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Four-wave interaction in gas and vacuum. Definition of a third order nonlinear effective susceptibility in vacuum : ) 3 ( vacuum χ

Semiclassical methods are used to study the nonlinear interaction of light in vacuum in the context of four wave mixing. This study is motivated by a desire to investigate the possibility of using recently developed powerful ultrashort (femtosecond) laser pulses to demonstrate the existence of nonlinear effects in vacuum, predicted by quantum electrodynamics (QED). An approach, similar to classical nonlinear optics in a medium, is developed in this article. A third order nonlinear effective susceptibility of vacuum is then introduced .

Introduction

It has been known for some time now that quantum electrodynamics (QED) predicts the existence of a nonlinear interaction between electromagnetic fields in vacuum [1][2][3][4][5][6][7].

The effects caused by the vacuum polarization are various. Electric or magnetic anisotropy of vacuum, are the subject of interesting theoretical and experimental research. For example the PVLAS [START_REF] Bakalov | Experimental method to detect the magnetic birefringence of vaccum[END_REF]9] is a experiment designed to measure the vacuum magnetic birefringence. It is based on a very sensitive ellipsometer and on the use of a strong magnetic field and weak laser beams.

In our laboratory, progress in powerful ultrashort (femtosecond) laser pulses [10] is an opportunity for studying QED phenomena in intense laser beams electromagnetic fields. The four wave nonlinear optical mixing process (FWM) in vacuum seems to be also a interesting way to study vacuum nonlinearities [11][12][13][14]. In the present work, we analyze the achievability of FWM in vacuum, and then we compare these theoretical results with FWM in a medium. A third order nonlinear effective susceptibility of vacuum, is a new and easy way to compute the number of generated photons in vacuum. In the last part of this article, a numerical estimation of the theoretical power required to stimulate one photon by FWM with an ultrashort laser pulse is performed.

The power of existing laser pulses [10] is only a few orders of magnitude from this theoretical estimation. Nevertheless, an experimental program is underway at Ecole Polytechnique to search for possible non-QED new physics in photon-photon elastic scattering at low photon energies (electron volts). A two beam experiment was performed in 1995, where an IR and a green laser beam were brought to a head-on collision in vacuum, and possible scattered photons were searched at angle [15]. A FWM experiment was also performed recently in 1997 [START_REF] Bernard | Search for stimulated Photon-Photon scattering in vacuum[END_REF] with three focused beams crossing each other in a three-dimensional geometry. A new two-dimensional FWM experiment is proposed with two beams at the same wavelength ( λ 1 =λ 2 =800 nm) and a third beam generated by a parametric oscillator at λ 3 =1300 nm. Stimulated photons at λ 4 =577 nm were expected in gas or perhaps in vacuum.

Fundamental equations

We start with the Lagrange-function density Λ, including the Euler-Heisenberg radiation correction term, δΛ, induced by vacuum polarization [1] : we obtain Maxwell's equations [START_REF] Berestetskii | Quantum Elect[END_REF] :
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with P r and M r , the nonlinear vacuum electric and magnetic polarization vectors, given by [START_REF] Berestetskii | Quantum Elect[END_REF]:
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Finally we obtain [11] :
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With Maxwell's equations, we obtain the propagation equation of the electric field:
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Equation ( 2) is also valid in a nonlinear medium with different r P and r M expressions including linear and nonlinear terms.

Calculation of four-wave mixing

3-1 Definitions and initial equation

We consider three electromagnetic waves ) , ( 
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The deviation from the exact synchronization condition is negligible if ∆k.L<<1 with L the interaction length and ) (
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. For crossed light beams in vacuum or in low gas pressure we consider that the phase matching condition is satisfied :
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In the general case of linearly polarized beams, we introduce the complex electric and magnetic fields :
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We define the z axis as the direction 4 k r of the generated field ) , ( 
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the transverse Laplacian.

This equation describes the growth of 04 E , both in a medium and in vacuum where the phase matching condition is satisfied.

3-2 Influence of field derivative terms in Lagrangian

A modified version of the Heisenberg-Euler theory in which the Lagrangian incorporates terms with field derivates, can be used to take into account vacuum dispersion. In our FWM experiment we show that the influence of these terms is negligible.

In the lowest approximation in dispersion and nonlinearity we have [12][13][14] :
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We study the influence of a intense electromagnetic field, ) , (
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, on the propagation of a pulse laser beam ) , (
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. The interaction of two waves, rather than three, satisfied the synchronization conditions if :
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For simplicity we consider the case of two oppositely directed waves with the same linear polarization states. A small deviation of the refractive index from unity , n δ , is calculated at a fixed polarization in the absence of dispersion (g=0). Using Maxwell equations we obtain the
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The spread of pulse is characterized by the quadratic dispersion parameter , which is much larger than typical interaction length in a crossed beams geometry.

We see that vacuum dispersion does not occur in FWM experiment. Self-action of radiation or other nonlinear optics effects in vacuum are also negligible in this case.

3-3 Third order nonlinear effective susceptibility in a gas :

) 3 ( gas χ Because of the inversion symmetry in gas only odd order interactions are allowed through electric dipole coupling. We study FWM in a low pressure gas where the phase matching condition is satisfied. In a non magnetic case, χ by the relations : 
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Assuming the same differential equation ( 7) for vacuum and gas, we obtain :
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The wave vector polarization of the generated field is
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K is maximum for degenerate four-wave mixing (phase conjugation) with a value of 14 In contrast with the usual problems of nonlinear optics, the vacuum is characterized by both the electric and the magnetic nonlinear polarizations simultaneously. In opposition to the gas case, ) 3 ( vacuum χ depends both on the laser polarization and also on the laser beam geometry. It is not possible to use here a nonlinear susceptibility tensor. Therefore, for each experimental configuration an effective scalar susceptibility will be easily calculated.

3-5 Critical gas pressure

A critical gas pressure, p cr , can be defined when the number of generated photons is equal in vacuum and in gas. It is, of course, realized when For example with λ 1 =λ 2 =λ 0 =800nm and λ 3 =1300nm we obtain λ 4 = 577nm. In figure 3 α 3 , α 4 and K (for 

3-7 Number of generated photons

We now calculate the number of photons generated by FWM in a gas or vacuum, by solving equation (7) for different laser profiles and for the plane wave approximation.

3-7-1 Plane wave approximation

With the plane wave approximation, equation ( 7) reads :
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We define an interaction length L and we assume that the electric field E 04 is equal to zero at z=-L/2, and becomes maximum at z=+L/2. After integration over the interaction length, L, we obtain the maximum electric field at z=L/2 :
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We obtain the number of photons N 4 generated by four wave mixing by integration :

dt d L z E E c N ρ ρ ω πε ) 2 / ( 04 04 0 4 0 4 = = * ∞ + ∞ - ∞ + ∫ ∫ h (12) 

3-7-2 Parallel gaussian beams

First we assume three Gaussian collinear pump pulses :
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for j=1,2,3 with w 0j the beam waist at 1/e field radius, and τ the pulse duration. With ultrashort pulses, cτ < L , we use L=cτ in relation (13). A numeric form for (13) in the vacuum case is : 
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3-7-3 Gaussian collinear focused beams

We consider now three Gaussian collinear pump beams focused to a common point at z=0 : ).
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The resolution of equation (10) gives the same relation (13) with L= L eq , where L eq is an equivalent interaction length defined by :
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In the collinear approximation, L eq is often close to b.

A review of effects of focusing on third-order nonlinear processes in isotropic media is done by Bjorklund [19] 

3-7-4 Non collinear Gaussian focused beams

The laser beams propagate in different directions with different wavelengths. Therefore, the collinear approximation is not valid. A numerical program is made to obtain an equivalent interaction length, L eq , by using Gaussian beams with the following expression :
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where x j , y j , z j are functions of x, y, z, the coordinates of the generated beam. In the following section the equivalent length is computed with non collinear beams. In the non collinear approximation, L eq is often close to w 0 .

3-7-5 Numerical applications

In the case of λ 1 =λ 2 =800nm, λ 3 =1300nm, λ 4 = 577nm an experimental 2D configuration is obtained, as in figure (3), for α 2 =110°. Then we compute α 3 = -44° , α 4 = 81° and K=6.5.

For ultrashort laser pulses (τ=30fs) and in the diffraction limit with focal spots w 01 =w 02 =w 03 =5µm, we compute L eq =4.4µm. We then need ε 1 ε 2 ε 3 =5.10 5 J 3 or ε 1 =ε 2 =ε 3 =80

J to obtain one photon per laser shot. Using a 10Hz repetition rate laser and with beam energies of ε 1 =ε 2 =12J, ε 3 =100 mJ, we obtain one photon per hour.

3-7-6 FWM experiment

A three beam experiment with ultrashort laser pulses (τ=40fs) was performed recently [START_REF] Bernard | Search for stimulated Photon-Photon scattering in vacuum[END_REF].

Two laser beams at 805nm produced by a Ti :Saphire laser, and a third beam at 1300nm generated by a parametric oscillator, were brought to collision in vacuum. The three beams were focused by a single optic made of a pair of spherical mirrors (Bowen) in a 3-dimensional configuration. Stimulated photons at λ 4 ≈ 561nm were observed in a gas jet but not in vacuum. The parameters of the experiment were : w 01 =w 02 =4µm, w 03 =6µm, ε 1 =15mJ, ε 2 =5.5mJ ε 3 =20µJ. The numerical calculation gives K ≈ 0.56 and L eq ≈ 5 µm. Taking into account loss factors (photomultiplier efficiency, spectrometer transmission ...), we obtain finally a theoretical prediction of (N 4 ) vacuum ≈ 6.2 10 -20 photons per shot while the observed limit is 6 10 -3 photons per shot. The experimental result is 17 order of magnitude under QED prediction. Several orders of magnitude could be gained by an improvement in the tuning of the laser, the OPA, and by further work on the background noise.

Conclusion

We have compared the calculation of four wave mixing in vacuum and in a gas. The identical form of the equation giving the growth rate of the fourth beam allowed us to define a third order nonlinear susceptibility in vacuum, ) 3 ( vacuum χ . This susceptibility is computed for a geometric laser configuration in two or three dimensions. Some experimental arrangements are proposed to eventually observe four wave mixing in vacuum with powerful laser beams.

Numerical estimations are made with ultrashort laser pulses. For instance, the purpose of the experimental program underway at Ecole Polytechnique, is to search for possible non-QED new physics at low photon energies, but, with the evolution of laser technology, the QED effect predicted in low energy will probably be observed in a few years.
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Fig 1 :

 1 Fig 1 : definition of the angle of the four beams. Beam 1 defines the reference axis.

Fig 3 :

 3 Fig 3 : Angle values for beam 4 (stimulated beam) and laser beam 3, versus α 2 in degrees, with λ 1 =λ 2 =800nm and λ 3 =1300nm. K is the geometric factor.

  beam energy . Relation (13) is only valid when cτ > L.
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Geometric configuration for optical phase conjugation.

3-6-2 Optical phase conjugation

This case is obtained for a degenerate four-wave mixing ω 1 = ω 2 = ω 3 = ω 4 = ω 0 . The energymomentum conservation condition (3), is verified in this case only for a configuration with at least two head-on laser beams as shown in figure 2 .

The fourth beam is then generated at the opposite direction of the third laser beam at 

3-6-3 Non degenerate four-wave mixing

Optical phase conjugation uses four beams at the same wavelength. This experimental set-up is nearly impossible to realize because of the difficulties of detecting some generated photons in an intense noise background at the same wavelength. A two-dimensional set-up is proposed to detect generated photons with a different wavelength and different angle. We study the interesting case of two beams with the same wavelength λ 1 =λ 2 and a third beam at λ 3 .