
HAL Id: hal-00501869
https://polytechnique.hal.science/hal-00501869

Submitted on 13 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of specific nanoparticles for targeting tumor
angiogenesis using electron-beam irradiation

Stéphanie Deshayes, Victor Maurizot, Marie-Claude Clochard, Thomas
Berthelot, Cécile Baudin, Gérard Deleris

To cite this version:
Stéphanie Deshayes, Victor Maurizot, Marie-Claude Clochard, Thomas Berthelot, Cécile Baudin, et
al.. Synthesis of specific nanoparticles for targeting tumor angiogenesis using electron-beam irradia-
tion. Radiation Physics and Chemistry, 2010, 79, pp.208-213. �10.1016/j.radphyschem.2009.09.007�.
�hal-00501869�

https://polytechnique.hal.science/hal-00501869
https://hal.archives-ouvertes.fr


1 

 

 

Synthesis of specific nanoparticles for targeting and imaging tumor 

angiogenesis using electron-beam irradiation 
 

Stéphanie Deshayes
a,b,*

, Victor Maurizot
a
, Marie-Claude Clochard

b
, Thomas Berthelot

b
, 

Cécile Baudin
b
, Gérard Déléris

a
. 

 
a
Université de Bordeaux, UMR CNRS 5084, CNAB, Chimie Bio-Organique, 33076 Bordeaux. 

b
Ecole Polytechnique, CEA, UMR CNRS 7642, Laboratoire des Solides Irradiés, 91128 

Palaiseau. 

 

Abstract 

  Angiogenesis plays a critical role in both growth and metastasis of tumors. Vascular 

endothelial growth factor (VEGF) is an endogenous mediator of tumor angiogenesis. 

Blocking associations of the VEGF with its corresponding receptors (KDR) have become 

critical for anti-tumor angiogenesis therapy. A cyclo-peptide (CBO-P11), derived from 

VEGF, able to inhibit angiogenesis was synthesized in our laboratory. We have prepared 

biocompatible poly(vinylidene fluoride) (PVDF) nanoparticles in order to obtain long 

circulating drug delivery systems. These particles were characterized and they were found 

monodisperse with a mean radius of 60 nm. Electron-beam (EB) irradiation was used to 

activate PVDF nanoparticles. From electron paramagnetic resonance (EPR) measurements, 

we studied the radical stability in order to optimize the radiografting of acrylic acid (AA). 

Further functionalization of PVDF-g-PAA nanoparticles with the cyclo-peptide via a spacer 

arm was also possible by performing coupling reactions. High resolution magic angle 

spinning nuclear magnetic resonance (HRMAS NMR) and MALDI mass spectrometry 

allowed us to follow each chemical step of this peptide immobilization. 7727-21-1 
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1. Introduction 

   Angiogenesis, the formation of new capillary blood vessels from pre-existing vasculature, 

plays an essential role in normal processes, such as embryogenesis, wound healing and in 

pathological processes like tumor growth (Heljasvaara et al, 2005). Inhibition of angiogenesis 

represents then a promising strategy to block tumor growth and invasion. A number of 

endogenous angiogenic regulators such as VEGF, fibroblast growth factor (FGF) and 

angiopoietins have been identified (Zilberberg et al, 2003). VEGF and its receptors (VEGFR-

1 and VEGFR-2 which are tyrosine kinase activity) are frequently  up-regulated in a number 

of clinically important human diseases, including cancer, making them an attractive target for 

therapies (Miao et al, 2006). Different strategies have been designed to inhibit VEGF function 

by blocking its interaction with its receptor (Keedy et al, 2007; Zilberberg et al, 2003). A 17-

amino acid cyclo-peptide was previously described as a vascular growth inhibitor (CBO-P11) 

(Zilberberg et al, 2003). This molecule encompasses residues 79-93 of VEGF which are 

involved in the interaction with its receptor and shows a micromolar affinity for VEGFR-2. 

   In order to improve circulation time of the peptide, nanoparticles may be used for the 

transportation of the drug to the target tissue. Nanoparticles most commonly refer to solid 

colloidal particles made of macromolecular material ranging from 1 to 1000 nm. They can be 

used as drug carriers, either by dissolving, entrapping, encapsulating or attaching the active 

substance. Various types of carriers have been developed such as polymeric micelles, 

polymer-based nanoparticles and liposomes (Van Butsele et al, 2007). Therapeutically used 

polymeric nanoparticles are composed of biodegradable hydrophobic polymers protected by 

an amphiphilic block copolymer that stabilizes their dispersion in aqueous media (Sung et al, 

2007; Van Butsele et al, 2007). With regard to the hydrophobic core, we are interested in a 

fluorinated polymer, poly(vinylidene fluoride) (PVDF). This latter is a semicrystalline 
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thermoplastic, biocompatible polymer, remarkable for its physical and chemical resistance. In 

addition to numerous industrial applications, PVDF shows new interests in biotechnology 

(microporous and ultrafiltration membranes) and in biomedical activity (vascular sutures, 

regenerated templates) (Braga et al, 2007; Chen et al, 2006a; Chen et al, 2006b; Marchand-

Brynaert et al, 1997). However, no literature to our knowledge reports on the use of PVDF 

nanoparticles as a carrier for drug delivery.  

   The aim of the present paper is to immobilize of a bioactive peptide such CBO-P11 onto 

PVDF nanoparticles. PVDF presents a high hydrophobicity. Therefore, to improve its 

hydrophilicity, the nanoparticles were coated with poly(acrylic acid) (PAA) using electron-

beam irradiation to obtain a grafted copolymer, PVDF-g-PAA (Betz et al, 2003; Clochard et 

al, 2004). PAA carboxylic acid functions allow the coupling of a spacer arm to occur on 

nanoparticles and CBO-P11 was covalently linked to the spacer arm by click chemistry 

reaction (Scheme 1). Every step has been characterized by HRMAS NMR or MALDI mass 

spectrometry. 

2. Experimental part 

Synthesis of PVDF nanoparticles: The synthesis has taken place at PiezoTech SA. 

Poly(vinylidene fluoride) nanoparticles were prepared in a reactor under pressure by 

nanoemulsion polymerization of corresponding monomer (VF2) as described in a previous 

paper (Kappler et al, 2004). The monomer is emulsified in a continuous phase of water using 

potassium persulfate as initiator and perfluorooctanoic acid as ionic surfactant. These 

perfluorinated surfactants promotes micellization at low concentration (Moody et al, 2000). 

To stabilize the emulsion, paraffin wax was used as dispersing agent. 
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Irradiation: Samples of lyophilized PVDF nanoparticles were put inside sealed glass tubes 

under vacuum. Irradiations were performed at room temperature using a 10 MeV Pulsed 

Electron Beam industrial accelerator at Ionisos (Chaumesnil, France). Irradiation doses lies in 

range of 25 to 200 kGy. 

Grafting: The irradiated powder of lyophilized PVDF nanoparticles was dispersed into a 

grafting aqueous solution of AA. Grafting experiments were performed at 60°C for 1 h. At 

this temperature, two chemical reactions occur: i) thermal homopolymerization of AA, and ii) 

grafting reaction on the nanoparticles. Therefore, to avoid homopolymerization, we have 

added 0.25 wt% of Mohr’s salt (Scheme 1). The nanoparticles were purified by centrifugation 

and dialysis. Finally, they were freeze-dried to obtain a white powder of copolymer (PVDF-g-

PAA [1]). 

PVDF-g-PAA nanoparticles decoration: mTEG was coupled to [1] via an amide bond to the 

carboxylic acid function of PAA using ethyl-3(3dimethylaminopropyl)carbodiimide (EDC) in 

an aqueous solution at room temperature for 24 h (Scheme 1). The nanoparticles were 

purified by centrifugation and dialysis. Finally, they were freeze-dried to obtain a brown 

powder (PVDF-g-PAA-mTEG [2]). CBO-P11 or cyclo-VEGI (D-FPQIMRIKPHQGQHIGE) 

was synthesized by Fmoc/t-Bu batch solid-phase synthesis (Goncalves et al, 2005). After 

cleavage from the resin and before deprotection of the peptide, propargylamine was coupled 

to the glutamic acid unit. Finally, the peptide was deprotected and purified by reversed-phase 

HPLC. Then, the purified peptide [3] was coupled to [2] by click chemistry using copper 

sulfate and sodium ascorbate at 40°C for 3 days. The nanoparticles were purified by 

centrifugation with an EDTA solution in order to remove copper. The supernatant was 

collected, purified by reverse-phase HPLC in order to quantify unreacted peptide and to 



5 

 

determine indirectly the grafting yield. Then, the nanoparticles were dialysed and freeze-dried 

to obtain PVDF-g-PAA-mTEG-P11 [4] as a white powder. 

Field Emission Scanning Electron Microscope (FESEM): A Hitachi S-4800 field emission 

scanning electron microscope equipped with a tip made of Zr monocrystal allowed us to take 

pictures of the fragile PVDF nanoparticles without metallization. Accelerating voltage: 1kV. 

Tip current : 10 µA; Probe current: Normal; UltraHigh Resolution Mode; Condenser lens : 5; 

Focus depth : 1; Objective lens diaphragm : 2 ; Working distance : 2 mm. 

Dynamic light scattering (DLS): A Zetasizer Nano-ZS dynamic light scattering (Malvern 

instrument 3000HSA) was used for nanoparticles characterization. 

Small Angle Neutron Scattering (SANS): Measurements were performed on PACE 

spectrometer at LLB (CEA-Saclay). Nanoparticle latexes were diluted 10 times in D2O. For 

each measurements, neutron scattered intensity was recorded as a function of scattering 

vector. Data treatment was performed following a previous paper (Brulet et al, 2007). 

Scattered intensity profile is accounted for using the form factor of a sphere. 

Electron Paramagnetic Resonance (EPR): EPR spectra were recorded at the X band (9.4GHz) 

on a Brüker ER-200D EPR spectrometer.  

3. Results and discussion 

Characterization of PVDF nanoparticles 

   The particle size was determined by FESEM, by Zetasizer Nano-ZS dynamic light 

scattering (DLS) (Malvern instrument 3000HSA) and by small angle neutron scattering 

(SANS). Results obtained by these different characterization methods are similar. The radius 

of nanoparticles is around 60 nm with a polydispersity index of 0.002 determined by DLS, 
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indicating a monodisperse latex. A typical FESEM image is shown in Fig. 1, PVDF 

nanoparticles appear spherical and monodisperse.  

Radical stability 

   Under vacuum, electron beam irradiation generates mainly alkyl radicals inside the PVDF 

polymer bulk. When opening the irradiation tube, the PVDF nanoparticles come in contact 

with air. Alkyl radicals combine immediately with oxygen to form peroxide radicals. The 

radical amount is proportional to the absorbed dose. If the irradiation dose is important, a 

yellowish colour appears corresponding to unsaturated bound creation. Figure 2 shows EPR 

spectra at different doses. The hyperfine band at 3520 Gauss observed at 200 kGy is due to 

polyenyl formation. The EPR spectrum corresponding to irradiation dose of 50 kGy of a 

sample opened for 3 months is similar to the one corresponding to irradiation dose of 25 kGy. 

Nanoparticles radical content is consequently far to be stable with time. This behaviour is 

different from what it has been already observed for PVDF film (Clochard et al, 2004). The 

high stability in films is assumed coming from radical trapping inside the polycrystalline part 

of the PVDF (Aymes-Chodur et al, 1999; Aymes-Chodur et al, 2001; Clochard et al, 2004). A 

DSC study (Fig. 3) allows us to determine the crystallinity rate of the nanoparticles at various 

doses. For a 100% crystalline PVDF, HPVDF 100% crystalline is equal to -25 cal/g or -104,5 J/g. 

Nanoparticles enthalpies were found equal averagely to HPVDFnanoparticle= -29,5 J/g whatever 

the irradiation dose andHPVDFfilm= -38 J/g corresponding to 28 ± 2 % et 36 ± 2% 

crystallinity rates respectively. Results show a diminution of crystallite content for 

nanoparticles in comparison with films. Moreover, the major variation observed in DSC 

curves (Fig.3) is the shift in melting peak to lower temperature. Indeed, the melting 

temperature (Tm) is at 160°C for the nanoparticles and at 167°C for the films. It means that 

the crystallite size is much smaller in nanoparticles. Electron beam irradiation seems to not 
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affect the crystallinity rate of nanoparticles. Consequently, the radical decay with time in 

nanoparticles may be due to small crystallite content. The high specific area of nanoparticles 

may also participate to this radical consumption. Indeed, the available area for oxygen to 

combine with alkyl radicals is huge compared to a flat film and peroxide radicals are well-

known to be less stable. Consequently, it is of great importance to radiograft quickly after 

irradiation. 

Radiation Grafting of PVDF with acrylic acid. 

   Fig.4 shows proton NMR spectra of PVDF and PVDF-g-PAA [1] recorded in DMF-d7. In 

PVDF spectrum, the large triplet at 3.03 ppm corresponds to the signal of CH2 repeat unit and 

the triplet at 2.5 corresponds to CH3 signal of PVDF chain ends. The PVDF-g-PAA spectrum 

displays large peaks at 1.98 and 1.73 ppm corresponding to the CH2 signal of PAA. CH of 

PAA gives rise to a signal at 2.5 ppm. From integrated signals, a quantitative approach allows 

us to evaluate the PAA/PVDF ratio. The resulting yield for PVDF-g-PAA is found equal to 56 

mol%. 

Covalent coupling of spacer arm. 

   A spacer arm onto nanoparticles brings mobility to the future immobilized peptide. We 

synthesized a modified tetraethylene glycol (noted mTEG) with an amine function at one end 

and an azide function at the other end. This linker was chosen because of its solubility and a 

previous study shows that this spacer arm did not affect the activity of CBO-P11 (Goncalves 

et al, 2005). The HRMAS NMR spectrum of [2] is shown in Fig.4 and displays two peaks for 

CH2 of the spacer arm (CH2CH2O and CH2NH) at 3.63 and 3.67 ppm. On the other hand, the 

signal corresponding to CH2N3 is masked by the water peak at 3.46 ppm. Integration of CH2 

(mTEG) signal allows us to evaluate the mTEG/PVDF ratio and to determine a 31 mol% 
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yield for PVDF-g-PAA-mTEG. It means that only 50% of the available carboxylic acids were 

covalently bound to spacer arm. 

Peptide synthesis and coupling to nanoparticles by click chemistry 

   In order to attach the peptide CBO-P11 onto nanoparticles, a functionalization of the 

original peptide is needed. Propargylamine was coupled to the glutamic acid unit in order to 

have an alkyne function (Scheme 1). This later allows further anchoring via click chemistry 

reaction to the spacer arm without affecting other side chains of the peptide which are 

essential for the recognition with VEGFR-2 receptors. The peptide coupling was proved by 

MALDI mass spectrometry. The analysis of nanoparticles was performed in positive mode 

with Voyager STR mass spectrometer (Applied Biosystems). The signal at m/z 1998 Da 

corresponds to the CBO-P11 mass. It indicates the peptide grafting. From the supernatant-

removed peptide, the grafting yield for PVDF-g-PAA-mTEG-P11 [4] was found equal to 5.5 

mol%. 

4. Conclusion 

   We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and 

their functionalization with a peptide that presents an anti-angiogenic activity. Resulted 

nanoparticles present a radius of 60 nm.  From FESEM images and light scattering 

measurements, we deduced that they were spherical and monodisperse. The alkyl radicals 

induced from electron beam irradiation combine immediately with the oxygen to form 

peroxide radicals. Because of a high specific area and small crystallite size, the radical decay 

with time is evidenced from EPR measurements. Despite this radical decay, electron beam 

irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF 

nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. 
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Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass 

spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an 

attractive option for anti-tumor therapy.  
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