U ǫ, v) and 2c = p 1 (U ǫ, U ǫ). The minimizer in ( 23) is V ℓ ǫ , the push-forward of V ℓ ǫ , and

V ℓ ǫ = U ℓ ǫ -U ǫ because U ǫ = U ǫ.
We are now in position to prove the first regularity result Proposition 7 For each ǫ ∈ [0, 1), ℓ → Pǫ(ℓ) is indefinitely differentiable on (0, L). Moreover the first derivative P ′ ǫ can read as

P ′ ǫ (ℓ) = 1 ℓ R ℓ 0 µ 2 U ℓ ǫ ,2 2 -U ℓ ǫ ,1 2 dx - 1 L -ℓ R L ℓ µ 2 U ℓ ǫ ,2 2 -U ℓ ǫ ,1 2 dx (25)
Proof. Since the five a i ℓ are indefinitely differentiable on (0, L), we can use Lemma 18 and Remark 6 of the Appendix with λ = ℓ, Λ = (0, L) and H = V d ǫ equipped with the norm of H 1 (Ω d ǫ ). (The uniform coercivity of 5 i=1 a i ℓ p i holds in any closed interval included in (0, L) by virtue of Poincaré's inequality; the continuity of the p i ℓ 's and q is obvious.) That proves the regularity of Pǫ.

Using (60) gives

P ′ ǫ (ℓ) = 1 2 5 i=2 ȧi ℓ p i ( U ℓ ǫ , U ℓ ǫ )
, because ȧ1 ℓ = 0 and U ǫ vanishes when x 1 ≥ 0. Therefore,

P ′ ǫ (ℓ) = 1 d R d 0 µ 2 U ℓ ǫ ,2 2 - d 2 ℓ 2 U ℓ ǫ ,1 2 dx- 1 L -d R L d µ 2 U ℓ ǫ ,2 2 - (L -d) 2 (L -ℓ) 2 U ℓ ǫ ,1
2 dx (26) Making the inverse change of variable x → φ -1 ℓ (x) in the integrals leads to [START_REF] Irwin | Fracture[END_REF]. The formula ( 25) is a particular case of the one proposed by [START_REF] Destuynder | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF] to compute the energy release rate. This integral over the domain is related to the famous path-independent integrals (see [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF]) by virtue of the following Proposition 8 Let I be a cross-section of Ω ℓ ǫ and

J I := I µ 2 U ℓ ǫ ,2 2 -U ℓ ǫ ,1 2 dx 2 .
Then J I l is independent of l for l ∈ (0, ℓ), the common value is denoted J - ǫ (ℓ). Similarly, J I l is independent of l for l ∈ (ℓ, L), the common value is denoted J + ǫ (ℓ).

Therefore P ′ ǫ (ℓ) = J - ǫ (ℓ) -J + ǫ (ℓ) for ℓ ∈ (0, L).
Proof. Note first that J I l (resp. J I l ) is well-defined for every l ∈ (0, ℓ)

(resp. l ∈ (ℓ, L)) because U ℓ ǫ ∈ H 2 (R l+h l-h ) (resp. U ℓ ǫ ∈ H 2 (R l+h l-h
)) for h small enough. Let 0 < l 1 < l 2 < ℓ, multiply the equilibrium equation 0 = µ∆U ℓ ǫ by U ℓ ǫ ,1 and integrate over R l2 l1 . Integrating by parts and accounting for the boundary conditions on the lips of the crack and on the upper and lower sides of the rectangle lead to

0 = - R l 2 l 1 µU ℓ ǫ ,i U ℓ ǫ ,i1 dx + I l 2 µ U ℓ ǫ ,1 2 dx 2 - I l 1 µ U ℓ ǫ ,1 2 dx 2 .
Since the first integrand can read as µ 2 U ℓ ǫ ,i U ℓ ǫ ,i ,1 , we get 0 = J I l 1 -J I l 2 . One proves in the same manner that J I l 2 = J I l 1 when ℓ < l 1 < l 2 < L. Inserting into [START_REF] Irwin | Fracture[END_REF] gives

P ′ ǫ (ℓ) = J - ǫ (ℓ) -J + ǫ (ℓ).
The energy release rate Gǫ(ℓ) = -P ′ ǫ (ℓ) is related to the stress intensity factor K ℓ ǫ introduced in ( 19) by the well-known Irwin formula, see [START_REF] Irwin | Fracture[END_REF], [START_REF] Leblond | Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures[END_REF]. In the present setting where there is no normalization of K ℓ ǫ , that leads to the relation

Gǫ(ℓ) = π 4 µ(K ℓ ǫ ) 2 . ( 27 
)
3.2.2 Case ǫ = 0 and ℓ = 0

The change of variable ( 22) is no more valid when ℓ = 0. However, when ǫ = 0, i.e. when the body contains an initial crack of length H instead of a notch, we can define P 0 on the whole interval (-H, L) and prove its regularity. Indeed, it is enough to replace [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] by

ϕ ℓ (x) = x - ℓ H+x1 H+ℓ e 1 if -H ≤ x 1 ≤ ℓ ℓ L-x1 L-ℓ e 1 if ℓ ≤ x 1 < L . (28) 
Therefore, ϕ ℓ is a lipschitzian homeomorphism from Ω ℓ 0 onto Ω 0 for every ℓ ∈ (-H, L). We can use Lemma 18 and Remark 6 again, and with only minor changes in the proof which are not detailed here, we finally obtain Proposition 9 P 0 is indefinitely differentiable on (-H, L). Moreover the first derivative P ′ 0 can read as

P ′ 0 (ℓ) = 1 ℓ + H R ℓ -H µ 2 U ℓ 0 ,2 2 -U ℓ 0 ,1 2 dx - 1 L -ℓ R L ℓ µ 2 U ℓ 0 ,2 2 -U ℓ 0 ,1 2 dx ( 29 
)
Remark 4 As in Proposition 8, (29) can be simplified by using the path-independent integrals J + ǫ (ℓ) and J - ǫ (ℓ). We can also use Irwin's formula [START_REF] Lawn | Fracture of Brittle Solids -Second Edition[END_REF] for all ℓ ∈ (-H, L). Note in particular that the positivity of G 0 (0) is equivalent to the non vanishing of the stress intensity factor K 0 0 .

3.2.3 Case 0 < ǫ < 1 and ℓ = 0

When ǫ = 0 and ℓ = 0, the change of variable ( 22) is not valid and we cannot extend it like in the previous subsection. We will directly prove that P ′ ǫ (0) exists and vanishes with the help of classical variational properties. But the proof of the continuity of the derivative at 0 needs a change of variable again. We have the following fundamental result

Proposition 10 The release of potential energy due to a crack of small length ℓ is of the order of ℓ 2αǫ , i.e. there exists Cǫ ≥ 0 such that

0 ≤ lim sup ℓ↓0 Pǫ(0) -Pǫ(ℓ) ℓ 2αǫ ≤ Cǫ. (30) 
Therefore P ′ ǫ (0) = 0. Moreover, P ′ ǫ is continuous at 0, lim ℓ↓0 P ′ ǫ (ℓ) = 0.

Proof. The proof is divided into 4 steps. The first step of the proof can be seen as a particular case of a more general result proved in [START_REF] Chambolle | Crack initiation in brittle materials[END_REF], see also [START_REF] Leguillon | Calcul du taux de restitution de l'énergie au voisinage d'une singularité[END_REF] for a formal proof using matched asymptotic expansions. The third step could be deduced from [START_REF] Dal Maso | A Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results[END_REF].

Step 1 : P ′ ǫ (0) = 0. Let ℓ > 0 be small enough. By virtue of classical duality properties, see [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF], we have

Pǫ(ℓ) = min u∈U ℓ ǫ Ω ℓ ǫ µ 2 ∇u.∇u dx = min u∈U ℓ ǫ max τ ∈L 2 (Ω ℓ ǫ ;R 2 ) Ω ℓ ǫ τ • ∇u - τ • τ 2µ dx = max τ ∈L 2 (Ω ℓ ǫ ;R 2 ) inf u∈U ℓ ǫ Ω ℓ ǫ τ • ∇u - τ • τ 2µ dx = max τ ∈S ℓ ǫ Ω ℓ ǫ τ • ∇U 0 ǫ - τ • τ 2µ dx
where S ℓ ǫ stands for the set of statically admissible stress fields, i.e. 

S ℓ ǫ = {τ ∈ L 2 (Ω ℓ ǫ ; R 2 ) : Ω ℓ ǫ τ • ∇v dx = 0, ∀v ∈ V ℓ ǫ }
     τ = 0 in Ωǫ ∩ B ℓ rτr = f (r)µψ ǫ,θ , τ θ = -(f (r)µψǫ),r in Ωǫ ∩ (B 2ℓ \ B ℓ ) τ = σǫ in Ωǫ \ B 2ℓ
, where f (r) = r/ℓ -1 for r ∈ [ℓ, 2ℓ]. One easily verifies that τ ∈ S ℓ ǫ (in particular, div τ = 0 in B 2ℓ \ B ℓ , τr is continuous at r = ℓ and r = 2ℓ, τ θ = 0 on the boundary of the notch). Therefore,

Pǫ(0) -Pǫ(ℓ) ≤ Ω ℓ ǫ ∩B 2ℓ σǫ -τ 2 2µ dx ≤ Ω ℓ ǫ ∩B ℓ σǫ 2 2µ dx + Ω ℓ ǫ ∩(B 2ℓ \B ℓ ) σ 2 ǫr + |σ ǫθ | + µψǫ ℓ 2 2µ dx. ( 31 
)
By virtue of Remark 3 and ( 18), σǫ and ψǫ behave like r αǫ-1 and r α ǫ , respectively, near r = 0. (Specifically, the singular part of ψǫ is Kǫr αǫ cos αǫθ.) Hence, both integrals in [START_REF] Marigo | Initiation and propagation of fracture in the models of Griffith and Barenblatt[END_REF] are of the order of ℓ 2αǫ and (30) follows. Since αǫ > 1/2, we get P ′ ǫ (0) = 0.

⊡

Step 2 :

Transport of U 0 ǫ into U d ǫ . For ℓ > 0, the push-forward U ℓ ǫ of U ℓ ǫ is an element of U d ǫ = U ǫ +V d ǫ .
To compare it with U 0 ǫ , we must transport this latter one into U d ǫ . We proceed as follows. Let φ 0 : R L 0 → R L d be the linear one-to-one mapping such that φ 0

(x) = (d + (1 -d/L)x 1 )e 1 + x 2 e 2 . With v : Ωǫ → R is associated v : Ω d ǫ → R by v(x) =      v(x) in N c ǫ v(0, x 2 ) in R d 0 v • φ 0 -1 (x) in R L d . (32) 
The image of V 0 ǫ by this isomorphism is

V 0 ǫ . Note that, in general, v ∈ V d ǫ even if v ∈ V 0 ǫ because v ,2 ∈ L 2 (R d 0 ). The elements of V 0 ǫ which are in V d ǫ constitute its (weakly) closed subspace V0 ǫ = {v ∈ V d ǫ : v ,1 = 0 in R d 0 }. However, V 0 ǫ ∈ V0 ǫ because the singularity of V 0 ǫ at O is weak. (Indeed, we have to check that I 0 V 0 ǫ ,2 2 dx 2 < +∞ so that V 0 ǫ ∈ V d ǫ . That is true because V 0 ǫ ,2 behaves like |x 2 | 2αǫ-2 with αǫ > 1/2.) We still have U 0 ǫ = U ǫ + V 0 ǫ .

⊡

Step 3 : Convergence of U ℓ ǫ to U 0 ǫ when ℓ → 0. Inserting the change of variable ( 32) into (21) leads to

Pǫ(0) = min v∈ V 0 ǫ 1 2 p 1 ( v + U ǫ, v + U ǫ) + 1 2 5 i=4 a i 0 p i ( v, v) (33) 
where the p i 's are the same as in [START_REF] Grisvard | Problèmes aux limites dans les polygones; Mode d'emploi[END_REF], whereas the a i 0 's are obtained by setting ℓ = 0. The minimizer in [START_REF] Mielke | Evolution of rate-independent systems[END_REF] 

is V 0 ǫ and U 0 ǫ satisfies ∀ v ∈ V 0 ǫ , 0 = p 1 ( U 0 ǫ , v) + a 4 0 p 4 ( U 0 ǫ , v) + a 5 0 p 1 ( U 0 ǫ , v). ( 34 
)
We deduce from (34) that U 0 ǫ satisfies the "push-forward" equilibrium equations

∆ U 0 ǫ = 0 in N c ǫ , a 4 0 U 0 ǫ ,11 + a 5 0 U 0 ǫ ,22 = 0 in R L d
while the continuity of the normal stress σ 0 1 := µ U 0 ǫ ,1 I0 on I 0 reads now

σ 0 1 (x 2 ) = µ U 0 ǫ ,1 (0-, x 2 ) = µa 4 0 U 0 ǫ ,1 (d+, x 2 ).
Multiplying the equilibrium equations by v ∈ V d ǫ , integrating over N c ǫ ∪R L d , integrating by parts and accounting for the boundary conditions lead to

p 1 ( U 0 ǫ , v) + a 4 0 p 4 ( U 0 ǫ , v) + a 5 0 p 5 ( U 0 ǫ , v) = q 0 1 (v), ∀v ∈ V d ǫ ( 35 
)
with

q 0 1 (v) := - R d 0 σ 0 1 v ,1 dx. ( 36 
) Since σ 0 1 ∈ L 2 (I 0 ), |q 0 1 (v)| ≤ C v ,1 R d 0 . Recalling that U ℓ ǫ satisfies ∀v ∈ V d ǫ , 0 = 5 i=1 a i ℓ p i ( U ℓ ǫ , v), (37) 
setting

w ℓ = U ℓ ǫ -U 0 ǫ and taking v = w ℓ in(37), we get 0 = 5 i=1 a i ℓ p i (w ℓ , w ℓ ) + 5 i=1 a i ℓ p i ( U 0 ǫ , w ℓ ) (38) = 5 i=1 a i ℓ p i (w ℓ , w ℓ ) + a 3 ℓ p 3 ( U 0 ǫ , w ℓ ) + 5 i=4 (a i ℓ -a i 0 )p i ( U 0 ǫ , w ℓ ) + q 0 1 (w ℓ ). ( 39 
)
Since a 1 ℓ = 1, a 2 ℓ = O(ℓ -1 ), a 3 ℓ = O(ℓ), a 4 ℓ and a 5 ℓ are O(1), a 4 ℓa 4 0 and a 5 ℓa 5 0 are O(ℓ) when ℓ → 0, using Poincaré's inequality due to the Dirichlet conditions on D ± ǫ and I L , we obtain the following estimate

w ℓ 2 N c ǫ + 1 ℓ w ℓ,1 2 R d 0 + ℓ w ℓ,2 2 R d 0 + w ℓ 2 R L d ≤ C w ℓ,1 R d 0 + Cℓ w ℓ,2 2 R d 0 + w ℓ R L d
where C denotes a positive constant (independent of ℓ). It follows that

w ℓ N c ǫ ≤ C √ ℓ, w ℓ,1 R d 0 ≤ Cℓ, w ℓ,2 2 R d 0 ≤ C, w ℓ R L d ≤ C √ ℓ,
from which we deduce that U ℓ ǫ converges weakly to U 0 ǫ in V0 ǫ . Moreover (a subsequence of) µ U ℓ ǫ ,1 /ℓ weakly converges to some σ * 1 in L 2 (R d 0 ). Passing to the limit in [START_REF] Negri | Quasi-static crack propagation by Griffith's criterion[END_REF] gives

0 = p 1 ( U 0 ǫ , v) + d R d 0 σ * 1 v ,1 dx + a 4 0 p 4 ( U 0 ǫ , v) + a 5 0 p 5 ( U 0 ǫ , v), ∀v ∈ V d ǫ .
from Dirichlet to Neumann at a corner of angle π/2. By Grisvard's formula [START_REF] Grisvard | Problèmes aux limites dans les polygones; Mode d'emploi[END_REF], there is no more singularity and U L ǫ ∈ H 2 (R L l ) when 0 < l < L. (This is specific to anti-plane elasticity, in plane elasticity the singularity exists, in general, but is weak like at the tip of the notch.) Of course, the presence of the notch has no influence and we have Proposition 11 ∀ǫ ∈ [0, 1), Pǫ is continuously differentiable at L and P ′ ǫ (L) = 0. Proof. The proof is divided into 2 steps.

Step 1 :

Transport of U L ǫ into U d ǫ and convergence of U ℓ ǫ . Let φ L : R L 0 → R d 0 , x → dx 1 /Le 1 + x 2 e 2 . With v : Ω L ǫ → R is associated v : Ω d ǫ → R by v(x) =      v(x) in N c ǫ v • φ L -1 (x) in R d 0 0 in R L d , ( 42 
) the image of V L ǫ by this isomorphism is V L ǫ , a (weakly) closed subspace of V d ǫ . We still have U L ǫ = U ǫ + V L ǫ .
Inserting the change of variable ( 42) into ( 21) leads to

Pǫ(L) = min v∈ V L ǫ 1 2 p 1 ( v + U ǫ, v + U ǫ) + 1 2 3 i=2 a i L p i ( v, v) (43) 
where the p i 's are the same as in [START_REF] Grisvard | Problèmes aux limites dans les polygones; Mode d'emploi[END_REF], whereas the a i L 's are obtained by setting ℓ = L. The minimizer is V L ǫ and U L ǫ satisfies

∀ v ∈ V L ǫ , 0 = 3 i=1 a i L p i ( U L ǫ , v). (44) 
We deduce from (44) that U L ǫ satisfies the "push-forward" equilibrium equations

∆ U L ǫ = 0 in N c ǫ \ I 0 , a 2 L U L ǫ ,11 + a 3 L U L ǫ ,22 = 0 in R d 0
and the continuity of the normal stress on I 0 reads now

U L ǫ ,1 (0-, x 2 ) = a 2 L U L ǫ ,1 (0+, L). The normal stress σ L 1 := µ U L ǫ ,1 I L on I L reads σ L 1 (x 2 ) = µa 2 L U L ǫ ,1 (d-, x 2 ). Note that σ L 1 ∈ L 2 (I L )
because there is no singularity at (L, 0). Multiplying the equilibrium equations by v ∈ V d ǫ , integrating over N c ǫ ∪ R d 0 , integrating by parts and accounting for the boundary conditions lead to

3 i=1 a i L p i ( U L ǫ , v) = q L 1 (v), ∀v ∈ V d ǫ (45) 
with

q L 1 (v) := - R L d σ L 1 v ,1 dx. (46) 
Recalling that U ℓ ǫ satisfies (37), setting

w ℓ = U ℓ ǫ -U L ǫ and taking v = w ℓ , we get 0 = 5 i=1 a i ℓ p i (w ℓ , w ℓ ) + 3 i=1 a i ℓ p i ( U L ǫ , w ℓ ) (47) = 5 i=1 a i ℓ p i (w ℓ , w ℓ ) + 3 i=2 (a i ℓ -a i L )p i ( U L ǫ , w ℓ ) + q L 1 (w ℓ ). ( 48 
) Note that a 1 ℓ = 1, a 2 ℓ and a 3 ℓ are O(1), a 4 ℓ = O((L -ℓ) -1 ), a 5 ℓ = O(L -ℓ) , a 2 ℓ -a 2
L and a 3 ℓa 3 L are O(Lℓ) when ℓ → L. Using Poincaré's inequality due to the Dirichlet conditions on D ± ǫ and I L , we obtain the following estimate

w ℓ 2 Ω d ǫ \R L d + 1 L -ℓ w ℓ,1 2 R L d + (L -ℓ) w ℓ,2 2 R L d ≤ C w ℓ,1 R L d + C(L -ℓ) w ℓ Ω d ǫ \R L d
where C denotes a positive constant (independent of ℓ). It follows that

w ℓ Ω d ǫ \R L d ≤ C √ L -ℓ, w ℓ,1 R L d ≤ C(L -ℓ), w ℓ,2 2 R L d ≤ C,
from which we deduce that U ℓ ǫ -U L ǫ converges weakly to 0 in V L ǫ . Moreover (a subsequence of) µ U ℓ ǫ ,1 /(L-ℓ) weakly converges to some σ ⋆ 1 in L 2 (R L d ). Passing to the limit in [START_REF] Negri | Quasi-static crack propagation by Griffith's criterion[END_REF] 

gives 0 = 3 i=1 a i L p i ( U L ǫ , v) + (L -d) R L d σ ⋆ 1 v ,1 dx, ∀v ∈ V d ǫ .
Comparing with (45) and ( 46), we obtain (L -

d)σ ⋆ 1 = σ L 1 .
Hence, all the sequence converges weakly. The strong convergence is obtained as in the proof of Proposition 10, step 3, and we get that

(L -d) U ℓ ǫ ,1 /(L -ℓ) converges strongly to σ L 1 /µ in L 2 (R L d ), U ℓ ǫ -U L ǫ converges strongly to 0 in V L ǫ and ( U L ǫ -U ℓ ǫ )/ √ L -ℓ converges strongly to 0 in H 1 (Ω d ǫ \ R L d ).

⊡

Step 2 :

P ′ ǫ (L) = lim ℓ→L P ′ ǫ (ℓ) = 0. To prove that lim ℓ→L P ′ ǫ (ℓ) = 0, we start from P ′ ǫ (ℓ) = J - ǫ (ℓ) -J + ǫ (ℓ) with J ± ǫ (ℓ)
given by ( 40)-(41). Passing to the limit when ℓ → L, we get

lim ℓ→L J - ǫ (ℓ) = 1 d R d 0 µ 2 U L ǫ ,2 2 - d 2 L 2 U L ǫ ,1 2 dx lim ℓ→L J + ǫ (ℓ) = J I L = - I L (σ L 1 ) 2 2µ dx 2
Making the inverse change of variable x → φ -1 L (x) in the integral of the former equation above and using Proposition 8, it follows that the first path-integral is equal to J I L like the second one. Hence lim ℓ→L P ′ ǫ (ℓ) = 0. It remains to prove that P ′ ǫ (L) = 0. Using ( 23), ( 37), ( 43) and (45), we get

Pǫ(L) -Pǫ(ℓ) = 1 2 3 i=1 a i L p i ( U L ǫ , U L ǫ ) - 1 2 5 i=1 a i ℓ p i ( U ℓ ǫ , U ℓ ǫ ) = 1 2 3 i=2 (a i L -a i ℓ )p i ( U L ǫ , U ℓ ǫ ) - 1 2 q L 1 ( U ℓ ǫ ).
Dividing by Lℓ and passing to the limit when ℓ → L yields

P ′ ǫ (L) = - d 2L 2 p 2 ( U L ǫ , U L ǫ ) + 1 2d p 3 ( U L ǫ , U L ǫ ) + I L (σ L 1 ) 2 2µ dx 2 = lim ℓ→L J - ǫ (ℓ) -J I L and hence P ′ ǫ (L) = 0. ⊡ 3.
4 Check of the regularity of Pǫ(ℓ) with respect to ǫ For a given ℓ ∈ [0, L], to study the dependence of Pǫ(ℓ) on ǫ, we make once more a change of variables which send the ǫ-dependent domain Ωǫ onto the fix domain Ω 0 . Specifically, let φǫ be the following lipschitzian homeomorphism from Ωǫ onto Ω 0

φǫ(x) = x 1 e 1 + 1 1-ǫ (x 2 + sign(x 2 )ǫx 1 )e 2 if x ∈ N 1 \ Nǫ x otherwise . (49) 
With each field v defined on Ω ℓ ǫ is associated its push

-forward v = v • φ -1 ǫ defined on Ω ℓ 0 .
Inserting this change of variable into (21) leads to

Pǫ(ℓ) = min v∈V ℓ 0 1 2 4 i=1 a i ǫ p i ( v, v) + 2 i=1 b i ǫ q i ( v) + cǫ (50) 
with

                       a 1 ǫ = 1 , p 1 (u, v) = Ω ℓ 0 \N1 µ∇u • ∇v dx a 2 ǫ = 1 -ǫ , p 2 (u, v) = N1\N0 µu ,1 v ,1 dx a 3 ǫ = 1+ǫ 2 1-ǫ , p 3 (u, v) = N1\N0 µu ,2 v ,2 dx a 4 ǫ = ǫ , p 4 (u, v) = N1\N0 sign(x 2 )µ(u ,1 v ,2 + u ,2 v ,1 ) dx b 1 ǫ = 1 -ǫ , q 1 (v) = -N1\N0 sign(x 2 ) µ H v ,1 dx b 2 ǫ = 1 , q 2 (v) = -N c 1 sign(x 2 ) µ H v ,1 dx cǫ = (1 -ǫ 2 )µ (51) 
The minimizer in (50) is V ℓ ǫ , the push-forward of V ℓ ǫ , and

V ℓ ǫ = U ℓ ǫ -U ǫ.
Owing to the Lemma 18, we get Proposition 13 For each ℓ ∈ [0, L], ǫ → Pǫ(ℓ) is indefinitely differentiable on [0, 1). Moreover, Pǫ converges uniformly to P 0 when ǫ goes to 0, whereas P ′ ǫ converges uniformly to P ′ 0 on any compact [l, L] such that l > 0.

Proof. The four a i ǫ , the two b i ǫ and cǫ are indefinitely differentiable on [0, 1), 4 i=1 a i ǫ p i is uniformly coercive on V ℓ 0 in any closed sub-interval of [0, 1), the p i 's and the q i 's are continuous on V ℓ 0 . Hence, we can use Lemma 18 and Remark 6 of the Appendix with λ = ǫ, Λ = [0, 1) and H = V ℓ 0 equipped with the norm of H 1 (Ω ℓ 0 ) to obtain that ǫ → Pǫ(ℓ) is indefinitely differentiable on [0, 1).

Let us prove now the uniform convergence of Pǫ to P 0 and more precisely that there exists C > 0 such that ∀ℓ ∈ [0, L] and ǫ small enough, |Pǫ(ℓ) -

P 0 (ℓ)| ≤ Cǫ. Let ℓ ∈ [0, L]. Taking v = 0 in (50), we get Pǫ(ℓ) ≤ cǫ ≤ µ and hence ∇ U ℓ ǫ Ω ℓ ǫ ≤ √ 2.
We easily check that there exists α > 0 such that

4 i=1 a i ǫ p i (u, u) ≥ α |∇u| 2 Ω ℓ ǫ for ǫ small
enough and for all u ∈ U ℓ 0 . (Remark that only p 1 depends on ℓ.) By (62), we get

4 i=1 a i ǫ p i (v ℓ ǫ , v ℓ ǫ ) + 4 i=1 a i ǫ -a i 0 ǫ p i ( U ℓ ǫ , v ℓ ǫ ) = 0 where v ℓ ǫ = ( U ℓ ǫ -U ℓ 0 )/ǫ. Hence, ∇v ℓ ǫ Ω ℓ ǫ ≤ C. Since Pǫ(ℓ) -P 0 (ℓ) = 4 i=1 a i ǫ p i (U ℓ 0 + ǫv ℓ ǫ , U ℓ 0 + ǫv ℓ ǫ ) - 4 i=1 a i 0 p i (U ℓ 0 , U ℓ 0 ) = 4 i=1 (a i ǫ -a i 0 )p i (U ℓ 0 , U ℓ 0 ) + 2ǫ 4 i=1 a i ǫ p i (U ℓ 0 , v ℓ ǫ ) + ǫ 2 4 i=1 a i ǫ p i (v ℓ ǫ , v ℓ ǫ ),
we get |Pǫ(ℓ) -P 0 (ℓ)| ≤ Cǫ.

For the convergence of P ′ ǫ , we start from Proposition 7 and ( 25), and note that

U ℓ ǫ = U ℓ ǫ in R L 0 . Using ∇v ℓ ǫ Ω ℓ ǫ
≤ C and comparing ( 25) with ( 29) we easily deduce the uniform convergence on any [l 1 , l 2 ] with 0 < l 1 < l 2 < L. Its extension up to L needs to use the special transformation (42) and the estimates obtained in Proposition 11. The proof is left to the reader.

Remark 5 Note that there is no singular behavior of Pǫ at ǫ = 0. At given ℓ, the transformation of a crack into a notch is a regular perturbation, at least as long as one considers only the energy but not its derivative with respect to ℓ.

Onset and evolution of the crack

The surface energy is independent of ǫ and simply reads S(ℓ) = Gcℓ. Therefore, if one chose the units in such a manner that Gc = 1, the maps Pǫ • S -1 and gǫ • S -1 could be identified with Pǫ and Gǫ := -P ′ ǫ , respectively. We establish in this subsection the main properties of the crack evolution which depend on whether we consider the G-law or the FM-law, and on whether ǫ = 0 or 0 < ǫ < 1. Moreover, we will distinguish, among these properties, the ones which do not use the conjecture.

Proposition 14 For a genuine notch, i.e. when 0 < ǫ < 1, the unique solution of the G-law is ℓ ǫ (t) = 0 for all t ≥ 0.

On the other hand, each solution t → ℓ ǫ (t) of the FM-law necessarily enjoys the following properties:

1. There exists t ǫ i > 0 and ℓ ǫ i ∈ (0, L) such that ℓ ǫ (t) = 0 for t < t ǫ i and ℓ ǫ (t ǫ i +) = ℓ ǫ i ; 2. t ǫ i and ℓ ǫ i satisfy

Pǫ(ℓ ǫ i ) -Pǫ(0) = ℓ ǫ i P ′ ǫ (ℓ ǫ i ), t ǫ i = Gc -P ′ ǫ (ℓ ǫ i ) (52) 
3. The crack cannot reach the end L in a finite time, but lim t→∞ ℓ ǫ (t) = L.

Proof. Since P ′ ǫ (0) = 0, the first part of the Proposition is a direct consequence of Proposition 1 and ℓ ǫ = 0 is the unique solution of the G-law. For the second part, we can use Proposition 5. Since P ′ ǫ (L) = 0, we are in the case 2 and L cannot be reached at a finite time.

When ǫ = 0, if we adopt the Conjecture 1, we can use Propositions 2 and 4 to obtain Proposition 15 Under the Conjecture 1, when ǫ = 0, the G-law and the FM-law admit the same and unique solution given by

ℓ 0 (t) = 0 if t ≤ t 0 i = Gc -P ′ 0 (0) (P ′ 0 ) -1 (-Gc/t 2 ) if t ≥ t 0 i (53)
Note again that L cannot be reached at a finite t because P ′ 0 (L) = 0. Comparing the two preceding Propositions, we immediately see that the evolution predicted by the G-law is not continuous with respect to the parameter ǫ. On the other hand, the evolution given by the FM-law is continuous with respect to ǫ as it is shown in the following Proposition. Note that the first part of the continuity property is established without having recourse to the conjecture.

Proposition 16 At each t ≥ 0, a solution ℓ ǫ (t) of the FM-law corresponding to ǫ > 0 converges pointwise to a solution ℓ 0 (t) of the FM-law corresponding to ǫ = 0 when ǫ goes to 0. Furthermore, the Conjecture 1, the initiation length ℓ ǫ i converges to 0 and the initiation loading t ǫ i converges to t 0 i when ǫ goes to 0.

Proof. Fix t ≥ 0. For ǫ ∈ [0, 1), a solution ℓ ǫ (t) of the FM-law is a minimizer of the energy at t, i.e.

t 2 Pǫ(ℓ ǫ (t)) + Gcℓ ǫ (t) ≤ t 2 Pǫ(l) + Gcl, ∀l ∈ [0, L]. (54) 
When ǫ goes to 0, since ℓ ǫ (t) is bounded, there exists a subsequence (still denoted by ℓ ǫ (t)) which converges to some ℓ 0 (t). By virtue of Proposition 13, we can pass to the limit in the optimality condition above and obtain

t 2 P 0 (ℓ 0 (t)) + Gcℓ 0 (t) ≤ t 2 P 0 (l) + Gcl, ∀l ∈ [0, L].
Hence, ℓ 0 (t) is a solution of the FM-law corresponding to ǫ = 0. By lack of uniqueness, we cannot say more without invoking the conjecture. Under the conjecture 1, since the response is unique when ǫ = 0, all the sequence ℓ ǫ (t) converges to ℓ 0 (t) given by (53). Moreover, the sequence ℓ ǫ i is bounded, we can extract a subsequence (still denoted ℓ ǫ i ) converging to some ℓ 0 i . If ℓ 0 i = 0, we can use Proposition 13 and, passing to the limit in (52) 1 , we get P 0 (ℓ 0 i ) -P 0 (0) = ℓ 0 i P ′ 0 (ℓ 0 i ).

But since P 0 is supposed strictly convex, the unique solution is ℓ 0 i = 0. Hence all the sequence ℓ ǫ i converges to 0. Since t ǫ i ≤ GcS(L)/(Pǫ(0) -Pǫ(L)), the sequence t ǫ i is bounded. Extracting a subsequence converging to, say, t * i , setting t = t ǫ i in (54) and passing to the limit, we get

(t * i ) 2 P 0 (0) ≤ (t * i ) 2 P 0 (l) + Gcl, ∀l ∈ [0, L].
Hence t * i ≤ t 0 i . Now, by conjecture 1, we have t ǫ i ≥ Gc/(-P ′ 0 (ℓ ǫ i )). Passing to the limit when ǫ goes to 0, we get t * i ≥ t 0 i . Hence t * i = t 0 i and all the sequence t ǫ i converges to t 0 i . Note that we deduce, from the convergence of t ǫ i to t 0 i , the convergence of P ′ ǫ (ℓ ǫ i ) to P ′ 0 (0) and hence we have lim ǫ↓0 P ′ ǫ (ℓ ǫ i ) = P ′ 0 (0) < 0 = lim ǫ↓0 P ′ ǫ (0).

The last property will concern the concept of barrier of energy. Let ǫ ∈ (0, 1) and let us set Eǫ(t, l) = t 2 Pǫ(l)+Gcl. Note first that l = 0 is a strict local minimum of E(t, •) for all t, because P ′ ǫ (0) = 0. Indeed, for every t, ∂Eǫ(t, 0)/∂ℓ = Gc > 0 and hence there exists l t > 0 such that Eǫ(t, 0) < Eǫ(t, l) for all l ∈ (0, l t ). At time t ǫ i , when a crack of length ℓ ǫ i appears, both l = 0 and l = ℓ ǫ i are global minimizers, Eǫ(t ǫ i ) := Eǫ(t ǫ i , 0) = Eǫ(t ǫ i , ℓ ǫ i ) and we have E(t, l) ≥ Eǫ(t ǫ i ) for all l ∈ [0, ℓ ǫ i ]. Since the inequality is strict in a part of the interval, the body must cross a barrier of energy to jump to the new global minimizer. We can define this barrier as

Bǫ = max l∈[0,ℓ ǫ i ] {Eǫ(t ǫ i , l) -Eǫ(t ǫ i )}. ( 55 
)
Since Bǫ > 0, a maximiser ℓ ǫ * i is necessarily in the open interval (0, ℓ ǫ i ) and hence such that ∂Eǫ(t ǫ i , ℓ ǫ * i )/∂ℓ = 0. Therefore ℓ ǫ * i is such that P ′ ǫ (ℓ ǫ * i ) = P ′ ǫ (ℓ ǫ i ), see Proposition 6 and Figures 1 and7. The energy barrier can then be read

Bǫ = Gcℓ ǫ * i -(t ǫ i ) 2 (Pǫ(0) -Pǫ(ℓ ǫ * i )). ( 56 
)
On the other hand, under the conjecture 1, the crack evolves continuously with t when ǫ = 0 and there is no barrier of energy. Thus, we can expect that the continuity property remains true for the barrier of energy and that the barrier will progressively disappear for small ǫ. It is confirmed by the following Proposition 17 Under the conjecture 1, the barrier of energy Bǫ that the body must cross when the crack initiates tends to 0 when ǫ tends to 0.

Proof. We know by Proposition 16 that t ǫ i tends to t 0 i and that ℓ ǫ i tends to 0 when ǫ → 0. Since 0 < ℓ ǫ * i < ℓ ǫ i , lim ǫ→0 ℓ ǫ * i = 0. Using Proposition 13, we can pass to the limit in (56) and obtain lim ǫ→0 Bǫ = 0. (It is even easy to show that Bǫ ≤ Cℓ ǫ * i ).

4 Numerical computations 4.1 Numerical procedure to compute Pǫ(ℓ) and Gǫ(ℓ)

All the computations are made with the finite element method and the industrial code COMSOL. They are made after introducing dimensionless quantities. The dimensions of the body are H = 1 and L = 5, the shear modulus µ = 1 and Gc = 1. For a given value of ℓ ∈ (0, L) and a given value of ǫ ∈ [0, 1), we use the symmetry of the body and of the load to mesh only its upper half and prescribe u = 0 on the segment ℓ ≤ x 1 ≤ L, x 2 = 0. We use 6-nodes triangular elements, i.e. quadratic Lagrange interpolations. The mesh is refined near the singular corners and a typical mesh contains 25000 elements and 50000 degrees of freedom. We compute the discretized solution (still denoted) U ℓ ǫ by solving the linear system. Then, the energy Pǫ(ℓ) and the energy release rate Gǫ(ℓ) := -P ′ ǫ (ℓ) are obtained by a post-treatment. The energy is simply obtained by a direct integration of the elastic energy density over the body. The derivative of the energy is obtained by using the formula [START_REF] Irwin | Fracture[END_REF], which needs to integrate the different parts of the elastic energy density over the two rectangles (0, ℓ) × (0, H) and (ℓ, L) × (0, H). (The cases ℓ = 0 and ℓ = L are treated by using specific meshes and we compute only U ℓ ǫ and Pǫ(ℓ).) For a given ǫ, we compute Pǫ(ℓ) and Gǫ(ℓ) for ℓ varying from 0 to 5, first by steps of 0.001 in the interval (0, 0.05), then by steps of 0.002 in the interval (0.05, 0.2), finally by steps of 0.01 in the interval (0.2, 5). The computations can be considered as sufficiently accurate for ℓ > 0.002. Below this value, if we try to refine the mesh near the corner of the notch, the results become mesh-sensitive, the linear system becomes bad-conditioned. Since all the interesting part of the graph of Gǫ is that close to ℓ = 0 when ǫ is small, we cannot obtain accurate results when ǫ is too small. (Of course, this remark does not apply when ǫ = 0, because ℓ = 0 is no more a "singular" case and we can use the formula (29).) Consequently, we have only considered values of ǫ larger than 0.02. In Figure 3 is plotted the graph of P 0 and G 0 . As expected in the first part of the conjecture, it appears that G 0 is decreasing and hence that P 0 is strictly convex. In the same Figure are plotted the graphs of Pǫ and Gǫ for ǫ = 0.1, 0.2, 0.3 and 0.4. It appears in the graph of Pǫ that the influence of ǫ is small and essentially visible for small values of ℓ, which is conform to the convergence result of Proposition 13. On the other hand, we know that Pǫ is not convex since P ′ ǫ (0) = 0. This loss of convexity is absolutely impossible to detect in the graph of Pǫ. It becomes visible in the graph of Gǫ where we see that Gǫ starts from 0 at ℓ = 0, then increases up to a maximal value at ℓ = ℓ ǫ c , then decreases to 0 when ℓ increases from ℓ ǫ c to L. This property has been checked for all tested values of ǫ. Consequently, we are exactly in the situation of Proposition 6. Note that the graph of Pǫ is below that of P 0 , in agreement with Proposition 12, but also that the graph of Gǫ is below that of G 0 , which corresponds to the second part of the conjecture. Figure 4 shows the influence of the angle of the notch on the energy and on the energy release rate for small cracks. We can note the monotony of the graphs with respect to ǫ, which confirms also the conjecture. It enables us to visualize the convergence result of Pǫ to P 0 and of Gǫ to G 0 proved in Proposition 13. In particular, we can see that Gǫ is rapidly increasing near ℓ = 0, that the maximum converges progressively to G 0 (0) = 0.482 and that ℓ ǫ c progressively decreases to 0. It is this singular behaviour near 0 which renders the computations less and less accurate for small ℓ when ǫ goes to 0.

Computed crack evolutions satisfying the FM-law

As we have remarked is the preceding subsection, we are in the situation of Proposition 6. For ǫ ∈ (0, L), a crack of length ℓ ǫ i initiates at t = t ǫ i , then the evolution of the crack satisfies both the G-law and the FM-law , since Gǫ is decreasing. The computation of the length of initiation ℓ ǫ i requires to solve the equation for ℓ

0 = Pǫ(0) -Pǫ(ℓ) -ℓGǫ(ℓ). (57) 
This is achieved by dichotomy, using the fact that the right-hand side of (57) is positive when ℓ > ℓ ǫ i and that ℓ ǫ i > ℓ ǫ c . For each tested value of ℓ, a new mesh is created, Pǫ(ℓ) and Gǫ(ℓ) are computed as explained above. The test of convergence is that the absolute value of the right-hand side of (57) must be less than 10 -6 . The value of ℓ ǫ i has been computed by this procedure for ǫ varying from 0.04 to 0.3 by steps of 0.02. The value of t ǫ i is obtained by (52). For t > t ǫ i , since t → ℓ ǫ (t) is increasing, we compute its inverse, that is we compute t for a given ℓ ∈ (ℓ ǫ i , L) by using the G-law property t = Gc/Gǫ(ℓ). The computed values of ℓ ǫ i are plotted in Figure 5. We see that the dependence of ℓ ǫ on ǫ is almost linear with a slope close to 0.5, i.e. ℓ ǫ i ≈ ǫH/2. The evolution of the length of the crack with t is plotted in Figure 6 for different values of ǫ. For ǫ = 0, the evolution is smooth while for ǫ = 0 we see the discontinuity at t = t ǫ i . But at a large scale (see the top figure), this discontinuity is practically invisible for small values of ǫ and the response is almost the same as that for ǫ = 0. That illustrates the continuity property of the FM-law. At a small scale (see the bottom figure), the discontinuity becomes visible, but the smaller ǫ the smaller the discontinuity.

The difference between the G-law and the FM-law can be seen on the evolution of the graph of ℓ → (Eǫ(t, ℓ) -Eǫ(t, 0)) with t. In Figure 7 is plotted the evolution of the graph of this energy difference for ǫ = 0.2. We can see that ℓ = 0 is always a local minimum and that the slope at ℓ = 0 is always equal to Gc. When t is close to 0, ℓ = 0 is the unique local minimizer (and hence the global minimizer). That remains true as long Fig. 6 Top: Graph of t → ℓ ǫ (t) on the full range of ℓ for five values of ǫ; Bottom: Graph of t → ℓ ǫ (t) at the beginning of the process for the five values of ǫ as t ≤ t ǫ c . At t = t ǫ c , a second local minimum appears but remains higher than that at 0 as long as t < t ǫ i . Therefore, because of the energy balance, the crack cannot initiate. At t = t ǫ i , the two local minima are at the same level and hence are both global minima. Therefore, the crack can initiate, but necessarily by jumping from 0 to ℓ ǫ i . As soon as t > t ǫ i , this second local minimum is below than that at 0 (and becomes the unique global minimum). Therefore, because of the second item of FM-law, the crack length must corresponds to this minimizer. The barrier of energy is visible. It corresponds to the increment of energy at ℓ = ℓ ǫ * i when t = t ǫ i . For ǫ = 0.2, ℓ ǫ i /H = 0.113 and the relative energy barrier Bǫ/P(t ǫ i , 0) = 6.2 10 -4 . By comparison, when ǫ = 0, the evolution of the graph of ℓ → (E 0 (t, ℓ) -E 0 (t, 0)) with t is completely different, because of the strict convexity of P 0 , see Figure 8. We can see that ℓ = 0 is both the unique local minimizer and the global minimizer as long as t ≤ t 0 i . As soon as t > t 0 i , ℓ = 0 is no more a local minimizer, but a new unique local (and hence global) minimizer appears. At the beginning, it is close to 0, then it increases progressively. The example of the notch-shaped body confirms the general analysis of Section 2: only the FM-law is really able to account for the initiation of a crack in a sound body, at least in the setting of Griffith's energy assumptions. Moreover, the fact that this law ensures the continuity of the response with respect to the angle of the notch is sufficient to reaffirm its interest. On the other hand, the lack of continuity of Griffith's criterion proves definitively its incapacities. It is certainly possible to extend the main results of this paper to more general situations, like 3D domains and non predefined crack paths. However, the most interesting issue is probably to leave the context of global minimization and to obtain similar results in the more convenient context of local minimization. It is not an easy task, because the elastic response is in general always a local minimum. Thus, the key point is to propose a criterion which allows to jump from a local minimum to another one, under the condition that these local minima are sufficiently close in a certain sense (in terms of energy barrier for example). This type of criterion could be obtained by starting from regularized models like cohesive forces models and by passing to the limit in the regularizing parameter, in the spirit of [START_REF] Marigo | Initiation and propagation of fracture in the models of Griffith and Barenblatt[END_REF] or [START_REF] Giacomini | Size effects on quasi-static growth of cracks[END_REF].

A Differentiability of the potential energy

The proofs of the differentiability of ℓ → Pǫ(ℓ) and of the smoothness of Pǫ(ℓ) with respect to ǫ are based on a change of variables which sends the parameter dependent domain onto a fix domain. Then, a part of the regularity results are a direct consequence of the following Lemma Lemma 18 Let H be an Hilbert space with norm • and let Λ be a real interval. Let {p i } 1≤i≤m be a family of continuous bilinear symmetric forms on H and {q i } 1≤i≤n a family of continuous linear forms on H. Let {a i λ } 1≤i≤m , {b i λ } 1≤i≤n and c λ be real-valued functions of λ, differentiable in Λ.

If p λ := m i=1 a i λ p i is coercive on H, uniformly with respect to λ, i.e.

∃α > 0 ∀λ ∈ Λ p λ (u, u) ≥ α u 2 , ∀u ∈ H, (58)

then the three following properties hold 1. For every λ ∈ Λ, the minimization problem min u∈H 1 2 p λ (u, u) + q λ (u) + c λ , with q λ := n i=1 b i λ q i , admits a unique solution u λ ; 2. The minimizer u λ is a differentiable function of λ on Λ and its derivative uλ ∈ H is given by

p λ ( uλ , v) + m i=1 ȧi λ p i (u λ , v) + n i=1 ḃi λ q i (v) = 0, ∀v ∈ H, (59) 
where the dot denotes the derivative with respect to λ. 3. The minimum P λ := 1 2 p λ (u λ , u λ ) + q λ (u λ ) + c λ is a differentiable function of λ on Λ and its derivative is given by Ṗλ = 1 2 m i=1 ȧi λ p i (u λ , u λ ) + n i=1 ḃi λ q i (u λ ) + ċλ .

(60)

Proof. The proof presents no difficulty and we only give the main steps.

1. Existence and uniqueness of u λ . It is a direct consequence of the coercivity of p λ and the continuity of q λ , see [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF]. Moreover u λ satisfies the variational equality p λ (u λ , v) + q λ (v) = 0, ∀v ∈ H.

(61)

2. Differentiability of u λ and characterization of uλ . Let v h := (u λ+h -u λ )/h with h = 0 small enough (and with h having the right sign if λ is a bound of Λ). Using the variational equalities (61) satisfied by u λ and u λ+h , we get

p λ+h (v h , v) + m i=1 a i λ+h -a i λ h p i (u λ , v) + n i=1 b i λ+h -b i λ h q i (v) = 0, ∀v ∈ H (62) 
from which we deduce that the sequence v h is bounded in H. Hence a subsequence weakly converges in H. Passing to the limit in (62), we obtain that the limit uλ satisfies (59) and hence is unique. Therefore, all the sequence v h weakly converges to uλ . To prove that it converges strongly, it suffices to prove that lim h→0 p λ (v h , v h ) = p λ ( uλ , uλ ). Setting v = v h in (62) and passing to the limit when h → 0, we get ḃi λ q i ( uλ ).

  ) -P(ℓ) Lℓ with similar definitions for S ′ (0) and S ′ (L).

  and we use the fact that U 0 ǫ ∈ U ℓ ǫ . Let σǫ = µ∇U 0 ǫ . Since divσǫ = 0 in B 2ℓ ∩ Ωǫ and σǫ • n = σ ǫθ = 0 on ∂Ωǫ ∩ B 2ℓ , there exists an Airy function ψǫ ∈ H 1 (Ωǫ ∩ B 2ℓ ) such that ψǫ = 0 on ∂Ωǫ ∩ B 2ℓ and rσǫr = µψ ǫ,θ , σ ǫθ = -µψǫ,r in B 2ℓ ∩ Ωǫ, see Remark 3. Let us construct a statically admissible stress field τ as follows:
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 23 Fig. 3 Top: Graph of ℓ → Pǫ(ℓ) on the full range of ℓ for five values of ǫ; Bottom: Graph of ℓ → Gǫ(ℓ) on the full range of ℓ for five values of ǫ
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 44 Fig. 4 Top: Graph of Pǫ near ℓ = 0 for the five values of ǫ; Bottom: Graph of Gǫ near ℓ = 0 for the five values of ǫ
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 5758 Fig. 7 Graph of ℓ → (Eǫ(t, ℓ) -Eǫ(t, 0)) when ǫ = 0.2 for different values of t. The thick black curve corresponds to the initiation loading t ǫ i . It gives both the initiation length ℓ ǫ i and the energy barrier Bǫ at ℓ ǫ * i

  lim h→0 p λ (v h , v h ) = -m i=1 ȧi λ p i (u λ , uλ ) -n i=1

  and only if t ∈ [0, t i ]. Since the inequality is strict when t ∈ [0, t i ), then ℓ(t) = 0 is the unique solution in this interval because of the initial condition and the energy balance. By continuity, it is also the unique solution in the closed interval [0, t i ].Thus, if P ′ (0) = 0, no initiation of crack is possible with the G-law , whereas if P ′ (0) < 0, a crack should appear at t i . But what happens for t > t i in this latter case depends on convexity properties of the energy by virtue of the following Proposition 2 Assume that P ′ (0) < 0 and let 0 < ℓ f ≤ L. The G-law admits a solution in the interval [t i , t f ] such that the crack length grows from 0 to ℓ f if and only if g is decreasing in the interval [0, ℓ f ]. In such a case, the solution is unique and given by ℓ

Comparing with [START_REF] Needleman | Micromechanical modelling of interface decohesion[END_REF] and [START_REF] Negri | A comparative analysis on variational models for quasi-static brittle crack propagation[END_REF], we obtain dσ * 1 = σ 0 1 . Hence, all the sequence converges weakly. To obtain the strong convergence, we consider

Using ( 35)- [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF], we get

⊡

Step 4 : Continuity of P ′ ǫ at 0. We start from [START_REF] Marigo | Global approach, relative minima and yield criterion in Fracture Mechanics[END_REF] and write

2 dx (40)

Passing to the limit when ℓ → 0, we get

Making the inverse change of variable x → φ -1 0 (x) in the integral of the latter equation and using Proposition 8, it follows that the second path-integral is equal to J I 0 like the first one. (There is no discontinuity of the path integral at l = 0 because the singularity at O is weak). Hence lim ℓ→0 P ′ ǫ (ℓ) = 0.

⊡

Note that we could also get P ′ ǫ (0) = 0 from the estimates obtained in Step 3. Moreover, we could refine these estimates to obtain the leading term(s) in the expansion of Pǫ(0)-Pǫ(ℓ) with respect to ℓ, following the method presented in [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF] for the calculation of energy release rates and based on blow-up techniques, but it is beyond the scope of this paper.

Case

The proof of the regularity of Pǫ at L is fairly similar to that at 0: we must introduce a new change of variable to compare U L ǫ with U ℓ ǫ and we benefit from the fact that the singularity disappears when ℓ = L. Indeed, when ℓ = L, the boundary conditions become u ,2 (x 1 , 0) = 0 and u(L, x 2 ) = 0 near (L, 0), i.e. a change of boundary conditions

Check of the monotonicity of Pǫ and some conjectures

The strict monotonicity of Pǫ is obtained via harmonic properties of U ℓ ǫ . Specifically, we have Proposition 12 For each ǫ ∈ [0, 1), ℓ → Pǫ(ℓ) is decreasing, and, for each ℓ ∈ [0, L], ǫ → Pǫ(ℓ) is decreasing.

ǫ ⊃ U l1 ǫ and since Pǫ(ℓ) is the minimum of the elastic energy over U ℓ ǫ for each ℓ, we have Pǫ(l 2 ) ≤ Pǫ(l 1 ). Let us prove that the inequality is strict, by contradiction. Assume that Pǫ(l 2 ) = Pǫ(l 1 ), then, because of the uniqueness of the minimizer of the elastic energy over U ℓ ǫ for each ℓ, we have

ǫ is an harmonic function on Ω l1 ǫ . Consider the line segment 

All the above properties of monotonicity or regularity of Pǫ and its derivatives might remain true in a more general setting because their proofs do not actually rest on the particular data of the loading and the geometry. Other properties, like the positivity of -P ′ 0 (0) or the positivity of -P ′ ǫ in (0, L), are expected. However, at the present time, we are not able to derive them by analytic arguments and must check them by finite element computations. As regards convexity properties of Pǫ, the situation is quite different because such properties are strongly dependent on the geometry, the type of loading and even on the locus where the displacements or the forces are applied. In our particular case, for reasons invoked below, we can expect some convexity properties like the strict convexity of P 0 . But, their check will be also numerical. Consequently, we set all the additional properties needed for the sequel as the following conjecture Conjecture 1 P 0 is strictly convex and P ′ ǫ ≥ P ′ 0 , ∀ǫ ∈ [0, 1). Note that the strict convexity of P 0 implies that P ′ 0 (0) < 0 because P 0 is decreasing. Let us give some arguments in favor of this conjecture.

1. If the body is slender, i.e. if the ratio H/L is small, we can construct fairly good approximations of P 0 (ℓ) for ℓ enough far from 0 and L with the help of asymptotic methods. Indeed, it is easy to prove that µH/ℓ is the leading term of the expansion of P 0 (ℓ) when H/L goes to 0. Since µH/ℓ is strictly convex, we can expect that so is P 0 at least enough far from 0 and L. Since P ′ 0 (L) = 0, P 0 is certainly strictly convex near ℓ = L. 2. We know by Proposition 12 that Pǫ ≤ P 0 , i.e. the smaller the amount of matter, the smaller the elastic energy. We can expect that the same type of inequality holds for the energy release rates, but there is no variational arguments available at the present time.

Setting v = uλ in (59), the result follows.

3. Calculation of Ṗλ . Differentiating P λ leads to Ṗλ = p λ (u λ , uλ ) + q λ ( uλ ) + 1 2 m i=1 ȧi λ p i (u λ , u λ ) + n i=1 ḃi λ q i (u λ ) + ċλ .

Using (61) with v = uλ , we obtain (60). Note that the calculation of Ṗλ does not require the calculation of uλ but only that of u λ .

Remark 6 By induction, we can adapt this Lemma to prove that u λ and P λ are differentiable as many times as are the a i λ 's, the b i λ 's and c λ . Thus, if these latter functions are indefinitely differentiable, then the former ones too.