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     Vertically aligned multi-walled carbon nanofibers (CNFs) were grown by plasma-

enhanced chemical vapor deposition with Ni catalysts on the top of nanofibers. Transmission 

electron microscopy was used to study the morphology and crystallography of Ni catalysts, 

which are essential for the nucleation and growth of CNFs. A model for the faceted shape of 

Ni catalytic particles is proposed. It is shown that the exposed polyhedral surfaces of Ni 

catalytic particles for vertically aligned CNFs are composed of {111}, {110}, and {100}, a 

faceting that appears to be characteristic of the growth atmosphere.  
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 I. INTRODUCTION    

     Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima [1], CNTs as well as 

carbon nanofibers (CNFs), especially their ordered arrays, have attracted a great deal of 

attention, not only because of theoretical interest, but also for their superior properties such as 

high thermal conductivity, excellent electron emission properties and wonderful electron 

transport with potential commercial applications in electronics, mechanics, chemistry and 

biochemistry [2-8].  A multi-walled CNT consists of concentric cylinders of rolled graphene 

sheets, whereas a CNF is made of stacked cone-shaped graphite planes. The primary 

difference between CNTs and CNFs is the angle () between the graphite basal planes and the 

tube axis ( = 0° for CNTs;    0° for CNFs), which can be controlled by, e.g., the amount of 

hydrogen in the growth atmosphere [9, 10]. Increasing hydrogen concentration would tend to 

tilt the basal planes away from the cylinder axis to form CNFs [11]; while on the contrary, 

suppressing hydrogen would allow carbon to deposit in the closed forms of shells or CNTs 

[12]. 

       High temperature preparation techniques such as arc discharge or laser ablation were first 

used to produce CNTs or CNFs and were then replaced by low temperature chemical vapor 

deposition (CVD) techniques (< 800 °C), since the orientation, alignment and density of 

CNTs can be precisely controlled in the latter [12,13]. Transition metal nanoparticles, 

primarily Fe, Co or Ni, are typical catalysts for the growth of CNTs or CNFs using CVD [13-

16, 17, 18]. The growth mechanism of the catalytic growth of CNFs have been discussed in 

some classic works by Baker et al.[18, 19]. In the case of Fe and Ni thin films, forming nano-

sized particles by high-temperature de-wetting, it was shown that the diameter of the CNTs 

strongly depended on the starting thickness of catalyst layer [20].  Correlations between the 

size of metal catalyst nanoparticles and carbon nanotube growth have been found and 

discussed [21]. Besides, the initial stages of the growth of vertically aligned carbon nanofibers 
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were studied by using both scanning and transmission electron microscopy (TEM) [22]. 

Moreover, Helveg et al. observed directly the formation of CNFs catalyzed by Ni 

nanoparticles using time resolved, high-resolution in situ TEM [23]. The influence of the 

composition and the morphology of the catalyst nanoparticles on the growth of CNTs by 

CVD are summarized in a review paper [24]. However, the crystallography of catalysts has 

only been the object of few experimental studies [25, 26], and the correlations between the 

catalytically active surfaces of transition metal catalysts and CNFs are still not clear. In this 

study, we will focus on a TEM investigation of the crystallography of Ni catalysts for the 

vertical growth of CNFs, which were synthesized by direct current (dc) plasma-enhanced 

CVD (dc PECVD) in an atmosphere composed of isopropylic alcohol (CH3CH(OH)CH3) and 

water (H2O). A three-dimensional (3D) model at the atomic scale of a faceted shape of Ni 

catalytic nanoparticle is proposed based on the bright-field TEM image observations. The top 

surface of Ni catalysts is found indeed to be faceted like a Wulf polyhedron, while 

observations of similar catalysts in other growth conditions exhibited more rounded features 

and a {110} preferential faceting [26], or flat and exclusively {111} facets [25]. Finally, the 

Ni particle faceting is discussed as a consequence of the growth atmosphere and of the way 

nucleation and early stages of growth take place.  

 

II. EXPERIMENTS 

    Vertically aligned CNF arrays were grown from Ni catalysts originating from thin films 

with different thicknesses. We used bare Si as substrate, and growth was performed by dc 

PECVD at 600 °C for 85 minutes or 650 °C for 20 minutes, at a pressure of 2 mbars. A 

mixture of water vapor and isopropylic alcohol with a flow rate of 7.5 sccm and 4.5 sccm, 

respectively, was used as the reactive gas sources. The gas flows were precisely controlled to 

get a C/H ratio of ~ 0.26 which avoided the generation of amorphous carbon on the surface of 

http://fr.wikipedia.org/wiki/Carbone
http://fr.wikipedia.org/wiki/Carbone
http://fr.wikipedia.org/wiki/Carbone
http://fr.wikipedia.org/wiki/Hydroxyle
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catalysts. In order to obtain well aligned CNFs, the applied voltage between anode and 

cathode in the chamber was kept constant at 500 V, and with a current intensity of 0.2 A. The 

extraction voltage and the current were slowly increased up to the optimum conditions at the 

beginning of the growth process. At the end of the growth process, the chamber was totally 

pumped out and cooled down. Cooling took around 30 minutes without any gas flow. The 

length of CNFs was controlled by the growth time and their diameter by the thickness of the 

starting Ni film.  The CNFs were observed using a Hitachi S-4800 FE-scanning electron 

microscope (SEM) with 25 kV accelerating voltage. The microstructures of CNFs and Ni 

catalysts were studied by TEM using a Philips CM 30 working at 300 kV, and a Topcon 002B 

working at 120 kV. 

    

III. RESULTS 

     Figure 1 shows typical SEM images of top-type CNFs, which are well aligned and oriented 

perpendicular to the Si substrate. The CNFs were grown at 600 °C for 85 min, using two 

thicknesses of Ni (50 nm in (a) and 20 nm in (b)), on a bare Si substrate. Each CNF has a 

uniform diameter with one Ni particle on the top. As in other works, the present Ni-catalyst 

particles on the top of CNFs have inversed water drop shape, elongated along the CNFs. In 

contrast to several other observations, they exhibit clearly defined facets.  

Figure 1 

 

      Different morphologies of Ni particles for the top-type vertically aligned CNFs were 

found. Figure 2 (a) is a typical low magnification TEM image of a bunch of CNFs with Ni 

particles on their tops. The diameter of the bottom of the CNFs is large because several CNFs 

with different lengths grew together. SEM images recorded at different growth stages (not 

shown) indicate that the size of Ni particles on the top of CNFs is smaller than that at the 
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initial stage of the growth of CNFs.  Hence we deduce that a bundle of CNFs might nucleate 

from the same large Ni particle at the initial stage, and then grow to different lengths perhaps 

due to different carbon concentrations in the Ni catalysts, because the gas phase is cleaner 

close to the substrate, the growth nutrients having been consumed by the longer CNFs. Figure 

2(b) is a bright-field TEM micrograph taken along the [1-10] zone axis of the Ni particle.  The 

spearhead-like Ni particle exhibits two {111} carbon-free top surfaces having a mirror 

symmetry with respect to the (001) plane. A thin layer of crystallized NiO, caused by electron 

irradiation in the microscope, shows a light contrast on the top of the spearhead.  

Figure 2 

 

Figure 2 (c) and (d) reveal Ni particles with {111} twin planes nearly perpendicular to or 

parallel to the axes of CNFs, respectively. The crystallographic planes of the top surfaces of 

the Ni particle in (c) are determined as {111}, the same as in (b), whereas the top surfaces of 

the Ni particle in (d) consist of some different planes besides {111}, which can be analyzed 

by the angles between the top surfaces and the obvious {111} twin faces since the angle 

between two {111} cubic planes is 70.53° (or 109.47°). In addition to the straight twin 

boundaries in the Ni particle, more general grain boundaries (or tilted twin boundaries) 

between two crystal variants in one Ni catalyst were also found, as seen in Fig. 2(e). However, 

the intersections of those boundaries with the particle surface do not create visible surface 

step or discontinuity. And indeed, the graphene layers of CNFs are not affected by the grain 

boundaries. Sometimes, the Ni particle can be bent and hence change its growth orientation 

[Fig. 2(f)]. As a result, the corresponding orientation of CNFs at its top is deviated from the 

initial one. In correlation with that bending, the thickness of the graphite layers on both side 

surfaces of the top of CNFs in Fig. 2(f) is different. In general, although the morphologies of 

Ni particles are different, there are some common characteristics: (1), the shape of the 
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catalysts for the growth of CNFs prefer to be pear like (also known as water drop like or tear 

drop like); (2), each Ni particle consists of  two parts: head (free from graphene coverage) and 

body (covered by graphene layers); (3), the head presents low-index facets while the body 

does not; (4), the size of the head and the tail of the water drop like Ni catalysts determine the 

external diameter and the one of the inner hole of CNFs, respectively; (5), neither twins nor 

grain boundaries affect the growth of CNFs. 

Figure 3 

 

       All the observed Ni particles for vertically aligned CNFs are faceted, with facets 

corresponding to low-index planes, particularly {111} (Fig. 2). This result is different from 

other observations [26], which we will discuss in the next section. In order to more precisely 

analyze the crystallographic surfaces of Ni, we tilted one Ni particle along two mutually 

perpendicular directions to get three images [Fig. 3].  Figure 3(a) shows the projection of the 

Ni particle along [-100]. The top surfaces of Ni particle consist of low index (010), (001) and 

(011) planes which are showing edge-on as straight lines. The Ni particle was tilted by ~ 6° 

from the horizontal, and the growth direction is thus determined as [011] from the relationship 

between the selected area electron diffraction pattern (EDP) and the corresponding bright-

field image (after correcting for the instrumental rotation). When we tilt the sample about the 

axial direction of the CNF by ~ 35° to the [-2-11] zone axis [Fig. 3(b)], the morphology of the 

top surfaces of the Ni particle changes: the corresponding projected top surfaces from this 

direction are (113), (011) and (-131). But the crystallographic (011) plane remains the same as 

that in (a) since it is normal to the axis of the CNF. Furthermore, we titled the sample from [-

2-11] in (b) to [-1-10] in (d) by ~ 30°, namely ~ 45° from [-100] in (a). The top facets of Ni in 

Fig. 3 are mainly composed of low-index (1-1-1), (011), and (001) planes. The (001) facet is 

visible in both (a) and (d). It is not strange that the length of Ni particle in (d) becomes shorter 
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than that in (a) because it is just a projected image from (a). It should be mentioned that one 

should be very careful when determining the growth direction of one dimensional nano 

materials as the sample may be tilted to a relatively large angle from the horizontal, e.g., the 

schematic illustration in Fig. 3 (c). By combining the information of the experimental results 

in Fig. 3, we propose a primary 3D structural model for the faceted shape of the Ni particle 

(Fig. 4). Figure 4 (a), (b) and (d) are the structural projections of the model from [-100], [-2-

11] and [-1-10] directions, which are consistent with the correlated experimental images in 

Fig. 3, respectively. The exposed top surfaces of Ni are linked by yellow lines, and the side 

surfaces are marked by blue lines.  In order to expose the topography of the top surfaces of the 

structural model clearly, we use different colors to display the first three layers in the 3D 

model in Fig. 4(c). Note that the same layer was highlighted by the same color in Fig. 4 (a). 

The foremost plane is (011), the stacking sequence of which controls the growth direction of 

the Ni particle. It is interesting to note that the carbon-free (1-1-1) plane is larger than the 

others.  

        These low-index facet orientations correspond to low surface energy; however, the 

presence of sharp edges gives a shape which is not yet that of a Wulff polyhedron [27], which 

is to say that the top surface is still far from thermal equilibrium.  

Figure 4 

 

IV. DISCUSSION 

         The surfaces of Ni catalysts are very significant for the nucleation and growth of CNFs 

since they play a key role in (1) propan-2-ol dissociation, (2) surface diffusion of carbon 

atoms, and (3) segregation and crystallization of the latter. Audier et al. showed that carbon-

free planes of catalytic transition metal alloys for CNTs were dependent on the crystal 

structure of body-centred or face-centred cubic (fcc)
 
[25]. These authors also concluded that 
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in the case of fcc metals, only {111} facets could be observed. They used catalytic 

disproportionation of CO at P = 1 atm and 450 °C < T < 650 °C [25]. In contrast, Kuang et al. 

found that the {110} orientation of Ni particles was preferred as the top surfaces [26]. These 

authors used a mix based on CH4, in a hot-wire PE-CVD equipment, at P = 3 kPa, and T = 

700 °C. Yang and Chen [28] reported that {110} faces were catalytically active for the 

dissociation of CH4, while {111} was not. Here, we found not only {110} planes as in Ref. 26, 

and {111} as in Ref. 25, but also other low index crystallographic planes such as {100}. Such 

kind of polyhedral top surfaces reminds one of the equilibrium shapes of Wulf polyhedra, 

which indicates the tendency of minimizing surface energy by exposing low-index facets.  On 

the contrary, side surfaces mainly consist of high-index planes: They are higher energy 

surfaces, including a high density of atomic steps, perhaps playing an important catalytic 

action in the crystallization of graphene layers [23]. Our observations are somewhat different 

from the conclusions of Yang and Chen [28], who had shown that, on the one hand, {100} 

and {110} surfaces were the most active in the decomposition of CH4 at 700 °C, and, on the 

other hand, {111} and {311} where the most efficient for the epitaxy of the graphene layers. 

At least three conditions, however, differ between our work and that of Yang and Chen [28]: 

(1) theirs was at a pressure of 1 atmosphere while ours is at 1 mbar, (2) their atmosphere was 

pure CH4, while our atmosphere is composed of a mixture of water vapor and isopropylic 

alcohol, and (3), theirs was standard CVD, while ours is dc PECVD. Thus the dynamic 

equilibria that establish at surfaces during growth should be different in the two cases.  

Figure 5 

 

        The increasing number of graphene layers from the head to the foot of Ni particles may 

explain why the Ni particles have a pear-like shape with a large size at the head, and a small 

size at the foot. Figure 5(a) is a high resolution electron microscope (HREM) image showing 
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the change of the number of graphene layers at the top of Ni catalyst. There are only three 

graphene layers at the highest side surface of Ni producing a relative small compressive stress 

on the Ni particle, but the number of graphene layers increases along an arrow direction to 

cause a relatively large pressure to compress the Ni particle to a smaller diameter. As a result, 

the Ni catalyst adopts a pear-like shape with a big size at the position covered with few 

graphene layers, and elongates along the axis of CNFs. The compressive stress from graphene 

layers of CNTs could even extract Fe3C along the tubes due to a stress as large as 40 

gigapascals [29]. Graphene layers of CNFs are always parallel to the side surface of Ni 

catalysts (Fig. 5b) and, hence the  angle is dictated directly by the slope of the side surfaces 

of the polyhedral Ni catalyst. Nolan et al. have shown that the  angle could be increased by 

increasing hydrogen in the chamber because hydrogen was able to saturate the additional 

surface dangling bonds introduced by the increase of   [9, 10]. With the new cone-shaped 

graphene layers formed layer by layer from the side surfaces of Ni particle, the CNF becomes 

longer and longer along the axis of the elongated Ni particle (Fig. 6). 

Figure 6 

 

 Normally, it is difficult for graphene layers to grow beyond the top of the Ni particle since 

the edges of graphene layers are easily etched by energetic ions and highly reactive neutral 

species such as atomic hydrogen, as explained in Ref. 30 (red “x” in Fig. 5a). It seems that the 

conical Ni particles at the top of CNFs act as moulds to produce cone-shaped layer structure. 

Therefore, the inner and external diameters of the top-type CNFs are determined by the size 

of the tail and head of the elongated Ni particle, respectively.  

 

V. CONCLUSIONS 
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        Vertically aligned CNFs were grown by the tip-growth mechanism, using dc PECVD at 

low temperatures and H2O + CH3CH(OH)CH3 gas mixtures. The exposed surfaces of the Ni 

particles at the growth front are a combination of low index planes such as {111}, {110}, and 

{100}, as in a Wulf polyhedron, rather than a unique type of facet such as {111}[25] or {110} 

[26]. Planar defects such as {111} twins with twin boundaries parallel to or almost 

perpendicular to the CNT were found in the Ni catalysts. Although different faceted shapes of 

the Ni particles are found, the cone-shaped graphene layers of CNFs are always parallel to the 

side surfaces of the Ni particles, which in turn have high indices. The synthesis mechanism of 

the CNF involves nucleation and growth of each graphene layer on the side walls of the Ni 

particle, followed by their repelling by the next nucleated layer. The resulting structure is a 

stack of parallel graphene layers “molded” on the side wall of the conical Ni particle and 

consequently oriented at an angle with respect to the CNF axis.  The inner and external 

diameters of the CNFs are determined by, respectively, the diameters of the tails and of the 

heads of the elongated Ni catalyst particles.  

 

http://fr.wikipedia.org/wiki/Carbone
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Figure captions 

 

Fig. 1. SEM images of vertically aligned top-type CNFs grown on different thicknesses of Ni 

catalytic layers: (a) 50 nm; (b) 20 nm. The averaged length of CNFs in Fig. 1(a) is around 5 

µm, which can be increased or reduced with the growth time. The Ni particles have facets, 

and the average size increases with the thickness of the Ni layer.  

 

Fig. 2. (a) Low magnification TEM image of a bunch of CNFs with Ni catalyst particles on 

top (marked by black arrowheads). The longest CNF is about 4 m. (b)-(f) TEM bright-field 

images of Ni particles on the top of CNFs. Defects such as twins in (c) and (d) as well as grain 

boundaries in (e) are found in the Ni catalysts, but have few effects on the growth of CNFs. 

Many of the exposed surfaces of Ni have {111} indices. 

 

Fig. 3. (a), (b) and (d) A series of TEM bright-field images of the same Ni particle taken at the 

same magnification, but viewed along different zone axes: (a) [-100]; (b) [-2-11]; and (d) [-1-

10]; (c) Schematics of the tilted angle from (a) to (d). The growth direction of the CNF is 

determined as [011] from (a). Note that if the CNF is tilted by a large angle from the 

horizontal, the growth direction deduced from the corresponding EDP is not the real value, e.g. 

[-112] in (c) and (d). 

 

Fig. 4. A model for the faceted Ni particle of Fig. 3. (a), (b), and (d): Projections of the 3D 

model in (c) along (a) [-100], (b) [-2-11], and (c) [-1-10], which correspond to the 

experimental images in Fig. 3, respectively. 
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Fig. 5. HREM images of Ni and graphene layers. (a) The head of Ni particle. Note that the 

edges of the graphene layers are found in the external sides of CNF, as marked by black 

arrowheads. The number of graphene layers at the highest side surfaces is three and increasing 

along the direction of a black arrow. (b) The foot of Ni particle. Graphene layers are parallel 

to the side surface of Ni. 

 

Fig. 6. Schematics of the growth of top-type CNFs. Forbidden growth directions, marked by a 

red “x”, are mainly caused by the etching of impinging highly reactive neutral species. Note 

that the side surface acts as a mould for the growth of CNFs (from (a) to (b)). 
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Fig. 1,  He et al. 
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Fig. 2 , He et al. 
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Fig. 3, He et al. 
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Fig. 4, He et al. 
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Fig. 5, He et al. 
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Fig. 6, He et al. 

 


