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From the Kinetic Theory of Gases to Continuum Mechanics

Francois Golse
Ecole Polytechnique, Centre de Mathématiques Laurent &thy®1128 Palaiseau Cedex, France

Abstract. Recent results on the fluid dynamic limits of the Boltzmanmatpn based on the DiPerna-Lions theory of
renormalized solutions are reviewed in this paper, with mpleasis on regimes where the velocity field behaves to lgadin
order like that of an incompressible fluid with constant digns

Keywords: Hydrodynamic limits, Kinetic models, Boltzmann equati@mtropy production, Euler equations, Navier-Stokes egnat
PACS: 47.45-n, 51.10.+y, 51.20.+d, 47.10.ad

In memory of Carlo Cercignani (1939-2010)

Relating the kinetic theory of gases to their descriptionh®yequations of continuum mechanics is a question that
finds its origins in the work of Maxwell [30]. It was subseqtigriormulated by Hilbert as a mathematical problem
— specifically, as an example of his 6th problem on the axigration of physics [21]. In Hilbert's own words
“Boltzmann’s work on the principles of mechanics suggesésgroblem of developing mathematically the limiting
processes which lead from the atomistic view to the laws dfenmf continua”. Hilbert himself studied this problem
in [22] as an application of his theory of integral equatioFise present paper reviews recent progress on this problem
in the past 10 years as a consequence of the DiPerna-Liohalggistence and stability theory [12] for solutions
of the Boltzmann equation. This Harold Grad lecture is daeid to the memory of Carlo Cercignani, who gave the
first Harold Grad lecture in the 17th Rarefied Gas Dynamics fgium, in Aachen (1990), in recognition of his
outstanding influence on the mathematical analysis of thHzBann equation in the past 40 years.

THE BOLTZMANN EQUATION: FORMAL STRUCTURE

In kinetic theory, the state of a monatomic gas at ttraed positiorx is described by its velocity distribution function
F =F(t,x,v) > 0. It satisfies the Boltzmann equation

oF +v-O4F =%(F),
where@ (F)(t,x,v) ;== € (F(t,x,-))(v) is the Boltzmann collision integral defined for each contins, rapidly decay-
ing functionf = f(v) by

0= [, JEWTV) =TS (v=v.)- ol dv. o,
assuming that gas molecules behave as perfectly elasticspheres of diametel: In this formula, we have denoted
V=V(\V,w) =V— (V- V) 0w, V., =V, (V) 1= Vi+ (V- V) - 0w, lw| = 1. (1)

Molecular interactions more general than hard spherestmtis can be considered by replacﬁgzg(v—v*) - | with

appropriate collision kernels of the forbf|v — v,|, |x:—:,”;‘ -w|). In this paper, we restrict our attention to the case of

hard sphere collisions to avoid dealing with more techrgcalditions on the collision kernel.
Properties of the collision integral

While the collision integral is a fairly intricate matherita expression, the formulas (1) entail remarkable symme-
try properties. As a result, the collision integral satsffer each continuous, rapidly decayifige f(v), the identities

/ “(f)dv=0, /%(f)vkdv:o, k=123, and / % (f)v[2dv=0. @)
JR3 R3 JR3



The first relation expresses the conservation of mass (dvaquatly, of the number of particles) by the collision
process, while the second and the third express the cotisereimomentum and energy respectively.

Perhaps the most important result on the collision integfbltzmann’s H Theorenfor each continuous, rapidly
decayingf = f(v) > 0 such that Irf has polynomial growth as| — oo,

/‘3%(f)|nfdvg 0, and /g%(f)lnfdv: 0o %(f) =04 f is a Maxwellian, @3)
JR JR

i.e. there exist®, 8 > 0 andu € R3 such that

2
f(V) — -//(p,u,G)(V) = Wexp(_ |V29U| ) . (4)

Dimensionless variables

Fluid dynamic limits are obtained as properties of solugiohthe Boltzmann equation under appropriate scaling as-
sumptions. We therefore recast the Boltzmann equatiomiedsionless variables, so as to identify the dimensionless
parameters that control the scalings of the time and spa@bles, following [4, 36].

First we choose a macroscopic length s¢a(éor instance the size of the container where the gas is sed|®r of
an object immersed in the fluid, or the typical length scalevbich the variation of macroscopic fluid quantities is
observed), as well as a macroscopic observation time 3gdlee. the time scale on which the evolution of the fluid
guantities is observed.)

We next define reference scales of dengitgnd temperatur@ by setting

./:/Fdxdv:ﬁL3, //dexdv:O, //2|v|2Fdxd =3p0

The collision time scal@. is defined in turn by

)

////// 08 (V)[(V—V,) - w|dvdv, dw =

sl

while the acoustic time scale is defined Ty = L/\/? The dimensionless variables dre-t/To, X = x/L, and

¥=v/V8, while the dimensionless distribution functionfis= ?3/2F/ﬁ.
Introducing two dimensionless parameters, the Strouhalbmr Sh= T,/T, and the Knudsen number Ka

CTe/Ta = 2/d?Lp with

we see that the Boltzmann equation in dimensionless vasahkes the form

ShaF = ﬁ<59(F“) (5)

where the dimensionless collision integral is
CF)(E,R0) = //3 LFEXDFERT) - FERDFER)|(0-9.) - 0] dV. do. ©6)
R3x

Obviously, the dimensionless collision integﬁé(lf) satisfies exactly the same properties as the original esipres
% (F), i.e. the conservation laws of mass, momentum and ener@n(@Boltzmann’s H Theorem (3).

Henceforth, we always consider the Boltzmann equation r{5Jiimensionless variables, dropping all hats for
notational simplicity. Thus, the conservation propertiéthe collision operator (2) imply that rapidly decaying ¢)



solutions of the dimensionless Boltzmann equation (538athe following local conservation laws:

Sha, /‘3 F dv+divk /3VF dv=0 (conservation of mass),
JR JR

Shd/stdV+ divx/3v®dev: 0 (conservation of momentum), @)
R R

Sha /3 2V?F dv + divy /3V%|V|2F dv=0 (conservation of energy).
R JR

Likewise, Boltzmann’s H Theorem implies that solutidhs> O of the Boltzmann equation that are rapidly decaying
while InF has polynomial growth als| — 4o satisfy the differential inequality

Shdt/ FIanv+divx/ vFIanv:i/ “(f)Infav<0. ®)
R3 R3 Kn Jr3

THE COMPRESSIBLE EULER LIMIT AND HILBERT'S EXPANSION

Whenever a gas evolves in a fluid dynamic regime (at the lesgtifel), the average time between successive
collisions involving a typical gas molecule is much smatlesn the time necessary for an acoustic wave to travel
a distancd.. In other words, fluid dynamic regimes are characterizedbycbnditionT; < T,, or equivalently by he
condition Kn« 1.

In [22], Hilbert studied the Boltzmann equation (5) in thgraptotic regime defined by K& € < 1 and Sh= 1.
His idea was to seek the soluti&p of

1
as a formal power series awith smooth coefficients — known adilbert’s expansion

Fe(t,x,v) = Z}e” fn(t,x,V), with f, smooth int,x,v, foreachn> 0. (20)
n>

He found that the leading order term in that expansion is @foihm

fo(t,X, V) = lﬂ(p’u’g)(nx) (V) )

where(p,u, 8) is a solution of the compressible Euler system
G p + divk(pu) =0,
p(du+u-Oxu) + Ox(pB) =0, (11)

6,6 +u-Ox6 + 36div,u = 0.

Caflisch [10] succeeded in turning Hilbert's formal resuitoi a rigorous statement bearing on solutions of the
Boltzmann equation, by using a truncated variant of theéttlbxpansion above. Specifically, given a smooth solution
(p,u, 0) of the compressible Euler system on some finite time intg@val), he constructs a family of solutions of the
Boltzmann equation that converges#,, , gy uniformly int € [0, T) ase — 0. Before Caflisch’s result, Nishida [31]
had proposed another proof of the compressible Euler liftfiemBoltzmann equation under more stringent regularity
assumptions, viz. analyticity, using some abstract vaoathe Cauchy-Kowalewski theorem.

One striking advantage of the Hilbert expansion is its uwditya abundantly illustrated by the great diversity
of physically meaningful applications to be found in the wof Sone [36, 37]. However, there are some serious
difficulties with the Hilbert expansion, some of which cantieated with adequate mathematical techniques. First, the
radius of convergence of the Hilbert power series is 0 in gEnso that essentially all mathematical arguments based
on Hilbert’s expansion use a truncated variant thereof.dnegal, truncated Hilbert expansions are not everywhere
nonnegative, and are not exact solutions of the Boltzmamatém. One obtains exact solutions of the Boltzmann
equation by adding to the truncated Hilbert expansion soppeogriate remainder term, satisfying a variant of the



Boltzmann equation that becomes weakly nonlinear for seraughe (see for instance [10, 11, 2].) The truncated
Hilbert expansion with the remainder term so constructedrigorous, pointwise asymptotic expansion (meaning that
e "R —(fo+efi+...+&"fn)| — O pointwise in(t,x,v)) of the solutionF, of (9) ase — 0. Another difficulty in
working with Hilbert's expansion, even truncated at somédiorder, is thatf, = O(|C)f; fo|) for eachn > 0. Since
generic solutions of the compressible Euler system loselaeity in finite time [33], truncated Hilbert expansions
make sense on finite time intervals only. For instance, iflatsm (p, u, 6) of the compressible Euler system involves
a shock wave, only the 0-th order term in the associated Hibgansion, i.efo(t,X,V) = .#(p 01 x (V) is well
defined. In general, if the geometric structure and the jpwsitf the singularities in the solution of the hydrodynamic
equations are known precisely, one can bypass this diffibtyiadding to the truncated Hilbert expansion appropriate
boundary layer terms. If the structure of these singu&gits unknown, or one does not even know whether the
hydrodynamic solution is smooth, one cannot use the Hikegransion.

GLOBAL EXISTENCE THEORY FOR THE BOLTZMANN EQUATION

To avoid the various shortcomings of the Hilbert expansiathad, one needs a theory of global solutions for the

Boltzmann equation based on the only estimates that areramifi Kn as Kn— 0. These estimates are those deduced

from the conservation laws (2) and Boltzmann’s H TheoremdBjrom their differential formulations (7)-(8).
Henceforth, we are concerned with solutions of the Boltameguation for a gas filling the Euclidian spa&R&and

at equilibrium at infinity. By Galilean invariance and wittcanvenient choice of units, we can assume without loss

of generality, that this equilibrium state at infinity is tMaxwellian.#(; o 1), denoted byM in the sequel. In other

words, we seek the solution of

1
ShaF +v-0O,F = ﬁ‘g(F), (xVv) eR®*xR3 t>0,

F(t,x,v) = M as|x| — o, (12)

F|t:0: Fn.

A convenient quantity measuring the distance between tsilolition functions in the context of the Boltzmann
equation is theelative entropyfor F = F(x,v) > 0 andG = G(x,v) > 0 a.e. in(x,v) € R x R?,

H(F|G) = //Rnga(Fm(F/G)—F+G)(x,v)dxdv. (13)

Notice thataln(a/b) —a+b > 0 for eacha > 0 andb > 0, with equality if and only ifa= b. Hence the integrand is a
nonnegative measurable function a¢F|G) = 0 if and only ifF = G a.e. onRR® x R®.

Since InM = —% In(2m) — %|v|2, a formal argument based on the local conservation lawsr(@)tlze differential
inequality (8) shows that any classical solutief (12) with appropriate decay &g — -+ satisfies

Sha, /3(F In(F/M) — F +M)dv + divx/sv(F In(F /M) — F +M)dv < 0.
R R
Integrating inx both sides of this inequality and assuming that> M fast enough a| — +, we conclude that

SUpH (F(,-,|M) < H(E"|M),  and /0 /./Rsms—%(F)lansdxdvgShH(F IM). (14)

Observe that the collision integr@l(F) acts as a nonlocal integral operator analogous to a comolirt thev
variable and as a pointwise product in theariable. The fact tha#’(F ) is quadratic irF while H(F|M) is “essentially
homogeneous of degree 1Rs> 1” suggests tha# (F) may not be defined for all nonnegative measurable functions
F satisfying the entropy bound (14) above. Yet, for each medéer > 0 onR3 x R?, one has

-/:/\;\+\v\gr 56% dxdv<C /\x\gr(*%(m INF + (14 [v|*)F) dxav



so that?'(F)/vI+F € LL (R+ x R®x R3), i.e. is locally integrable irft, x,v). This suggests dividing both sides of
the Boltzmann equation by'1 + F, thereby leading to the notion ednormalized solution

Definition. (DiPerna-Lions [12]) A renormalized solution relativeNbof the Boltzmann equation is a nonnegative
functionF € C(R.,Li.(R3 x R?)) satisfyingH (F (t)|M) < + for eacht > 0 and

M(Shé +v- Oy (F/M) = K—ln%(F)F’(F/M)

in the sense of distributions d®,. x R® x R?, for each” € C1(R,.) satisfyingl’(Z) < C/v1+Z.
With this notion of solution, one can prove the global exise and weak stability of solutions of the Cauchy

problem for the Boltzmann equation, with initial data theg aot necessarily small perturbations of either the vacuum
state or of a Maxwellian equilibrium.

Theorem. (DiPerna-Lions-Masmoudi [12, 27, 29]) For each measur&tile> 0 a.e. onR3 x R? satisfying the
conditionH(F™|M) < +o, there exists a renormalized solution of the Boltzmann &gug12) with initial data
F'™. This solutionF satisfies

Shdt/ de+divx/ VFdv=0,
R3 R3

: (15)
Sha; /3dev+divX/3v®dev+diva:O,
JR R

wherem=m" > 0 is a matrix-valued Radon measure, and the entropy ingguali
t .
ShH(F(t,-,)|M) +Sh/3Tr(m(t)) 7///3 _€(F)InF(sxv)dsdxdv < SAH(F"|M), t>0.  (16)
R 0 R3xR

A classical solution of the Boltzmann equation with apptaterdecay ap/| — 4 would satisfy all these properties
with m = 0; besides the entropy inequality is a weakened variant tizB@ann’s H Theorem — which would imply
that this inequality is in fact an equality.

The main advantage of the notion of renormalized solutisrthat a) such solutions always exist for each initial
data with finite relative entropy with respect kb, and b) such solutions are weakly stable, in the sense tlaat if
sequencéFy)n>o of renormalized solutions of the Boltzmann equation cogesitoF in the sense of distributions
and satisfiesd (Fn\t:0|M) < Cforall n> 0, whereC is some positive constant, théris also a renormalized solution
of the Boltzmann equation, satisfying (15) and (16). Unfodtely, there is no uniqueness theorem for this notion of
solution, so that a renormalized solution of the Boltzmaguation is not completely determined by its initial data.
But if the Cauchy problem for the Boltzmann equation has asital solutiorF, each renormalized solution of the
Boltzmann equation with the same initial dataFasoincides withF a.e. in(t,x,v) (see [26].)

FLUID DYNAMIC LIMITS OF THE BOLTZMANN EQUATION

As explained above, all fluid dynamic limits of the Boltzmaegquation are characterized by the scaling condition
Kn < 1: hence we set Ke: € throughout the present section.

Besides, all the fluid dynamic limits considered in this pap&respond with weakly nonlinear regimes at the
kinetic level — which does not imply that the nonlinearitea® weak at the macroscopic level. Such regimes have
been systematically explored by Sone at the formal leved [386] and the references therein), by using the Hilbert
expansion method. In other words, the distribution funtdié considered are small perturbations of the Maxwellian
stateM at infinity. Henceforth, we denote ¢ < 1 the order of magnitude of the differenée- M. A typical example
of such a distribution function B (t, X, V) = .Z(1 s,ut x),1)(V), SINCEA(1 5,u(t x),1) (V) = M(V) (14 Seu(t,X) - v+ 0(82)).

In this example, the distribution functidhdefines a velocity fieldr and a temperature fielg: by the formulas

/VFdV /|vqu|2FdV
_ JRS JRE

. R
Up = 2R :
/ Fdv 3/ Fdv
R3 JRS

Introducing the speed of sound := /56 /3, we see that the Mach number Maug /ce = U, so that the scaling
parameted; can be thought of as the (order of magnitude of the) Mach numbe

= U and 6r = =1.



The acoustic limit

The acoustic limit is the linearized variant of the compitssEuler limit considered by Hilbert himself.

Theorem. (Golse, Jiang, Levermore, Masmoudi [14, 23]) Let ¥re, Ma = J; = O(v/€) and Sh= 1. For each
p" u" 8" c L?(R3), letF; be a family of renormalized solutions of the Boltzmann eua¢12) with initial data

Fén = %(l+5gpi”,5guin,l+559in) .
Then, in the limit as — 0,

1

A /Rs(':s(t’x"’) —M(V))(1,v, |v[2—1)dv— (p,u,6)(t,X)

in LL.(R% x R%), where(p,u, 8) is the solution of the acoustic system

dtp—f—diVxU:O, p’t:():p_ina
Gu+Ox(p+6)=0,  uf_y=u",
6.6 + 5diviu=0, 6],_,=06".

While the result in [14] holds for the most general class ofeuolar interactions satisfying some angular cutoff
assumption in the sense of Grad [20] (in fact, a much weakesiare of Grad's assumption [23, 25]), an earlier
contribution of the same authors with Bardos [5] introduadaty new idea in the derivation of hydrodynamic limits
of renormalized solutions of the Boltzmann equation andt&@ the case of bounded collision kernels (e.g. cutoff
Maxwell molecules).

The incompressible Euler limit

It is a well-known fact that, in the low Mach number limit, tflew of an inviscid fluid can be approximately
decomposed into its acoustic and vortical modes, whosgaictien vanishes with the Mach number. The result below
explores the counterpart for vortical modes of the acolistit of the Boltzmann equation. Because of the low Mach
number scaling, vortical modes evolve on a longer time sitale acoustic modes, consistently with the fact that the
conditionsx(p + 8) = 0 and diyu = O characterize the equilibrium points of the acoustic syste

Theorem. (Saint-Raymond [32]) Let Kr= ¢, and Sh=Ma = & = €% with 0 < a < 1. Letu™ € H3(R®)?! satisfy
divu" = 0, and letu € C([0, T];H3(R?)) be a solution of the incompressible Euler equations

gu+u-Ou+Oxp=0, divyu=0,
uj,_o=u".

Let F¢ be a family of renormalized solutions of the Boltzmann emua¢12) with initial data
Fsln == %(l,égui”,l) .
Then, in the limit a€ — 0, one has

i/ VRt xv)dv— u(t,x)  in L2([0, T];LL.(RY)).
65 R3

The proof of this result is based on the relative entropy wetklescribed in the next section. Actually, there had
been precursors of this theorem due to the author [9] andaes-Masmoudi [29], where the relative entropy method
was introduced for this type of problem. Unfortunately, ta@tements in [9, 29] rested on extra assumptions on the
family of solutions of the Boltzmann equation that remaimenified. These assumptions were removed by some clever
argument in [32], which therefore contains the first congabof of the theorem above.

1 The notationH™(R") designates the Sobolev space of square integrable fusaioR" whose partial derivatives of order min the sense of
distributions are square integrable functionsRSh A vector field is said to belong td™(R") if all its components belong ta8™(R").



The Stokes limit

We continue our exploration of vortical modes with the Swkmit of the Boltzmann equation. The scaling is
weakly nonlinear at the macroscopic level of descriptiong the time scale is chosen so as to keep track of entropy
production in the fluid dynamic limit.

Theorem. (Golse, Levermore, Masmoudi [14, 25]) Let knSh= &, and Ma= & = o(¢). For each(u™, 8™") ¢

L2 x L*(R®) such that diyu™ = 0 and eacfe € (0, ||u"|| ), let F be a family of renormalized solutions of the
Boltzmann equation (12) with initial data

in __ ) ) .
FE = %(175£9|n,5gum’1+5£6m) .

Then, in the limit as — 0, one has

5i Ls(Fe(t,x,V) —M(V)) (v, 1[v[2—1)dv— (u,0)(t,x) in L} (Ry x R®x R3),

where(u, 8) is a solution of the Stokes-Fourier system

du+ Oxp = vAyu, divyu=0, u\t:O:uir_‘,
&6 = 2kA6 6|_,=06".

The viscosity and heat conductivity in this theorem are igivg the formulas (equivalent to the usual ones in [36]):
v=§7'(vev—3vil),  k=32"(G(V*-5)V), (17)

whereZ* denotes the Legendre dual of the Dirichlet fofrof the collision operator linearized abddt i.e.

2(®):

%///3 3 52|¢+¢*_¢/_¢;|2|(V—V*)'00||V||V|*dvdv*dw,
RS xR®x

The fluid dynamic model obtained in the statement above iSthkes-Fourier system; notice that the motion and
temperature equations are decoupled in the absence of emaixtorce field deriving from a potential. Previously
Lions and Masmoudi [29] arrived at the particular case ofdtatement above corresponding to an initial data for
which 6" = 0, leading to the motion equation only, i.e. the evolutiook8s equation. For want of a better control
of the high speed tails of the distribution function, theily@ment cannot be generalized to obtain the Stokes-Fourier
system presented above. The proof in [14] uses a differeatadiginating from [5].

The incompressible Navier-Stokes limit

Finally, we remove the weakly nonlinear scaling assumpdittthe macroscopic level of description, while keeping
entropy production effects at leading order, and obtainrtbempressible Navier-Stokes equations as a fluid dynamic
limit of the Boltzmann equation.

Theorem. (Golse, Saint-Raymond [18, 19]) Let kaSh= Ma = &; = ¢. For eachu™, ") € L2 x L*(R®) such that
divxu" = 0, letF¢ be a family of renormalized solutions of the Boltzmann etumat12) with initial data

Fsm = *///(l—eei”,eui”,l+£9i”) )
for eache € (0, ||u"|| ). There exists at least one subsequesice: 0 such that

1 .
~ 3(an(t,x,v)—M(v))(v, 1IV|2—1) dv— (u,8)(t,x) in weakLij(Ry x R®x R3),
n /R
where(u, ) is a “Leray solution” of the Navier-Stokes-Fourier systeithwiscosityv and heat conductivity given
by formula (17): _
Gu+divg(u®u) + Oxp = vAu, diveu=0, uj,_o=u",
6,6 + divk(uB) = ZKkA,0, 6,_,=06".



TABLE 1. Fluid dynamic limits of the Boltzmann equation, dependimg o
the dimensionless parameters Kn, Ma and Sh.

| Boltzmann equationkKn = ¢ < 1

|
| Ma | Sh | Fluid dynamic limit |
| O <€ | 1 | Acoustic system |
| O < € | & | Stokes-Fourier system |
| &=¢%,0<a<l| & | Incompressible Euler equations |
| £ | € | Incompressible Navier-Stokes equatiohs

Let us briefly recall the notion dferay solutionof the Navier-Stokes-Fourier system. In [24] (arguably ofthe
most important papers in the modern theory of partial déffeial equations), Leray defined a convenient notion of
weak solution of the Navier-Stokes equations, and provat] th space dimension 3, any initial velocity field with
finite kinetic energy launches at least one such solutiomedffor all times. Leray solutions are not known to be
uniquely defined by their initial data; however, if an inittiata launches a smooth solution, all Leray solutions with
the same initial data must coincide with that smooth sofutit the time of this writing, it is yet unknown (and a
major open problem in the analysis of partial differentigiations) whether Leray solutions launched by any smooth
initial data remain smooth for all times. Thus, we do not knalaether different subsequencgs— 0 in the theorem
above lead to the same Leray solutien8) of the Navier-Stokes-Fourier system in general.

A Leray solution of the Navier-Stokes-Fourier system abisva pair(u, 8) consisting of a velocity fieldi and
a temperature fiel®, both continuous ofR , with values inL?(R®) equipped with its weak topology, that solves
the Navier-Stokes-Fourier system in the sense of distdbat satisfies the initial condition, and verifies theray
inequality

t . :
%/R3(|u|2+ 51612)(t,%) dx+/o /Rs(v|lilxu|2+K|DX6|2)(s,x) dxds < %/Rs(|u'”|2+ SlonR)txdk.  (18)
The Leray inequality is an equality for classical solutiofithe Navier-Stokes equations, exactly as the DiPernad.io
entropy inequality (16) is an equality for classical sauas of the Boltzmann equation. This indicates that the Leray
existence theory for the Navier-Stokes equations and tRefa-Lions existence theory for the Boltzmann equation
are parallel theories. The theorem above explains how theseies are related in the hydrodynamic limit.

Partial results on this theorem have been obtained by Lidasmoudi [28]. While the reference [18] treated the
case of bounded collision kernels, the theorem above waséatended to all hard cutoff potentials in the sense of
Grad — which includes the case of hard spheres considerddsipaper — in [19]. The arguments in [18, 19] have
been recently refined by Levermore and Masmoudi [25] to empes® both soft as well as hard potentials, under a
cutoff assumption more general than that proposed by GrgDin

While these results bear on the most general case of rerniaadablutions without restrictions on the size of initial
data in space dimension 3, the Navier-Stokes limit of theZBahnn equation had previously been obtained in the case
of global smooth solutions for small initial data by BardosldJkai [7]. The Navier-Stokes limit of the Boltzmann
equation had also been established on finite time interyadglapting the Caflisch method based on Hilbert truncated
expansions, by DeMasi, Esposito and Lebowitz [11].

The fluid dynamic limits discussed in this section can thenebe summarized as in table 1. Notice that these limits
have been established for molecular interactions morergktien hard sphere collisions; see the references listed i
the statements of the various theorems above for the conditin the collision kerndd(v — v,, w). All these results
assume some angular cutoff on the collision kernel as pexpbyg Grad [20] — or slightly more general, as in [25].

More importantly, some of the conditions bearing on the patars Kn, Ma and Sh may be not optimal. Formal
arguments suggest that the acoustic limit should hold wierd < 1 instead o, < /€, while the incompressible
Euler limit should hold under the weaker conditidn>> € instead ofd; = ¥ with0 < a < 1.

Let us conclude this section with an important remark on thgsjzal meaning of the “incompressible” fluid
dynamic limits of the Boltzmann equation. What is provedtie tast three theorems is that, to leading order, the
velocity fieldu satisfies the same equations as the velocity field of an inoessjble fluid with constant density. This
does not mean that the gas is incompressible in that regifee, s the case of an incompressible fluid with the same
heat capacity and heat conductivity as the gas, the diffiugion in the equation for the temperature field would be



multiplied by 5/3. This difference comes from the work of the pressure: seeligcussion in footnotes 6 on p. 93 in
[36] and 43 on p. 107 of [37], together with section 3.7.2 if][3

Likewise, the inequality (18) was written by Leray in [24]twi6 = 0. For an incompressible fluid with constant
densityp, the quantity% [ P|u(t,x)|2dxis the kinetic energy of the fluid at timgand the Leray inequality is interpreted
as a statement on the dissipation of energy in the fluid. Thening of (18) with6 = 0 is obviously different, since
the quantity% [(|u(t,x) 2+ ge(t,x)z) dx is not the total energy of the gas at titne

MATHEMATICAL TOOLS FOR THE HYDRODYNAMIC LIMIT

The linearized collision integral

In all the fluid dynamic limits considered in the previoustsat, the solutionF, of the Boltzmann equation (12)
is a small perturbation of the uniform Maxwellian equililom stateM. Therefore, the linearization abolt of the
Boltzmann collision integral plays an important role inghdimits. Thus, we consider this linearized collision grtd
intertwined with the multiplication by, and set%y@ = —M D% (M) - (M), or equivalently

Bag) = [ [ (00)+ @) — @)~ 9V (v V) GIM(v.) dv. doo (19)

Hilbert [22] proved that%y is an unbounded, Fredholm, self-adjoint nonnegative dpecm L%(R3;M dv)?, with
domainL?(R%; (1 + |v|>)Mdv) and nullspace Ke#y = Spar{1,v1,V»,vs,|v|?}. Hilbert's argument, written for the
hard sphere case, was later extended by Grad [20], who desfamee appropriate class of collision kernag— v,., )

for which the linearized collision integral satisfies thednolm alternative. Grad’s idea was that grazing collision
between neutral gas molecules are rare events that can ledhheameglected, at variance with the case of plasmas or
ionized gases. Henceforth, we denote

(@) = , @(V)M(v)dv for eachp € Ll(R3; Madv).
R

With this notation, the Fredholm alternative for the ingequation?y f = S with unknown f and source term
Se L?(R%Mdv) can be stated as follows:

a) either(S) = (Sv) = (Sw) = (Sw) = (Sv|2) = 0, in which case the integral equation has a unique soluition
satisfying

f e L2(R%(1+|v>)Mdv) and (f) = (fvi) = (fvo) = (fvz) = (f[v]?) =0,

henceforth denotetl = %, 'S, or

b) there existap € Ker%y such that{Sp) # 0, in which case the integral equatidfy f = S does not have any
solution inL?(R3; (14 [v|>)M dv).

The moment method for the Navier-Stokes limit: formal argument

Defineg, by the formulaF; = M(1+ &:Q¢). If F¢ satisfies (12) with Kn= Sh= J; = ¢, the relative fluctuation of
distribution functiong, satisfies

1
€0t0¢ + V- OxQe + Efmga = 2Mm(0e,0¢) (20)

where 2y is the symmetric bilinear operator defined By (@, ¢) = M~1%(Mg). Multiplying each side of (20) by
and lettinge — 0 shows that, if)s, — g for some subsequeneg— 0, the limiting fluctuatiorg is a “local Maxwellian
state”, i.e. is of the form

g(t,X,V) = p(t,X) + U(t,X) V4 9(t,X)%(|V|2 - 3) . (21)

2 The notationLP(RN; f dv) (wherep > 1 and f > 0 is a measurable function defined a.e.@ndesignates the set of measurable functigns
defined a.e. oRN that satisfy

LlowiPiwav < +e.



Multiplying each side of (20) by andvM, and integrating itv € R® shows that
€6t (ge) + divg(vge) =0, €6 (V@) + div (v vge) =0
in view of (2). Passing to the limit as — 0, and taking into account the local Maxwellian form (21pdéads to
diviu = divk(vg) =0, Ox(p + 0) = divk (v vg) = 0. (22)

The first equality is the solenoidal condition for the vetgdield u, while the second implies that4 8 = 0, assuming
thatp, 6 — 0 as|x| — —+oo.
Next we multiply each side of (20) b%NM and integrate iv € R3 to obtain

1 B 1/|v]?
ivee) + v (Agk) =~ Oz { -0e ).

whereA(v) :=v@v— £[v|2l. One hasAu) = (Aqvi) = (AVa) = (Aqvs) = (Aq|v[?) = O for eachk,| = 1,2,3, so
thatAy := 2, Aq € L2(R3; (1+ |V[2)Mdv) is well-defined. SinceZiy is self-adjoint orL?(R3;M dv), one has

L(Age) = H{(LnA)g:) = <A%$Mge> = (A(Qu(0e.9¢)) — (Aeake +V- Tyge)) 23
— (A(2m(9,9)) — (Av-[xg).
By (21) and the solenoidal condition in (22), the second teakes the form
(Av- k@) = (A@ Ve V) : Oxu = v(Oxu+ (Oxw) ). (24)

Indeed(A;jAkQ = V(G dj + & Ojk — %dj &), which can be recast as= %(A : A) sinceA(Rv) = RA(V)R' for each
v e R3 and eaclR € O3(R). This formula forv is equivalent to the first relation in (17).

As for the first term, sincg € Ker.%jy according to (21), one ha8y (g,9) = 3.%(¢?) (see [3], fla. (60) on p. 338.)
Hence

(A(2m(9,9)) = 3(AZu(@)) = 3((LuAG) = 3(AF) = F(AovaV) lueu=uou—Ju?,  (25)
in view of the elementary identitydj; Ay) = (8 dji + & Ojk — 56} da).
Let& = &(x) € C2(R3) be a divergence-free test vector field. Substituting (24)@8) in (23) shows that

O:dt/f-<vgg>dx—/DE:%<Agg>dx

S a /E-udx—/DE S(ueu— LU dxt v/l]é : (Oxu+ (Oxu)T) k.

Sinceé is divergence-free
/DE Lyl dx = %/|u|2divxf dx=0,

while

/DE : (Dxu)de:f/D(divE)udx:O.

Therefore

dt/ﬂudxf/DE:u®udx+v/DE:Dxudx:0 (26)

for each divergence-free test vector fidld= & (x) € C2(R3). Now, if T € 2/(R3) is a vector-valued distribution
satisfying(T, &) = 0 for each divergence-free test vector fiéld= & (x) € CZ(R®), there exists a scalar distribution
me 2'(R®) such thafl = 0. In other words, (26) means precisely thds a weak solution of the motion equation
in the Navier-Stokes system.



Compactness tools

An important ingredient in the proof of all fluid dynamic litsiof the Boltzmann equation considered above is the
fact that the relative fluctuation of distribution functign:= (F: —M)/3:M converges in some sense, possibly after
extracting some subsequergze— 0. The key argument is the following inequality resultingrfr (16):

[ (N@0e)) () dx = HFe(t.-.-) M) < H(ESIM) = O(8)  for eacht >0,

for the initial data considered in the four theorems statethé previous section, whehgz) := (1+2)In(1+2) —z
Sinceh(z) ~ 72/2 asz — 0, this control is as good as a boundLifi(R ;L?(R® x R3;Mdxdv)) for the values of
ge not exceeding(1/3:). Thus(1+ |v|?)g; is relatively compact in weak?([0, T] x [-R, R]® x R%; M dt dxdv) for
eachR, T > 0, and all its limit points ag — 0 belong toL®(R ;L?(R3 x R;Mdxdv)). In the case of the acoustic
or Stokes-Fourier limit, the uniqueness of the solutionhaf limiting fluid equations implies that the whole family
(1+ |v|?)ge converges weakly.

Since the leading order term in (20) %siﬂMgg and_%y is a linear operator, the weak compactness of the family
(14 |v|?)ge is enough to conclude that any limit poipbf that family ass — 0 must satisfy%g = 0, and therefore
is an infinitesimal Maxwellian, i.e. is of the form (21).

In addition, for the Navier-Stokes-Fourier limit, the coagtness of the familge in Lﬁoc for the strong topology
(implying the a.e. pointwise convergence of a subsequesaegeded to pass to the limit in nonlinear terms. We
use repeatedly some compactness results for moments ofsthibution function in the velocity variable based on
bounds on the streaming operator — see [16, 15]. These cangsaaesults are referred to as compactneselogity
averaging A typical example of a velocity averaging theorem used i Navier-Stokes limit of the Boltzmann
equation is as follows. We state it in the steady case fordke of simplicity.

Theorem. (Golse, Saint-Raymond [17]) Lek, = fn(x,v) be a bounded sequence lin(RY x RN) such that the
sequence - Oy fy is bounded i1 (RY x RY), while f, itself is bounded i} (RY; LP(R])) for somep > 1. Then

a) f, is weakly relatively compact ibl (R x R}); and

b) for eachp € C;(RV), the sequence of velocity averages
[ xv)o0) v
RN

is strongly relatively compact in} (RN).

The conservation laws
The formal argument presented above in the case of the N&tades limit shows the importance of the local con-
servation laws of mass, momentum and energy in the derivafifiuid dynamic models from the Boltzmann equation.

Unfortunately, renormalized solutions of the Boltzmannatpn are not known to satisfy the local conservation laws
of momentum and energy in (7). They satisfy instead the agmaEte conservation laws

Fe v . Fe Y 1 [ Fe v
s [ () (g Ywasams [r (2) (328 Ymov=2 [ o (%) o ( 4 Yo
(27

Therefore, one must show that the conservation defects

1 , [ Fe v

inLL (R+ x R%) ase — 0, and identify the limits as — 0 of the terms

i L (T() ) (g JMov a0 g (r(%>r(”>(j|_;il )Mdv'




This raises an important question regarding the tail of tis&ridution functionsF as |v| — 4. That the family
(1+|v|?)ge is relatively compact in weak?([0,T] x [-R R]® x R%;Mdtdxdv) for eachR T > 0 is in general not
enough — for instance, in the acoustic limit, SH and one needs to identify the limit of the energy flux

L (5)-rn)

which is a 3rd order moment wnof 5—1£(F(1+ 0:0e) — (1)) ~'(1)ge. Controlling the high speed tail of (fluctuations
of) the distribution function is an essential step in theivdgion of fluid dynamic limits of the Boltzmann equation,
and involves rather technical estimates based on the gnairgh entropy production estimates (16) together with the
dispersion effects of the streaming operatogShv - [y (see [4, 18, 19]).

The relative entropy method

In inviscid hydrodynamic limits, i.e. the compressible mcompressible Euler limits, entropy production does not
balance streaming. Therefore the velocity averaging nakfhits for such limits. The idea is to use the regularity
of the solution of the target equations, together with ralezn towards local equilibrium in order to obtain some
compactness on fluctuations of the distribution function.

Pick for instanceu, a smooth solution of the target equations — e.g. the incesgible Euler equations — and
study the evolution of the quantity

1
Ze(t) = s HFel A1 6000 .1)
&

whereF; is a renormalized solution of (12) with ShMa = §; = ¢” and 0< a < 1. This is the leading order
of the relative entropy of the Boltzmann solution with respe the local Maxwellian state defined ly in the
incompressible Euler scaling. At the formal level, it is folthat

dze .~ 1 ) 22 1
F(t)ff(\s—gz/R3 Dxu./Rs(vfégu) ngVdX+5—£/Rs Dxp-/Rs(vchgu)ngvdx.

The second term in the r.h.s. of the equality above vanislitbssvgince

1 . ,
5 /3vFg(t,x, v)dv — divergence-free vector field.
e JR

The key idea is to estimate the first term in the r.h.s. asvdlo
1
= // |Cheu s (v— 8:U)“2F¢ | dvelx < CZe(t) + 0(1)
02 J Jr3xR3

whereC = O(]|Oxu||L=). Then, one concludes with Gronwall’s inequality.

The relative entropy method stems from an idea of H.T. Yau@imzburg-Landau lattice models, see [39]); it was
later adapted to the Boltzmann equation by the author [9dmts-Masmoudi [29]. It is especially designed to handle
sequences offeak solutions of the Boltzmann equatemmverging to alassical solution of the fluid equation

CONCLUSIONS

The DiPerna-Lions theory of renormalized solutions of tre@tBnann equation allows one to obtain derivations of
fluid dynamic regimes from the kinetic theory of gases withmphysical assumptions on the size or regularity of the
data. Following the program outlined in [4], these derivas are based on
a) relative entropy and entropy production estimates,ttmyavith
b) functional analytic methods in Lebesgué) spaces.

At present, the program in [4] leaves aside the compresSildker limit of the Boltzmann equation, or the asymptotic
regime leading to the compressible Navier-Stokes equatidttle progress has been made on these issues since the
work of Nishida [31] and Caflisch [10].



The problem of deriving fluid dynamic limits from the Boltzmaequation in thesteadyregime is also of consid-
erable importance for practical applications. Formal itesare of course well understood with the classical Hilbert
or Chapman-Enskog expansion techniques — see the book &f [S6h Unfortunately, the theory of the steady
Boltzmann equation with large data is not as mature as itateopart for the Cauchy problem, in spite of interesting
contributions by Arkeryd and Nouri [1], and there is no awgaie of the DiPerna-Lions theory for the steady case yet.

But even for evolution problems in regimes that are weakiylinear at the kinetic level, the relative entropy is not
the solution to all difficulties. In several asymptotic negis of the Boltzmann equation, the leading order and next to
leading order fluctuations of the distribution function miateract to produce highly nontrivial macroscopic effdnts
the fluid dynamic limit. Examples of such asymptotic regirass
a) ghost effects, introduced by Sone, Aoki, Takata, Suginaoid Bobylev in [34], reported in Sone’s Harold Grad
Lecture [35] and [36, 37], and systematically studied by&s@oki and the Kyoto school,

b) Navier-Stokes limits recovering viscous heating tercuge to Bobylev [8] and Bardos-Levermore-Ukai-Yang [6]
— see also the discussion in [38], and
¢) hydrodynamic limits for thin layers of fluid — see [13].

AcknowledgementsThe author thanks Profs. Aoki, Levermore and Sone for theiregous scientific advice during
the preparation of this paper.
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