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Abstract 

     Carbon nanofibres (CNFs) obtained by plasma-enhanced chemical vapour deposition are 

made of cone-shaped graphene layers, the opening angle of which has a significant influence 

on their properties: the smaller the angle, the closer the properties to those of carbon 

nanotubes. That angle is determined by the shape of the metal nanoparticle used to catalyse 

the growth. We show in this paper that the shape of Ni nanoparticle catalysts, and in turn the 

CNF properties, can be tuned during plasma-enhanced chemical vapour deposition, by the 

choice of the etchant gas. We show in particular that a water-containing etchant (H2O or 

H2O+H2) increases the growth rate by an order of magnitude at 600°C compared to an 

ammonia-containing etchant (NH3 or NH3+H2), and leaves more elongated Ni particles with a 

cone angle three times smaller. We conclude that the cone angle and the growth rate are 

directly related, and propose a mechanism to explain that large difference between the two 

etchants. 
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1 Introduction 

Vertically aligned multi-walled carbon nanofibers (CNFs) or carbon nanotubes (CNTs) 

have been intensively studied over the last decade because of their numerous potential 

applications in field emission devices [1,2,3,4], including flat-panel displays and microwave 

diodes[5]. Catalyst-assisted, direct-current, plasma-enhanced chemical vapour deposition 

(DC-PECVD) is so far the most popular technique employed to produce vertical CNTs and 

CNFs since it allows a precise control of alignment and density [6, 7], and it is a relatively 

simple and low cost growth method. The nanotubes obtained with that technique grow with 

the catalyst particle on top, so that growth beneath the particle remains protected, while all 

tendencies of non-vertical growth are immediately etched away by incoming ions. Most 3d 

transition metals have been used to locally catalyse the decomposition of carbon-bearing 

radicals, thus releasing carbon atoms that fuel the growth of CNTs or CNFs. In the present 

paper we focus on nickel, which was the first, chronologically, to allow the DC-PECVD 

growth of vertically aligned nanofibres [4,5]. 

PECVD growth of CNTs or CNFs is usually performed in the 500-750°C temperature 

range. The mixture of gases used comprises a carbon precursor (typically a hydrocarbon gas) 

and an etchant gas, the latter preventing the parasitic deposition of amorphous carbon all over 

the sample and the poisoning of the catalysts [8]. Although CNTs exhibit better transport and 

mechanical properties than CNFs, it is generally CNFs that are obtained when using nickel 

catalyst in the above-mentioned temperature range. Thus the problem is to obtain, at a given 

moderate temperature, a CNF structure as close as possible to that of a CNT. The primary 

difference between CNTs and CNFs is the cone angle () between the graphite basal planes 

and the tube axis ( = 0° for CNTs;    0° for CNFs) [7]. The cone angle of CNFs directly 

influences their conductivity as it determines the number of graphene planes that an electrical 
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current will have to cross over a given distance. The cone angle and the diameter of CNFs 

prepared by (PE)CVD with nickel as catalyst depend on the size [9] and shape of the Ni 

nanoparticles that drive growth; more specifically, the graphene cones are quasi-replicas of 

the conical tails of the catalyst nanoparticles [10,11,12,13] (Figure 1).  

Therefore, in those processes that take place well below the melting temperature of the 

catalyst alloy, it is of crucial importance to study the shape and the crystallography of such 

catalyst particles. Catalytic growth is a dynamical process, during which the catalyst particle 

shape changes due to the varying compressive stress applied by the graphene planes adding 

one to the other in between the catalyst and the existing carbon planes [14]. Thus in-situ TEM 

is certainly the best way to study the growth process [15]. However, such experiments lack 

statistics, so that the in-situ experiments that have been performed so far mostly bring 

qualitative observations e.g. of the change of catalyst shape as the growth goes on [15, 16, 17, 

18, 19, 20]. More quantitative studies have been carried out using ex-situ scanning electron 

microscopy (SEM) and conventional high-resolution transmission electron microscopy 

(TEM) [e.g.: 4, 7, 9, 11, 21]. The crystallography of nanoparticles has been specifically 

addressed by several authors [10, 22, 23], and the dynamical processes of catalysis have been 

analysed as a function of catalyst [24]. Several reviews summarise the literature [7, 25]. The 

dependence of catalyst shape as a function of growth conditions, and its influence on the form 

of the graphene conical sheets that make the CNFs, have been studied two decades ago by 

Tracz et al. [11]. These authors have observed the alignment of the graphene layers on the 

facets of the nickel catalysts in all the conditions they use (H2O:C4H10, 2:1 to 8:1, 60 mbars, 

temperature range 500-600°C), and have showed the narrowing of the cone angle as a 

function of temperature [11]. 

In other respects, the effects of etchants on the growth of CNFs have been poorly 

investigated. Ammonia is currently used as the main etchant in DC PE-CVD. However, in the 



Z. B. He et al., Nickel catalyst shape 

 - 5 - 

case of standard CVD, adding a small amount of water vapour to the carrier gas mix (Ar or 

He with 40% H2 in that case) has been demonstrated to tremendously increase the growth rate 

in the case of Fe or Co catalysts [26]. Moreover, it has been shown to maintain the catalyst 

activity over a longer period of time, so that the maximum length in a given growth run could 

be increased by two orders of magnitude [26]. As those parameters are important for future 

industrial fabrication, it is of prior importance to understand and master the phenomena at the 

origin of these differences. Meanwhile, etchants have also been shown to influence particle 

shape: it has been noticed for instance that decreasing the amount of hydrogen in the growth 

atmosphere could diminish the cone angle of the catalyst particles [12,27,28]. The explanation 

given in that case was that hydrogen would saturate carbon dangling bonds at the intersections 

with the tube surface of the conical graphene layers: its absence would force those layers to 

adopt a tubular shape, which limits the density of surface dangling bonds. 

The effects of the carbon precursors have been investigated by Hoffmann et al. [29] who 

have shown that with ammonia (NH3) as carrier gas, acetylene (C2H2) was by far the most 

efficient in terms of growth rate, especially compared to methane (CH4). In the following, we 

thus concentrate on acetylene. 

In this study we compare the effects of using either ammonia or water vapour as etchant 

gases, on the vertical growth of CNFs with Ni catalyst on their tips, when growth is 

performed by direct current (dc) plasma-enhanced CVD (dc-PECVD). Compared to ammonia, 

water vapour appears to accelerate the growth by at least a factor of two. Using TEM 

observations, we show that, whatever the carbon precursor, the cone angle   is more than 

twice smaller when we use water. Those factors increase as growth temperature decreases. 

We also show that correlatively, the top part of catalytic particles is about bare, clean and 

faceted with sharp edges, after growth in water vapour. On the other hand, the catalytic 

particles end up covered by a few layers of graphene and rounded in shape in the case of 
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growth in ammonia. We discuss the implications of these differences in terms of carbon-

catalyst contact and its effects on the mobility of carbon atoms across the catalyst particle 

during growth. 

 

Figure 1. (a) High-resolution TEM image of the head of a nanofibre grown at 650°C in C2H2: 

H2O showing how the cone-like graphene layers duplicate the shape of the tail of the catalyst 

nanoparticle. The arrow indicates the growth direction. Note that graphene-plane nucleation 

(left-hand side enlargement) may take place at nickel surface steps that are upside oriented, 

contrary to expectations. 

 

2 Experimental details 

2.1 Growth 

Vertically aligned CNF arrays were grown from Ni catalysts originating from thermally 

evaporated thin films with different thicknesses. Si substrates were used, either bare or 

covered with a TiN diffusion barrier layer. Growth was performed by dc PECVD from 600 to 

670 °C, in a gas mixture including either methane (CH4), or acetylene (C2H2) as carbon 

precursor gases and water (either H2O or H2:H2O, 2:1, by volume) or ammonia (either NH3 or 

NH3:H2, 2:1) as etchant gases. The gas flows were precisely controlled to avoid the generation 
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of amorphous carbon on the surface of catalysts. In order to obtain well aligned CNFs, the 

applied voltage between anode and cathode in the chamber was kept constant at 500 V, with a 

current intensity of 0.2 A. The extraction voltage and the current were slowly increased up to 

the optimum conditions at the beginning of the growth process. At the end of the growth 

process, the chamber was totally pumped out and cooled down. Cooling took around 60 

minutes without any gas flowing in the growth chamber. The length of CNFs was controlled 

by the growth time and their average diameter by the thickness of the starting Ni film.  

Starting from a continuous Ni film, it takes two stages to grow CNFs: (1) de-wetting of 

the film, in order to form Ni nanoparticles and initiate the nucleation of several graphene 

layers between those particles and the substrate, and (2) growth of the nanofibers from the Ni 

nanoparticles, fuelled by the decomposition of the carbon precursor on the exposed surface of 

those particles. As the two etchants yielded different particle sizes for a given thickness of the 

starting Ni thin film (larger with NH3, this will be published elsewhere), we have also 

prepared some samples with the same H2:H2O etchant during the de-wetting stage, and a 

switch (or not) to NH3 only during the growth stage, so that the Ni-particle size be the same in 

the two cases. We also switched to NH3 at various stages of growth, and could verify it was 

possible to benefit from the high growth speed of H2O, and from the protective coating of 

nickel provided by NH3. 

2.2 Characterisation 

The CNFs were observed using a Hitachi S-4800 FE-scanning electron microscope 

(SEM) with 25 kV accelerating voltage. The microstructure of the CNFs and Ni catalysts was 

studied by TEM using a Philips CM 30 electron microscope working at 300 kV, and a Topcon 

002B microscope working at 120 kV or 160 kV. TEM samples were obtained by scratching 

deposits over holey amorphous carbon membranes. However, this substrate had the drawback 
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of oxidising the samples under the beam (see below). Other details on the TEM procedure are 

given in the Supplementary Data. We have also prepared cross-sections made from sandwich-

type samples, after sliding one part of the sandwich with respect to the other, so that the 

nanofibres lie parallel to the substrate and along the optical axis of the microscope. This 

allowed us to obtain cross sections of nanofibres perpendicular to their axes. 

2.3 Electron beam damage 

Electron beam irradiation is a significant issue when observing carbon nano-objects with 

TEM. While the knock-on threshold energy for a carbon atom in a nanotube is about 86 keV 

[30], observations remain possible at higher energies provided that the total dose (settings 

plus recordings) remains small. However, knock-on is not the only source of defects. Figure 2 

shows that another source of damage is electron beam heating of the metal nanoparticle, 

which significantly modifies its surface, whatever the accelerating voltage or the microscope 

used. Except for those of Figure 2 d-f, all of the TEM images presented in this paper were 

recorded with nanofibres deposited on holey amorphous carbon TEM grids from Oxford 

Instruments. The Ni particles on such a substrate appeared to oxidize under the beam. This 

sensitivity had a consequence on characterisation: it was hardly possible to determine at the 

same time the microstructure of a surface and its orientation, as tilting the sample along a 

zone axis (convenient for surface characterisation) generated an irradiation that completely 

oxidised the surface. This is why our zone-axis images always exhibit surface oxide, while 

our images used to analyse the nature of surfaces, recorded as fast as possible, are not oriented 

along zone axes. This is why, in turn, and quite unfortunately, we present no high resolution 

images of the surfaces. 
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Figure 2.  Comparison of the effects of electron irradiation when nanofibres are deposited on 

a holey carbon membrane (a-c), and on an amorphous SiNx membrane (d-e). Both CNFs 

were grown in the same run at 650°C, with NH3:C2H2. Irradiation at 160 kV (a-c) or 120 kV 

(d-f), for ~1 min. (a, d) and ~15 min. (b-c, e-f). The orientation is random before irradiation, 

and along <110> (b,c) and <111> (e,f) zone axes of Ni after irradiation (tilt due to operator). 

A capping layer develops upon electron irradiation in both cases. The selected area 

diffraction pattern exhibits corresponding rings characteristic of fcc NiO in the case of the 

holey carbon membrane (c), and of a classical amorphous carbon contamination in the case 

of the SiNx membrane (f). 

111  200  220  

(a) (b) 

Ni 220 

(e) (d) 

NiO 

Ni 

? 

SiNx membrane 

(c) Ni 220 

NiO 

(f) 
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It is interesting to note that the oxidation did not occur when using a thin silicon nitride 

membrane as substrate, on which we only observed the growth of a standard contamination 

film (Figure 2d-f). Silicon nitride had other drawbacks like charging and difficulty to deposit 

the CNFs on it, so that we did not use it except for this test. The oxygen thus comes from the 

amorphous carbon membrane. Selected area diffraction (Figure 2c) shows that the oxide 

obtained on the holey carbon grid has indeed the structure of fcc NiO. 

3 Structure of catalyst particles 

The crystallography of the Ni particles appears quite simple: they are all single crystals, 

and all of the standard fcc phase of Ni. We distinguish no effect of the growth atmosphere on 

crystallographic features, other than the surface faceting we discuss in sec.4. Characterising 

the crystallographic direction of growth is not a simple task because of projection artefacts 

(see Supplementary data, fig. S1, and ref. [31]). When it can be determined, the growth axis 

exhibits low indices, quite generally <110>, confirming previous observations [22,23], but 

sometimes <100>, <111>, <211>. It is interesting to note, however, that the present <110> 

oriented nanoparticles rarely have {110} top facets (see e.g. Figure 3, see a rare exception in 

Supplementary information, fig. S1), which will be discussed in the next section. Twinning 

may occur, with a frequency that seems to depend rather on the temperature and the carbon 

precursor used than on the etchant, so that we will not discuss it in the present work; the twin 

plane may lie parallel to the <110> growth direction, or at an angle with it. Let us add that it 

does not appear to influence the contact plane between particle and nanofibre, and only 

slightly the top surface faceting [31]. 
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Figure 3. TEM images of a CNF grown at 675°C with H2:H2O:C2H2 after it has been carefully tilted to 

reach the [1-10] zone axis where catalyst facets are parallel to the beam (a NiO layer has developed 

during this procedure, see Figure 2). (b) Lateral facets are almost parallel to the wire axis, and {100} 

oriented; top facets are along {111} planes; facets parallel to the graphene planes on the tail are poorly 

defined with high indices. This part of the catalyst is actually close to that of a truncated cone (see Figure 

7). The diffraction pattern in inset indicates that the nanoparticle is [110] oriented. (c) Atomic-scale detail 

of the graphite-catalyst interface, showing the absence of correlation between graphene layers and Ni low-

index atomic planes. 

 

4 Shape of catalyst particles 

4.1 Preliminary observations 

Figure 4 shows typical SEM images of CNFs obtained when starting with a 10-nm thick 

nickel film: they are well aligned and oriented perpendicular to the substrate. The CNFs in 

that case were grown on a patterned substrate designed for field emission (TiN/Si) [32], at 

(a) 

(b) (c) 
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600 °C for 30 min, using acetylene as carbon precursor, and either hydrogen-water 

C2H2:H2:H2O (5:10:5) (Figure 4a,b) or hydrogen-ammonia C2H2:H2:NH3 (8:10:18) (ratios in 

sccm) (Figure 4c) as etchant gases. Each CNF has a uniform diameter from bottom to top. As 

in other works, the present Ni-catalyst particles on the top of CNFs have inversed water drop 

shape, elongated along the CNF axis. They can be separated into two well-defined parts: a 

bulky top part facing the plasma, the “head”, and a thinner bottom part surrounded by the 

beginning of the nanofibre, the “tail”. In Figure 5, the head exhibits clearly defined facets in 

the case where water was used as etchant, and rounded shapes in the case of ammonia. We 

analyse those features in detail in the next section.  

What is particularly remarkable in Figure 4 is the difference of size of the nanofibres in 

the two sets: during a growth treatment of the same duration, the use of water vapour leads to 

nanofibres that are about an order of magnitude longer than those made with ammonia.  

4.2 Faceting of catalyst head 

The most noticeable feature of the catalyst particle head is faceting, clearly visible and 

sharp in the case where hydrogen-water has been used as etchant, and non-apparent in the 

case of ammonia. However, a refined analysis reveals that the latter samples also have facets, 

but with smooth edges (see e.g. Figure 2 a, b), so that what differentiates the two kinds of 

samples is the sharpness (H2O) or roundness (NH3) of edges rather than the presence or 

absence of facets. To analyse facet orientation, we restrained our study to the H2:H2O samples 

where it is easily visible. The results we present here are complementary to those we have 

published separately [31]. On average, facets systematically correspond to low-index planes, 

mostly {111} and {100} (Figure 3, Figure 5 and Figure 6), and less often {110} (see 

Supplementary data, fig. S1). These correspond in turn to low surface energies, which will be 

discussed in sec. 5. 
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Figure 4. SEM images of vertically aligned top-type CNFs grown for 30 min at 600°C in 

C2H2:H2:X on a 10-nm Ni film deposited on SiN/Si. The etchant X was NH3 (a) or H2O (b,c). 

The average CNF length is 3.5 µm in the case of H2O and 0.4 µm in the case of NH3. The Ni 

particles have facets in the case of H2O, and rounded shapes in the case of NH3. 
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Figure 5. TEM images of the CNFs shown in Figure 4. Growth at 600°C in C2H2:H2:X with X 

= NH3 (a) or H2O (b). The average cone angle  is 39° in the case of NH3 and 13° in the case 

of H2O (see table I). (a) The inset shows how the graphitic planes follow the catalyst surface. 

(b) Image recorded in the [001] zone axis of the Ni particle (selected area electron diffraction 

pattern in inset), exhibiting {100} facets. 

 

4.3 Capping of catalyst head 

Figure 6 compares a nanofibre grown in H2:H2O with one obtained in NH3, after de-

wetting in the same H2:H2O + C2H2 mix. The growth conditions were the same in the two 

cases except for the nature of the etchant and a slightly higher growth temperature in the case 

of H2O (675 °C instead of 650 °C). It should be noted that the present micrographs (Figure 6) 

were taken after only a few tens of seconds of irradiation (see sec. 2.3), except Figure 6f 

which, recorded at a higher magnification, has undergone about 2 min of irradiation (in order 

to change the settings of the microscope), which started to break the surface film and oxidise 

the nickel. Still, one can see that the NH3-etched particle (Figure 6f) is covered by a ~2-nm 

(a) (b) 
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thick, partially crystallized, carbonaceous layer, while the H2O particle appears protected by 

at most a single monolayer of an undefined film. 

4.4 Tail of catalyst particle 

Using water vapour or ammonia has a dramatic effect on the shape of the conical tail of 

catalyst particles: we have measured that parameter for the two samples shown in Figure 4 

and Figure 5, where all growth conditions were the same except for the etchant gas X: 600°C, 

30 min, C2H2:H2:X. The measurements were performed on SEM and TEM micrographs and 

are summarised in Table 1. 

Table 1: Cone angle in the case of growth in C2H2:H2:X, where X= H2O or NH3, at 

600°C for 30 min. 

 

Number of Ni 

particles measured 

Average cone angle  

(degrees) 

Standard deviation 

(degrees) 

H2O 88 12.6 2.6 

NH3 40 39.0 12.1 

 

The cone angle appears three times smaller in the case of water ( ~13°) than in that of 

ammonia ( ~39°). We confirm its decrease with growth temperature [11], so that the 

difference between the two etchants decreases as the temperature increases. A qualitative 

illustration of the smaller angle at 675°C for water and 650°C for ammonia is given by Figure 

6a and d, respectively.  

 

 

Ni 
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Figure 6. TEM images of CNFs with Ni catalyst particles on top, grown with a H2:H2O 

etchant at 675°C (a-c) and NH3 at 650°C (d-f). Note the faceting with sharp edges in the case 

of H2O, absent in the case of NH3, and the presence of a film that caps the catalyst in the 

latter (f), partially crystallized in the form of graphene layers. 

 

(a) 

(b) 

(001) 

(c) 

(d) 

(e) (f) 
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Figure 7. (a-d) Longitudinal views of catalysts in the case where ammonia (a, c) and 

hydrogen-water (b, d-f) were used as etchants (same deposits as those shown in Figure 6). 

Except at the limit between head and tail (b, e) where shoulders may exist, graphene planes 

stay parallel to the catalyst surface, whatever its shape or its density of steps. (f) Nanofibre 

embedded into glue, seen on end, in a horizontal cross-section. The interface between the tail 

of the catalyst particle and the nanofibre walls is smooth with no facet, except for a small 

planar {111} section. 

 

(a) (b) 

(c) (d) (e) 

(f) 
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Another remarkable feature of the catalyst tail is its apparent absence of faceting 

regardless of the gases used for growth (Figure 7). To confirm this observation, we prepared a 

few TEM cross-sections with in-plane nanofibres embedded into glue, where some of the 

nanoparticles had their head cut off during sample thinning, allowing one to watch their tail 

surrounded by the nanofibre walls in a “horizontal” cross-section (Figure 7f). In such cross-

sections, the interface can be seen in another angle, confirming the quasi absence of faceting: 

the catalyst tail is indeed, to a very good approximation, a truncated cone. 

To summarise all our observations, the differences of catalyst shape between the two 

cases of etchants are thus striking. The catalyst tail has the shape of truncated non-faceted 

cone in both cases; but the cone angle drastically depends on the etchant used: ~39° at the 

growth temperature of 600°C in the case of ammonia, and ~13° in the case of water in the 

same conditions. The catalyst appears correlatively rounded and covered by a few layers of 

partially crystallised graphene layers in the case of NH3, while it looks sharply facetted and 

almost bare in the case of H2O.  

5 Discussion: shape of Ni catalysts 

5.1 Tail shape and graphene generation 

Let us first discuss the epitaxial relationships between the Ni catalyst and the graphene 

layers. Yang and Chen showed in their pioneering study [10] that the epitaxy of graphite 

should be favoured on the {111} and {311} facets of nickel. The {111} surface of Ni had 

already been singled out more than three decades ago by the observation that it promoted the 

epitaxial growth of graphene [33]. This specificity of the Ni{111} face regarding the epitaxy 

of graphene layers stems of course from the same six-fold symmetry, but also from the 

additional fact that the parameter mismatch then remains small: a/a = 1.2% when Ni <110> 
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atomic rows are parallel to C <100>. However with the present observations of a conical 

growth surface, one sees that assuming given specific low-index planes of nickel to model 

epitaxy is an over-simplification. Although {111} facets may develop at the interface, they 

are certainly not representative of the general phenomena that are responsible for the observed 

growth (see Figure 7).  

We thus find that the interface between Ni and the graphene layers is conical in such a 

way that nickel presents a high density of vertical as well as horizontal atomic steps. Quite 

remarkably, the graphene layers remain parallel to that surface, thus following its conical 

shape, which actually determines the conical shape of the carbon {002} planes in the 

nanofibre. Most Ni surface steps thus correspond to no additional graphene layer, as if the 

most general way of nucleation of the latter had been with a whole conical layer at a time 

(Figure 7a).  

Existing models of graphene layer nucleation and growth have developed thanks to in-

situ TEM [14, 15, 17, 16, 34]. They often involve growth of several graphite planes at a time, 

almost perpendicularly to a catalyst surface. Such a mechanism may well occur here when 

shoulders exist between catalyst head and tail (Figure 7b). But those shoulders are no general 

features of the present particles: they are not found in all particles in the case of growth in 

hydrogen-water, and they are even less frequent in the case of growth in ammonia. On the 

other hand Helveg et al. have also observed a step edge mechanism of generation of a 

graphene plane, by scanning of a Ni single surface step [15, 35]. A similar mechanism 

probably takes place here, but with nickel “steps” which must be complicated objects that 

involve more than a monolayer of Ni, and that follow the rounded topology of the conical tail.   
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Figure 8. Schematic of the typical catalyst shape in the case of water (a) and in the case of 

ammonia (b). A range is given for cone angles to recall their dependence on temperature ( 

decreases as T increases). Note the differences in faceting of the head and in cone angle. The 

latter difference provokes a quite large difference in the vertical density of the graphene 

planes, which translates itself into a quite significant difference in nanofibre length. Water 

allows one to obtain the same length as a given ammonia-grown nanofibre with much less 

graphene layers. 

 

However, it is important to note that the cone angle of the graphene sheets, , is radically 

smaller in the case of water than in that of ammonia: 13° vs. 39° at 600°C (Table I). This 

indicates that the same length of nanofibre includes a lower number of graphene sheets in the 

case of water than in that of ammonia, or else, that a same number of cone-shaped layers 

delivers a larger length of nanofibre in the former case than in the latter (Figure 8). 

There is a direct relationship between those observations and the fact that the growth rate 

is indeed faster with the water etchant. But is it the high rate that forces the graphene layers to 

NH3 

(a) 

(b) 

H2O 

 = 10-15° 

 = 20-40° 
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be more tubular, and in turn the Ni particle to get elongated, or is it the elongated shape of the 

particle that is the origin of the high growth rate? We propose in the following that it be the 

particle that would determine the change of shape, due to an increased rate of transfer of 

carbon atoms in the case of water compared to that of ammonia. 

5.2 Faceting 

Literature presents various results on surface structure and surface capping that reflect 

the variety of growth conditions used. In the case of the NH3 etchant, the seminal work of 

Chhowalla et al. [4] already showed that the top, free part of the catalyst particles, was 

covered by a carbon film, and that, if some facets could be visible, such features had rounded 

edges. Our observations are thus a confirmation of the smoothing effect of NH3 on the shape 

of catalyst particles.  

In the case of water, the faceting we observe seems to be specific of our growth 

conditions: PE-CVD, 600-670°C, large amounts of H2O in the gas mixture, as indeed, the 

faceting appearing after other growth conditions has quite different characteristics. Audier et 

al. were the first to study faceting in detail [22]; they concluded that in the case of fcc metals, 

only {111} facets could be observed: their growth method was based on the catalytic 

disproportionation of CO at P = 1 atm and 450 °C < T < 650 °C [22]. In contrast, Kuang et al., 

who worked at a pressure of 3 kPa (30 mbar) with a mix of N2:H2:CH4, found that Ni particles 

had <110> orientation and {110} top facets [23]. These authors used a hot-wire PE-CVD 

equipment, at T = 700 °C. Yang and Chen, who performed growth using a similar gas mix at a 

pressure of 1 atm [10], reported that {110} faces were catalytically active for the dissociation 

of CH4, while {111} were not.  

Here for the top part of the catalytic particles, we found only few {110} oriented facets, 

many {111}, and many {100}. Thus we cannot conclude like in previous works that a given 
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surface orientation is dominating, but only that low-energy surfaces prevail, perhaps just 

indicating that the catalyst surfaces remain almost bare during catalysis, so that they adopt a 

configuration close to the equilibrium one, as in a Wulff polyhedron [36]. The sharp edges 

sometimes visible (e.g. Figure 6) are faceted themselves at a lower scale (Figure 6b) which 

indicates that the top catalyst surfaces in the case of H2O etchant are close indeed to thermal 

equilibrium. 

5.3 Capping of the head and carbon diffusion 

The activation energies found for the growth rates are lower in the case of water (0.18 

eV) [37], than in the case of ammonia (0.23 eV) [38]. In both cases, the conclusion was that 

diffusion was a surface phenomenon. Thus, we are tempted to say that, for the present 

comparisons, the difference stems from the nickel catalytic activity, which would have been 

larger at the bare metal surfaces of the water case, than at the surfaces covered by a 2-nm 

carbon film of the ammonia case. But we must keep in mind that the present results were 

obtained after completed growth, and thus do not represent the state of the catalyst surface 

during growth. The surface graphene layers in the case of ammonia may also have built up 

after growth indeed; as carbon must have penetrated into nickel during growth up to its 

solubility limit at the growth temperature, and it must have precipitated at the surfaces after 

the decrease of solubility upon cooling [39].  

Reciprocally, graphene layers should have appeared on the surface upon cooling if the 

solubility was attained during growth. Thus, an absence of visible graphene layers as in the 

present case of water etchant would indicate that the carbon concentration has not reached the 

solubility limit during deposition. Thus diffusion would be a pure surface phenomenon in that 

case while it would include a bulk component in the ammonia case.  
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Finally, in-situ, environmental TEM [15, 40] would be the only way: to determine the 

time at which the surface layers have built up; and thus to allow one to conclude on the origin 

of the differences in the activation energy and rate of the growth. 

6 Conclusions 

        Vertically aligned CNFs were grown by the tip-growth mechanism, using dc PECVD in 

the 600-670°C temperature range and using different gas precursors. We compared the effects 

of etchants based on H2O and NH3 on the shape of the catalytic Ni particles. The water-based 

mixtures appeared to provide faster growth with lower cone angle. The top catalyst surfaces 

were in that case bare and sharply faceted, which contrasted with the rounded surfaces of the 

NH3-treated samples which were capped with a 2-nm thick, partially crystallised, graphene-

like film. The exposed surfaces of the Ni particles at the growth front were a combination of 

low index facets such as {111} and {100}, as in a Wulff polyhedron, rather than a unique type 

of facet such as {111} [22] or {110} [23]. We associate the lower cone angle and higher 

growth rate of water-etched nanofibres with faster diffusion of carbon atoms across their bare 

top surfaces. 
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