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On electromagnetic forming processes in finitely strained solids:
Theory and examples

J.D. Thomas, N. Triantafyllidis �

The University of Michigan, Aerospace Engineering Department, Ann Arbor, MI 48109-2140, USA

The process of electromagnetic forming (EMF) is a high velocity manufacturing

technique that uses electromagnetic (Lorentz) body forces to shape sheet metal parts.

EMF holds several advantages over conventional forming techniques: speed, repeat-

ability, one-sided tooling, and most importantly considerable ductility increase in

several metals. Current modeling techniques for EMF processes are not based on

coupled variational principles to simultaneously account for electromagnetic and

mechanical effects. Typically, separate solutions to the electromagnetic (Maxwell) and

motion (Newton) equations are combined in staggered or lock-step methods,

sequentially solving the mechanical and electromagnetic problems.

The present work addresses these issues by introducing a fully coupled Lagrangian

(reference configuration) least-action variational principle, involving magnetic flux and

electric potentials and the displacement field as independent variables. The correspond-

ing Euler–Lagrange equations are Maxwell’s and Newton’s equations in the reference

configuration, which are shown to coincide with their current configuration counter-

parts obtained independently by a direct approach. The general theory is subsequently

simplified for EMF processes by considering the eddy current approximation.

Next, an application is presented for axisymmetric EMF problems. It is shown that

the proposed variational principle forms the basis of a variational integration numerical

scheme that provides an efficient staggered solution algorithm. As an illustration a

number of such processes are simulated, inspired by recent experiments of freely

expanding uncoated and polyurea-coated aluminum tubes.

1. Introduction

Electromagnetic forming (EMF) is a high velocity sheet metal forming technique that is receiving renewed attention due

to a number of advantages it offers over conventional forming. In EMF a large capacitor bank is connected in series with a

forming coil (typically a copper wire solenoid). Discharging the capacitor bank through the coil results in a large transient

current, which in turn induces electric currents in the nearby metallic workpiece. The resulting Lorentz forces cause

workpiece plastic deformation, with a characteristic process time on the order of 50ms. The input electric energy can be

precisely controlled, making the process repeatable, and the non-contact loading allows the use of single side tooling (an

advantage in the forming of parts that are already coated on one side). However, the most prominent advantage is a

significant increase in workpiece ductility over conventional techniques (Balanethiram and Daehn, 1992, 1994; Imbert

et al., 2005a, b; Seth and Daehn, 2005; Seth et al., 2005), though the mechanism behind this increase is still being debated

(Zhang and Ravi-Chandar, 2006, 2008a, b).
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Predictive modeling of EMF and other coupled electromagnetic–mechanical processes has been a topic of extensive

research in recent years. One approach, applicable to simple—typically axisymmetric—geometries, that involves the use of

semi-analytical techniques was used for ring expansion by Gourdin (1989) and Triantafyllidis and Waldenmyer (2004) and

for plate bulging by Takatsu et al. (1988). This approach relies on known integration forms and inductance formulas.

However, it cannot be generalized to arbitrary geometries.

For the case of more general geometries, EMF problems are solved by using either loose coupling of separate electromagnetic

and mechanical solvers or a staggered approach where a unified code solves separately the electromagnetic and mechanical

(and thermal) problems at each solution step. Often commercial finite element method (FEM) codes form the basis of such

solution schemes, as in the work of Oliveira et al. (2005), Karch and Roll (2005), and L’Eplattenier et al. (2006). Reviews of

different coupled techniques for EMF solutions are given in El-Azab et al. (2003), Kleiner et al. (2004), and Svendsen and Chanda

(2005). Stiemer et al. (2006) introduced a finite element methodology specifically to solve electromagnetic–mechanical

problems (see also Reese et al., 2005; Svendsen and Chanda, 2005; Unger et al., 2006). A slightly different approach that uses the

arbitrary Lagrangian–Eulerian (ALE) framework was employed by Fenton and Daehn (1998) to simulate EMF plate bulging, and

a related staggered scheme in the ALE framework was given by Rieben et al. (2006). However, all these techniques solve

separately the electromagnetic and the mechanical boundary value problems and lack a consistent variational foundation.

The present work’s goal is to propose a fully coupled theory for electromagnetic–mechanical processes, specifically in

the context of EMF. Electromagnetic–mechanical modeling has been studied by several researchers. Although a detailed

literature review is beyond the scope of this paper, one should mention at this point the extensive development for coupled

electromagnetic–mechanical processes in the books by Maugin (1988), Eringen and Maugin (1990), and Kovetz (2000). In

this work we seek a variational principle whose Euler–Lagrange equations are Maxwell’s and Newton’s equations. A

consistent variational formulation of the electromagnetic problem in deformable solids was introduced by Lax and Nelson

(1976), who derived Maxwell’s equations, interface conditions, and the corresponding electromagnetic Lagrangian terms in

the reference configuration. In the work of Maugin (1993) (revisited in the more recent work of Trimarco and Maugin,

2001; Trimarco, 2007), mechanical terms augment the electromagnetic Lagrangian terms. Upon applying Hamilton’s

principle, the corresponding Euler–Lagrange equations are Maxwell’s equations and the mechanical equation of motion.

This approach is presently modified for EMF problems using the eddy current approximation, which results in a new

variational (Hamilton’s) principle. Following this step, a variational integration algorithm, applied to the proposed

Hamilton’s principle, produces a staggered solution approach.

The discussion begins in Section 2 with a derivation of the coupled electromagnetic–mechanical equations. Section 2.1

presents the derivation in the current configuration, using the conservation laws (Kovetz, 2000). In Section 2.2 the

reference configuration form of these equations and the electromagnetic fields is derived using a method similar to that of

Lax and Nelson (1976). The resulting relations between current and reference configuration fields allow the introduction of

the electromagnetic–mechanical Lagrangian, which is used for the least-action principle in Section 2.3. Section 3 proposes

the variational principle for the eddy current approximation and discusses its restriction to axisymmetric forming cases.

The numerical solution algorithm is derived using a variational integration technique, as outlined in Section 4. In Section 5,

results of several cases of tube expansion simulations are presented. Finally, Section 6 gives a critical discussion of the

proposed formulation and its numerical implementation, along with suggestions for future work, and Section 7 concludes

the presentation.

2. Formulation of fully coupled electromagnetic–thermal–mechanical problem

Two methods for deriving the fully coupled governing equations and interface conditions of an electromagnetic–ther-

mal–mechanical process are presented.1 First is the direct method, which uses conservation principles in the current

configuration to derive the governing equations and boundary conditions. This approach essentially follows Kovetz (2000),

where the interested reader is referred to for additional details. Subsequently, kinematic relations from continuum

mechanics are applied to transform the governing equations from the current to the reference configuration.

Using the relations between current and reference configuration fields, the second, variational method is presented,

based on a least-action principle (for the purely electromagnetic case see Lax and Nelson, 1976) in the reference

configuration. The corresponding Euler–Lagrange equations in the reference configuration are shown to agree with their

current configuration counterparts obtained via the direct approach.

2.1. Conservation law approach (current configuration)

Gauss’ law states electric charge conservation in an arbitrary control volume vðtÞ that is allowed to move and deform

following the material. Electric charge conservation dictates
Z

@vðtÞ

d � nds ¼

Z

vðtÞ

qdv, (2.1)

1 Dyadic notation is employed with bold face letters denoting vectors or tensors, � denoting tensor contraction, and � denoting the vector product.
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where @vðtÞ is the surface boundary of the control volume vðtÞ, n is the outward normal to the surface @vðtÞ, d is the electric

displacement, and q is the volumetric electric charge. The pointwise form of Gauss’ equation and the associated interface

condition follow from the arbitrariness of the control volume and standard arguments involving Gauss’ divergence

theorem, namely

= � d ¼ q; n � 1dU ¼ 0, (2.2)

where 1U denotes the jump in a quantity across an interface. For simplicity, and without loss of generality, it is assumed

from here on that all electric charges and currents within the problem domain are volumetric.

Faraday’s induction law states that the circulation of the electromotive intensity E about a closed circuit @sðtÞ opposes

the change of the flux of the magnetic field b through the surface sðtÞ, i.e.

I

@sðtÞ

E � sdl ¼ �
d

dt

Z

sðtÞ

b � nds, (2.3)

where @sðtÞ is the line boundary of the control surface sðtÞ, s is the tangent vector to @sðtÞ, and n is the normal to the surface

directed positively using the right-hand rule applied to s on @sðtÞ. Again, since the control surface is arbitrary, the pointwise

form of Faraday’s equation and the associated interface condition follow by using standard arguments involving Stokes’

theorem

=�E ¼ �b
�

; n� 1EU ¼ 0, (2.4)

where ð Þ
�

denotes the flux derivative. Note that since the control volume or surface may move and deform, the conservation

laws must be Galilean invariant. The electric displacement d and magnetic field b are Galilean invariant, as is the

electromotive intensity E, which is defined in terms of the non-Galilean invariant electric field e, magnetic field b, and

material point velocity2 u
�
by

E � eþ u
�
�b, (2.5)

where ð Þ
�

� dðÞ=dt denotes the material time derivative. The relation between current position x, reference position X, and

displacement u of a material point is

x ¼ X þ u. (2.6)

Recall that the flux derivative for any vector field f is defined by

f
�

�
@f

@t
þ u

�
ð= � f Þ � =� ðu

�
�f Þ ¼ f

�

�ðu
�
=Þ � f þ f ð= � u

�
Þ (2.7)

and satisfies

d

dt

Z

sðtÞ

f � nds ¼

Z

sðtÞ

f
�

�nds, (2.8)

thus justifying the pointwise form of Faraday’s law in Eq. (2.4)1.

The non-existence of magnetic charge in integral form is expressed by
Z

@vðtÞ

b � nds ¼ 0. (2.9)

The pointwise equation and interface condition follow as in the case of Gauss’ law in Eq. (2.2),

= � b ¼ 0; n � 1bU ¼ 0. (2.10)

The fourth and final electromagnetic conservation law is Ampere’s equation, which states that the circulation of the

magnetomotive intensity H about a closed circuit @sðtÞ is equal to the total current flux through the surface sðtÞ which is

bounded by @sðtÞ,

I

@sðtÞ

H � sdl ¼
d

dt

Z

sðtÞ

d � ndsþ

Z

sðtÞ

J � nds. (2.11)

The first term on the right-hand side of Eq. (2.11) is the displacement current flux through sðtÞ while the second term

accounts for the induction current. As expected from the time dependence of the control surface, the magnetomotive

intensity H and the conduction current density J are both Galilean invariant. Similar arguments to those used for the

Faraday law in Eq. (2.4) lead to the pointwise form of Ampere’s equation and the associated interface condition, namely

=�H ¼ d
�

þJ; n� 1HU ¼ 0. (2.12)

2 The material point velocity is usually denoted by vðx; tÞ in an Eulerian description and by u
�
ðX; tÞ in a Lagrangian description. In the interest of

notational simplicity, material point velocity is hereon denoted solely by u
�
.
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Note that according to the simplifying assumption discussed at the beginning of this subsection there is no surface electric

current taken into account. The magnetomotive intensity H and conduction current density J are defined as

H � h� u
�
�d; J � j � qu

�
, (2.13)

where h is the H field and j is the electric current density.3

In addition to the four electromagnetic conservation laws, five additional principles are needed, three from mechanics

and two from thermodynamics. First is conservation of mass, which in integral form states

d

dt

Z

vðtÞ

rdv ¼ 0, (2.14)

where r is the mass density. The arbitrariness of the control volume, which always follows the same set of material points,

yields the pointwise equation

r
�
þrð= � u

�
Þ ¼ 0. (2.15)

For simplicity, it is assumed here and subsequently that all discontinuities propagate at the speed of the material.

Consequently no jump condition is needed for mass conservation.

The next mechanics principle is that of conservation of linear momentum, generalized for the electromagnetic–me-

chanical system. In integral form this is given by

d

dt

Z

vðtÞ

rg dv ¼

Z

vðtÞ

rf dvþ

Z

@vðtÞ

t ds, (2.16)

where g is the generalized electromagnetic–mechanical momentum (to be specified subsequently), f is the mechanical

body force, and t is the generalized electromagnetic–mechanical traction on the surface of the control volume (also to be

specified subsequently). It is further assumed that Cauchy’s formula relates the electromagnetic–mechanical surface

traction t to r, the generalized electromagnetic–mechanical (Maxwell) stress,

t ¼ n � r. (2.17)

The pointwise form of the conservation of linear momentum and the associated interface condition follow from the

arbitrariness of the control volume, by using standard arguments which involve Gauss’ divergence theorem,

r g
�
¼ = � rþ rf ; n � 1rU ¼ t, (2.18)

where t in the jump condition is the applied mechanical surface traction.

The third mechanics principle is the conservation of angular momentum, generalized for the electromagnetic–mecha-

nical system, which states4

d

dt

Z

vðtÞ

x ^ rg dv ¼

Z

vðtÞ

x ^ rf dvþ

Z

@vðtÞ

x ^ t ds. (2.19)

The pointwise form follows from the arbitrariness of the control volume and the use of mass and linear momentum

conservation in Eqs. (2.15) and (2.18)

ru
�
^g ¼ rT � r. (2.20)

Note that no associated interface condition is needed since all interfaces propagate at the speed of the material.

The first thermodynamic principle pertains to the balance of power, which states that the rate of change of the control

volume’s total energy is equal to the power supplied externally, i.e.

d

dt

Z

vðtÞ

r�dv ¼

Z

vðtÞ

rf � u
�
dvþ

Z

@vðtÞ

t � u
�
ds

þ

Z

vðtÞ

rhdvþ

Z

@vðtÞ

ð�qÞ � nds

þ

Z

@vðtÞ

ð�E�HÞ � nds, (2.21)

where � is the specific total energy. The first line in the right-hand side of Eq. (2.21) is the supplied mechanical power,

where the first term is the body force contribution and the second term is the surface traction contribution. The second line

in the right-hand side of Eq. (2.21) is the supplied thermal power, where the first term accounts for internal heating and the

second term accounts for surface heating. The specific rate of heating, i.e. the rate of heating per mass, is denoted by h, and

the heat flux through the surface is denoted by q and is oriented such that a positive value indicates heat flux out of the

3 The fields b and h are denoted here as the magnetic field and H field, respectively. In the literature they are also referred to as the magnetic flux and

magnetic field, respectively, and h is often denoted as the current potential (Kovetz, 2000).
4 Recall that the wedge product of two vectors is defined as a ^ b � ab� ba.
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control volume.5 Finally, the third line in the right-hand side of Eq. (2.21) is the supplied electromagnetic power through

the surface. The electromagnetic energy flux is given by the Poynting vector E�H, again oriented such that a positive

value indicates energy flux out of the control volume. The pointwise form of the energy balance and the associated

interface condition follow once again from the arbitrariness of the control volume using standard arguments involving

Gauss’ divergence theorem, namely

r �
�
¼ rðf � u

�
þhÞ þ = � ðr � u

�
�q�E�HÞ,

n � 1� r � u
�
þqþE�HU ¼ 0. (2.22)

The second thermodynamic principle is the entropy production inequality, which states that the rate of change of the

control volume’s entropy must be greater than or equal to the entropy supplied to it, i.e.

d

dt

Z

vðtÞ

rsdvX
Z

vðtÞ

r
h

T
dvþ

Z

@vðtÞ

�q

T

� �

� nds, (2.23)

where s is the specific entropy6 and T is the absolute temperature. The first term in the right-hand side of Eq. (2.23)

accounts for the entropy supplied by the internal heating, and the second term accounts for the entropy supplied by the

heat flux through the surface of the control volume. The integral form provides, through the same arguments used for the

energy balance in Eq. (2.22), the pointwise entropy production inequality and associated jump condition,

r s
�
X
rh

T
þ = �

�q

T

� �

; n � 1
q

T
UX0. (2.24)

With the necessary balance laws in place, the method of Coleman and Noll (1963) is used to find the material’s

constitutive laws. In order to do so, one needs first the electromagnetic constitutive laws in the current configuration. For

simplicity, and motivated by the EMF applications of interest, it is assumed that the magnetization and polarization of the

material are negligible and hence

d ¼ �0e; h ¼
1

m0

b, (2.25)

where �0 is the permittivity of free space and m0 is the permeability of free space. The next piece of information required

pertains to the specific free energy c, which is defined by (Kovetz, 2000)

rc � r�� Trs� rðg � u
�
Þ þ

r

2
ðu
�
�u

�
Þ �

�0
2
ðe � eÞ �

1

2m0

ðb � bÞ þ ðd� bÞ � u
�
. (2.26)

This states that c equals the specific total energy less the energy due to thermal, kinetic, and electromagnetic sources (the

expression in Eq. (2.26) also accounts that there is no polarization or magnetization in the material).

For the case of non-magnetizable and non-polarizable materials, it is assumed that the specific free energy7

c ¼ cðF; T ;nÞ, (2.27)

where F is the deformation gradient, F � @x=@X, and n are—mechanical in nature—internal variables. From the pointwise

energy balance in Eq. (2.22) the expression for rh is substituted into the entropy production inequality. Rearranging the

result using Eqs. (2.15), (2.25), and (2.26), the pointwise entropy production inequality (2.24) can be rewritten as8

rT � r
@c

@F

� �

� FT þ �0
1

2
ðe � eÞI � ee

� �

þ
1

m0

1

2
ðb � bÞI � bb

� �

� ðd� bÞu
�

� �

�
�ðu

�
=Þ � r

@c

@T
þ s

� �

T
�

�½rg � ru
�
�d� b� � u

��

� r
@c

@n

� �

� n
�

þJ �Eþ
�q

T

� �

� =TX0. (2.28)

This inequality must hold for any admissible thermodynamic process, i.e. for arbitrary u
�
=, T

�

, and u
��
, which implies that the

terms grouped in brackets multiplying these arbitrary quantities must be zero. The vanishing of the term multiplying u
�
=

provides the electromagnetic–mechanical stress expression sought

r ¼ rF �
@c

@F

� �T

þ �0 ee�
1

2
ðe � eÞI

� �

þ
1

m0

bb�
1

2
ðb � bÞI

� �

þ u
�
ðd� bÞ. (2.29)

5 The reader must not confuse the scalar specific rate of heating h with the vector H field h nor the vector heat flux q with the scalar volumetric

charge q.
6 The reader must not confuse the scalar specific entropy s with the line tangent vector s.
7 In general, c is taken as a function of F , T , n, u

�
, E, B, and =T . For details, see Kovetz (2000) and Svendsen and Chanda (2005).

8 Double tensor contraction in dyadic notation A�
�B � AijBij.
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The electromagnetic–mechanical stress can be divided into mechanical, rm, and electromagnetic, rem, parts

r ¼ rm þ rem,

rm � rF �
@c

@F

� �T

,

rem � �0 ee�
1

2
ðe � eÞI

� �

þ
1

m0

bb�
1

2
ðb � bÞI

� �

þ u
�
ðd� bÞ. (2.30)

The vanishing of the term multiplying T
�

in Eq. (2.28) provides the entropy relation

s ¼ �
@c

@T
, (2.31)

while the vanishing of the term multiplying u
��
in Eq. (2.28) provides the electromagnetic–mechanical momentum relation

g ¼ u
�
þ
1

r
ðd� bÞ. (2.32)

One can now verify using Eqs. (2.29) and (2.32) that the angular momentum balance in Eq. (2.20) is satisfied.

It is further assumed that the mechanical dissipation term, which involves the internal variables in Eq. (2.28), satisfies

the independent restriction

�r
@c

@n

� �

� n
�

X0. (2.33)

Here �r@c=@n is the work conjugate thermodynamic driving force associated to n. The constitutive equations must be

complemented by the evolution laws for n
�

(for examples in metal plasticity the interested reader is referred to the book by

Lubliner, 1990).

Upon taking into account Eqs. (2.29), (2.31), (2.32), and the restriction on the mechanical dissipation in (2.33) the final

form of the entropy inequality equation (2.28) is the following statement about the ohmic and thermal dissipation

J �Eþ
�q

T

� �

� =TX0. (2.34)

Substituting for g from Eq. (2.32) into the pointwise linear momentum equation (2.18) one obtains

= � rþ rf ¼ r
d

dt

1

r
ðd� bÞ

� �

þ r u
��
. (2.35)

Using the definition of r from Eq. (2.29), and Maxwell’s equations (2.2), (2.4), (2.10), and (2.12), the above equation of

motion may be further simplified to the more physically transparent form

= � rm þ j � bþ qeþ rf ¼ r u
��
, (2.36)

which shows that the divergence of the mechanical stress rm plus the Lorentz force terms, j � bþ qe, plus the mechanical

body force rf equals the inertia term r u
��
. It is worth noting that the Lorentz force terms have appeared as a result of the

generalized electromagnetic–mechanical stress, without assuming their existence a priori.

2.2. Transformation of field quantities from current to reference configuration

Kinematic relations from continuum mechanics are now used to obtain the relations between current and reference

configuration fields and to transform the previous conservation laws to their reference configuration counterparts. To this

end, one needs the three equations relating volume elements, oriented line elements, and oriented surface elements in the

reference and current configurations (the last of which is Nanson’s formula), namely9

dv ¼ JdV ; sdl ¼ ðF � SÞdL; nds ¼ JðN � F�1ÞdS; J ¼ detðFÞ, (2.37)

where S is the tangent to the line element dL in the reference configuration, and N is the normal to the surface element dS

in the reference configuration.

Beginning with conservation of charge, Eq. (2.1), and using Eq. (2.37) to transform the integration from current to

reference configuration yields

Z

@V

ðJF�1 � dÞ � N dS ¼

Z

V

JqdV . (2.38)

9 Here and subsequently capital letters will be used to designate field quantities in the reference configuration corresponding to the lowercase field in

the current configuration.
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This implies the definitions

D � JF�1 � d; Q � Jq, (2.39)

where D is the reference configuration electric displacement and Q is the reference configuration volume charge density.

The pointwise Gauss’ equation in the reference configuration and the interface condition follow from the arbitrariness of

the reference configuration control volume using standard arguments as in the current configuration case in Eq. (2.2),

namely

= � D ¼ Q ; N � 1DU ¼ 0. (2.40)

Whereas = is the gradient operator in the current configuration, = is the gradient operator in the reference configuration.

Note that here and subsequently the reference configuration relations are simple to derive since the reference configuration

is independent of time.

Next, the kinematic relations in Eq. (2.37) are applied to Faraday’s law in Eq. (2.3), which yields
I

@S

ðE � FÞ � S dL ¼ �
d

dt

Z

S

ðJF�1 � bÞ � N dS. (2.41)

This leads to the definitions

E � E � F; B � JF�1 � b, (2.42)

where E is the electromotive intensity in the reference configuration and B is the magnetic field in the reference

configuration. The pointwise Faraday’s equation and associated interface condition in the reference configuration follow,

similarly to the current configuration case,

=� E ¼ �B
�

; N � 1EU ¼ 0. (2.43)

Attention is focused next to the non-existence of magnetic charge, Eq. (2.9), which with the help of Eq. (2.37) gives in the

reference configuration
Z

@V

ðJF�1 � bÞ � N dS ¼ 0. (2.44)

Using the previous definition for B in Eq. (2.42) leads to the pointwise statement and associated interface condition in the

reference configuration,

= � B ¼ 0; N � 1BU ¼ 0. (2.45)

The transformation of Ampere’s law in the reference configuration comes from applying Eq. (2.37) to Eq. (2.11), yielding
I

@S

ðH � FÞ � S dL ¼
d

dt

Z

S

ðJF�1 � dÞ � N dSþ

Z

S

ðJF�1 �JÞ � N dS. (2.46)

This leads to the definitions

H � H � F; J � JF�1 �J, (2.47)

where H is the magnetomotive intensity in the reference configuration and J is the conduction electric current density in

the reference configuration.10 With these definitions, the pointwise Ampere’s equation and interface condition in the

reference configuration follow in a similar fashion as for the current configuration case, Eq. (2.12),

=�H ¼ D
�

þJ; N � 1HU ¼ 0. (2.48)

Having established Maxwell’s equations in the reference configuration attention is turned next to the mechanical

conservation laws. The statement of conservation of mass, Eq. (2.14), is transformed to the reference configuration using

Eq. (2.37),

d

dt

Z

V

JrdV ¼ 0, (2.49)

which leads to the definition

r0 � Jr, (2.50)

where r0 is the mass density in the reference configuration. The pointwise mass conservation equation in the reference

configuration, counterpart of Eq. (2.15), is therefore

r
�

0 ¼ 0. (2.51)

10 The reader must not confuse the vector conduction electric current density in the reference configuration J with the scalar density for volume

change J ¼ detðFÞ.
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To find the relations between current and reference configuration stress and traction fields, one needs the conservation of

linear momentum and Cauchy tetrahedron argument equation (2.17). Transforming Eqs. (2.16) and (2.17) with the help of

Eq. (2.37) yields

d

dt

Z

V

Jrg dV ¼

Z

V

Jrf dV þ

Z

@V

t
ds

dS
dS (2.52)

and

T ¼ N �P. (2.53)

This implies the definitions

T � t
ds

dS
; P � JF�1 � r, (2.54)

where T is the surface traction in the reference configuration11 and P is the electromagnetic–mechanical first

Piola–Kirchhoff stress. Cauchy’s formula (Eq. (2.17)) and Nanson’s formula (Eq. (2.37)3) lead to Eq. (2.53). With these

definitions the pointwise equation of motion and corresponding interface condition in the reference configuration, which

follow from Eqs. (2.52) to (2.54), in a similar fashion that Eq. (2.18) followed from Eqs. (2.16) and (2.17), are

r0 g
�
¼ = �Pþ r0f ; N � 1PU ¼ T . (2.55)

The above derived reference configuration expressions for the current configuration field quantities introduced in Section

2.1 are the indispensable ingredients for the variational approach that follows.

2.3. Variational approach (reference configuration)

One of the most efficient ways to obtain Maxwell’s equations, in the current configuration, through a variational

approach (Hamilton’s principle, see Lax and Nelson, 1976; Lazzari and Nibbi, 2000) is based on a potential formulation such

that Faraday’s equation, Eq. (2.4), and the statement of no magnetic charges, Eq. (2.10), are satisfied identically. A vector

potential, a, and scalar potential, f, are defined such that

b ¼ =� a; e ¼ �=f�
@a

@t
. (2.56)

The potentials in this formulation are not uniquely determined. A gauge condition must be applied for unique potentials,

which will be discussed subsequently.

This potential formulation reduces the number of non-automatically satisfied Maxwell’s equations to two. A purely

electromagnetic Lagrangian density (i.e. excluding mechanical contributions) exists in terms of the generalized coordinates

a and f such that the Euler–Lagrange equations of the corresponding (Hamilton’s) variational principle are Gauss’ and

Ampere’s equations. This electromagnetic Lagrangian density is

‘ �
�0
2
ðe � eÞ �

1

2m0

ðb � bÞ þ j � a� qf, (2.57)

where e and b are in terms of a and f through Eq. (2.56).

In order to transform the current configuration electromagnetic Lagrangian density to its reference configuration

counterpart, the vector and scalar potentials must be transformed accordingly. Substituting Eq. (2.42) into Eq. (2.56) yields

after some manipulation (for details see Nelson, 1979)

B ¼ =� A,

E ¼ �=F� A
�

, (2.58)

where the reference configuration vector potential A and reference configuration scalar potential F are given in terms of

their current configuration counterparts by

A � a � F ,

F � f� u
�
�a. (2.59)

As in the current configuration, the reference configuration potential formulation identically satisfies Faraday’s equation,

Eq. (2.43), and the statement of no magnetic charges, Eq. (2.45). Notice that these reference configuration potentials are

still not unique, requiring a gauge condition.

With this formulation, the reference configuration Lagrangian for the full electromagnetic–mechanical case can now be

obtained by adding the mechanical energy component to the electromagnetic part in Eq. (2.57). To achieve this one first

11 The reader must not confuse the vector surface traction in the reference configuration T with the scalar temperature T.
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needs to define the auxiliary term ~E as

~E � E � ðF�1 � u
�
Þ � B. (2.60)

Then, given that the Lagrangian density ‘ transforms to the reference configuration as J‘, adding the necessary mechanical

energy terms, and substituting for the current configuration fields in terms of the reference configuration fields with the

help of Eqs. (2.5), (2.13), (2.39), (2.42), (2.47), (2.59), and (2.60), yields the reference configuration Lagrangian

L �

Z

R
3

J‘ þ r0

1

2
ðu
�
�u

�
Þ � cþ f � u

� �� �

dV þ

Z

@O
T � udS

¼

Z

R
3

�0J
2

ð ~E � C�1 � ~EÞ �
1

2m0J
ðB � C � BÞ þ J � A� QFþ r0

1

2
ðu
�
�u

�
Þ �cþ f � u

� �� �

dV þ

Z

@O

T � udS, (2.61)

where the independent fields are F, A, and u and C � FT � F is the right Cauchy–Green tensor. Here O is the domain

occupied by the body, and @O is the surface of this body. Notice that the density r0ðXÞa0 for X 2 O and r0ðXÞ ¼ 0 for

X 2 R
3
nO. Integration over R3 is necessary since electric and magnetic fields exist not only in the solid ðX 2 OÞ but also in

its surrounding space ðX 2 R
3
nOÞ. F and u are assumed continuous throughout R3, but only the tangent component of A,

i.e. At , is assumed continuous across an interface. Moreover, note that f , T , J, and Q in Eq. (2.61) are externally applied

quantities and are held constant when taking variations under the subsequently discussed variational (Hamilton’s)

principle.

Hamilton’s principle states that the action integral F, defined as the integral of the Lagrangian introduced in Eq. (2.61)

over the time interval ½t1; t2�, is stationary12

dF ¼ 0; F �

Z t2

t1
Ldt, (2.62)

where dF ¼ 0, dA ¼ 0, and du ¼ 0 at t ¼ t1 and t ¼ t2. The resulting Euler–Lagrange equations are the governing equations

of the electromagnetic–mechanical system. More specifically:

Taking the variation of F with respect to F yields

F;F½dF� ¼

Z t2

t1

Z

R
3
ð= � ð�0J ~E � C�1

Þ � Q ÞdFdV �

Z

@O
1ðN � ð�0J ~E � C�1

ÞÞdFUdS

� 	

dt ¼ 0, (2.63)

where integration by parts and Gauss’ divergence theorem have been used. Using Eqs. (2.5), (2.25), (2.39), (2.42), and (2.60)

one observes that the group of terms appearing in parenthesis in Eq. (2.63) is the reference configuration electric

displacement

D ¼ �0J ~E � C�1. (2.64)

Consequently Eq. (2.63) implies

= � D ¼ Q ; N � 1DU ¼ 0, (2.65)

that is Gauss’ equation and interface condition in the reference configuration, Eq. (2.40), as expected.

Taking the variation of F with respect to A gives

F;A½dA� ¼

Z t2

t1

Z

R
3

d

dt
ð�0J ~E � C�1Þ �=� ð�0J ~E � C�1Þ � ðF�1 � u

�
Þ þ

1

m0J
ðB � CÞ

� �

þ J

� �

� dAdV

�

�

Z

@O
1 N � ð�0J ~E � C�1

Þ � ðF�1 � u
�
Þ þ

1

m0J
ðB � CÞ

� �� �

� dAUdS

	

dt ¼ 0,(2.66)

where integration by parts, identities for triple products, and Stoke’s theorem have been used. Similarly to Eq. (2.64), using

Eqs. (2.13), (2.25), (2.39), (2.42), and (2.47) one observes that the group of terms appearing in parenthesis in Eq. (2.66) is the

reference configuration H field

H ¼
1

m0J
ðB � CÞ � ðF�1 � u

�
Þ � D. (2.67)

Consequently Eq. (2.66) yields13

=�H ¼ D
�

þJ; N � 1HU ¼ 0, (2.68)

which is Ampere’s equation and the related interface condition, Eq. (2.48), in the reference configuration, again as expected.

Finally, the variation of F with respect to u will yield the equation of motion and surface traction condition in terms of

the electromagnetic–mechanical momentum g and first Piola–Kirchhoff stress P. Applying integration by parts and Gauss’

12 Here and subsequently d denotes the variation of a functional.
13 By the definitions of N and At one has 1ðN � HÞ � dAU ¼ ðN � 1HUÞ � dAt .
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divergence theorem gives the stationary condition

F;u½du� ¼

Z t2

t1

Z

R
3
= �P�

d

dt
ððð�0J ~E � C�1

Þ � BÞ � F�1Þ � r0 u
��
þr0f

� �

� dudV

�

�

Z

@O

ðN � 1PU� TÞ � dudS

	

dt ¼ 0, (2.69)

where the reference electromagnetic–mechanical first Piola–Kirchhoff stress P is given by

P ¼ r0

@c

@F

� �T

þ �0J ð ~E � C�1ÞðC�1 � ~EÞ � FT �
1

2
ð ~E � C�1 � ~EÞF�1

� �

þ
1

m0J
BB � FT �

1

2
ðB � C � BÞF�1

� �

þ ðF�1 � u
�
ÞðD� BÞ � F�1. (2.70)

Consequently from Eqs. (2.69) and (2.70) one obtains

= �Pþ r0f ¼
d

dt
ððD� BÞ � F�1Þ þ r0 u

��
¼ r0 g

�
; N � 1PU ¼ T , (2.71)

which are the reference configuration equation of motion and interface condition of Eq. (2.55) as expected.

A final note is in order at this point. To complete the variational formulation presentation one must show that Eq. (2.71)

transforms to its current configuration counterpart. Using the r2P relation in Eq. (2.54) one has

= �P ¼ Jð= � rÞ. (2.72)

Considering in addition Eqs. (2.5), (2.25), (2.37), (2.39), (2.42), (2.51), and (2.60), the reference configuration equation and

interface conditions of motion transform to Eq. (2.35) and the interface condition in Eq. (2.18), their current configuration

counterparts derived with the direct method. It is thus shown that the variational method agrees with the direct method

for Maxwell’s equations and the equation of motion.

3. Eddy current formulation

For the EMF processes of interest the problem formulation may be simplified considerably by applying the eddy current

approximation. Following the description of the eddy current approximation for the general 3-D case, the section proceeds

with the axisymmetric version of this approximation and ends by presenting the modeling of the coil under a given

current.

3.1. General case in 3-D

The aspects typical of EMF processes that make this simplification appropriate are: the material velocities are much less

than the speed of light, the effective electric current frequencies are on the order of 10 kHz, the geometry is on the order of

1mm, and the material electrical conductivities are large. Detailed discussion of this approximate formulation may be

found in the literature, e.g. in Hiptmair and Ostrowski (2005) and references cited therein. From the above assumptions

follows that the eddy current approximation essentially consists of neglecting electric energy from the Lagrangian ‘ in

Eq. (2.57). Imposing the eddy current approximation implies displacement currents are neglected, which means volumetric

charges are not accounted for and charge conservation must be imposed separately. The resulting approximate Lagrangian

does not depend on F and Gauss’ equation is no longer a result of the variational procedure.

With this approximation, the Lagrangian may be divided into kinetic energy, K, and potential energy, P, as

L � K�P, (3.1)

where K and P are given by

K �

Z

R
3

r0

2
ðu
�
�u

�
ÞdV ,

P �

Z

R
3

1

2m0J
ðB � C � BÞ � J � Aþ r0ðc� f � uÞ

� �

dV �

Z

@O
T � udS. (3.2)

The action integral F is formed by integrating L over a time interval ½t1; t2�, and Hamilton’s principle is applied as

previously (see Eq. (2.62)). Taking the variation of F with respect to A gives

F;A½dA� ¼

Z t2

t1

Z

R
3

�=�
1

m0J
ðB � CÞ

� �

þ J

� �

� dAdV �

Z

@O
1 N �

1

m0J
ðB � CÞ

� �� �

� dAUdS

� 	

dt ¼ 0. (3.3)
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The eddy current simplification implies that the terms in parentheses in Eq. (3.3) are the reference configuration H field.

From Eq. (2.67) and since m0�051 one can define the approximate H field by

H �
1

m0J
ðB � CÞ. (3.4)

Thus the variation with respect to A results in the reference configuration approximate Ampere’s equation and interface

condition, given by

=�H ¼ J; N � 1HU ¼ 0, (3.5)

which agrees with Eq. (2.68) once the displacement current D
�

is neglected.

Taking the variation of F with respect to u, one has

F;u½du� ¼

Z t2

t1

Z

R
3
ð= �P� r0 u

��
þr0f Þ � dudV �

Z

@O
ðN � 1PU� TÞ � dudS

� 	

dt ¼ 0, (3.6)

where the approximate nominal stress field P has now been defined as

P � r0

@c

@F

� �T

þ
1

m0J
BB � FT �

1

2
ðB � C � BÞF�1

� �

. (3.7)

Eq. (3.6) implies the pointwise equation of motion and interface condition in the reference configuration,

= �Pþ r0f ¼ r0 u
��
; N � 1PU ¼ T , (3.8)

which results from Eq. (2.71) when electric displacement terms are neglected.

To complete the formulation, charge conservation must be imposed separately, since it cannot follow from Hamilton’s

principle with the eddy current simplification. The reference configuration charge conservation equation and interface

condition are

= � J ¼ 0; N � 1JU ¼ 0 (3.9)

and must be imposed in addition to Hamilton’s principle for the eddy current approximation.

To solve the governing equations (3.5), (3.8), and (3.9), the constitutive law for J is needed. Here we assume an isotropic

Ohm’s law with constant conductivity, given by

j ¼ sðeþ u
�
�bÞ ) J ¼ sJC�1

� E. (3.10)

In addition, since c may depend also on internal variables n, an evolution law of the type—typical for theories of metal

plasticity—n
�

¼ Nðr; T; nÞ might also be needed.

3.2. Axisymmetric processes

Implementing the aforementioned general theoretical formulation for axisymmetric problems significantly simplifies

the formulation (given subsequently in cylindrical coordinates) by reducing the independent variables on the ðR; ZÞ space to

three (AY, uR, uZ), as it will be shown in the first subsection.14 However, special care must be taken with the axisymmetric

formulation in the forming coil under a given current, and this is the object of the second subsection.

3.2.1. Axisymmetric formulation

The forming process of interest is assumed rotationally symmetric (in the z-direction), implying that no field depends

on the y coordinate. The corresponding symmetry group is C1, i.e. when the solution is invariant to coordinate

transformations corresponding to solid body rotations around the z-axis. From the assumed symmetry it is expected that

there is no hoop displacement ðuy ¼ 0Þ and the only non-zero component of the current density and electric field is the

hoop component, i.e. j ¼ jyiy and e ¼ eyiy. Also from symmetry, there is no hoop component of the magnetic field ðby ¼ 0Þ.

To summarize,

@ð Þ

@y
¼ 0; ur ;uza0; uy ¼ 0; er ; ez ¼ 0; eya0;

br ; bza0; by ¼ 0; jr ; jz ¼ 0; jya0. (3.11)

14 Here and subsequently r, y, and z are current configuration cylindrical coordinates with respective cylindrical unit vectors ir , iy , and iz , and R,Y, and

Z are reference configuration cylindrical coordinates with respective cylindrical unit vectors iR , iY , iZ . For the case currently of interest r ¼ Rþ uR , y ¼ Y,

and z ¼ Z þ uZ , and therefore ir ¼ iR , iy ¼ iY, and iz ¼ iZ .
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The above results are consistent with Ohm’s law, Eq. (3.10). Moreover from the electric field-potential relation, Eq. (2.56),

combined with Eq. (3.11), one obtains that

ar ; az ¼ 0; aya0;
@f

@r
¼

@f

@z
¼

@f

@y
¼ 0, (3.12)

i.e. the only independent fields are ay, ur , and uz. Using the relations between current and reference configuration electric

current and potentials, Eqs. (2.47) and (2.59) respectively, one has in the reference configuration

u ¼ uRiR þ uZiZ ; A ¼ AYiY; F ¼ 0; J ¼ JYiY; (3.13)

where F may be chosen as any arbitrary constant and is here set to zero.

With this formulation in place, it is straightforward to show that the Coulomb gauge condition, charge conservation, and

two associated interface conditions in the reference configuration are identically satisfied, that is

= � A ¼ 0,

N � 1AU ¼ 0,

= � J ¼ 0,

N � 1JU ¼ 0. (3.14)

Note that, whereas Eqs. (3.14)3 and (3.14)4 must hold in 3-D processes as well, Eqs. (3.14)1 and (3.14)2 are here a result of

axisymmetry. In general, other gauge conditions may be chosen, and non-zero jumps in the normal of the vector potential

may occur.

Axisymmetric processes may include applied mechanical body forces f and surface tractions T , but neither is needed in

the subsequent free electromagnetic tube expansion simulations. The applied mechanical body force f may be ignored

since gravity is weak compared to the electromagnetic forces, and there is no applied mechanical surface traction T since

the processes are non-contact. Thus, here and subsequently f and T are set to zero.

3.2.2. Forming coil

Though the forming process of interest is assumed to be geometrically axisymmetric, the forming coil in reality must be

a continuous spiral. In order to model such a coil in the axisymmetric framework, the formulation must include the driving

electric field. The approach here is similar to that in Stiemer et al. (2006). Each coil turn is approximated as a stationary

torus, disconnected geometrically from the other turns. It is required that the electric current density remain axisymmetric,

which implies in each coil turn

J ¼ JYðR; ZÞiY. (3.15)

Using Eqs. (2.58) and (3.10) and recalling that the coil does not deform (reference and current configuration are the same),

one has

JR ¼ 0 )
@F

@R
¼ AR ¼ 0,

JZ ¼ 0 )
@F

@Z
¼ AZ ¼ 0. (3.16)

Thus F is not a function of R or Z, and from Eq. (3.15) JY is not a function of Y. Since JY ¼ �sðð1=RÞ@F=@Yþ A
�

YÞ, @F=@Y

must in view of Eq. (3.16) be a constant. Given DUk, the change in the electric potential F over coil turn k,

@F

@Y
¼
DUk

2p
) =F ¼

DUk

2pR

� �

iY. (3.17)

With this formulation, the electric potential drop in turn k, DUk, can be expressed in terms of the coil current IðtÞ and the

magnetic vector potential AY as follows: Recall from Ohm’s law, Eq. (3.10), that since the coil does not deform,

J ¼ j ¼ se ¼ sE. Integrating over the cross-section in the R–Z plane of a coil turn gives the total current in the coil, IðtÞ.

Assuming the coil has a rectangular cross-section in the R–Z plane aligned with the R–Z-axes

IðtÞ ¼

Z

Sk

J � nk dS

¼ � s
Z

Sk

ð=Fþ A
�

Þ � iY dS

¼ � s
Z

Sk

A
�

Y þ
DUk

2pR

� �

dS

¼ � s
Z

Sk

A
�

YdS�
shk
2p

ln
bk
ak

� �

DUk, (3.18)

where Sk is the surface of the coil’s cross-section in the R–Z plane, nk ¼ iY is the normal to the cross-section, hk is the height

of the cross-section, bk is the outside radius of the cross-section, and ak is the inside radius of the cross-section. This

equation may be solved for DUk in terms of IðtÞ and A
�

Y, and using in addition Eqs. (2.58), (3.10), and (3.17) the hoop
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component electric current density in coil turn k is given by

JY ¼
s

hkR
ln

bk
ak

� �� ��1
IðtÞ

s
þ

Z

Sk

A
�

Y dS

� �

� sA
�

Y. (3.19)

This expression for the electric current density in the coil is substituted into the variational formulation, Eq. (3.2), to yield

a boundary value problem dependent only on AY.

4. Numerical implementation

The numerical implementation of the general theory employs the variational integration approach. According to this

method, space and time interpolation schemes are concurrently applied to the Lagrangian, followed by the variational

principle applied on the discrete nodal variables for each time step. A survey of the extensive literature on this topic may be

found in the introductory discussion of Marsden and West (2001).

In the axisymmetric cases discussed here, the independent variables, functions of R and Z, are: non-zero magnetic

vector potential component AY and non-zero displacement components uR and uZ . All the independent variables are

continuous functions of the space variables, as discussed in Section 3.2. Therefore, employing nodal finite elements one has

the discretization in space, given by

AeðR; Z; tÞ � MðR; ZÞ � qeðtÞ,

ueðR; Z; tÞ � NðR; ZÞ � peðtÞ, (4.1)

where Ae is the vector potential A inside an element, M is the spatial interpolation matrix of element basis functions for Ae,

qe are the nodal degrees of freedom for Ae, ue is the displacement u inside an element, N is the spatial interpolation matrix

of element basis functions for ue, and pe are the nodal degrees of freedom for ue. Four node bilinear quadrilateral elements

are used to discretize A and u, with the same mesh being employed for each variable. These linear elements are appropriate

since the Lagrangian, Eq. (3.1), involves only up to first derivatives of continuous functions A and u.

Using the backward Euler approximation for time discretization, one has

A
�

eðR; Z; t
iÞ � MðR; ZÞ � q

�

eðt
iÞ; q

�

eðt
iÞ �

qi
e � qi�1

e

Dt
,

u
�

eðR; Z; t
iÞ � NðR; ZÞ � p

�

eðt
iÞ; p

�

eðt
iÞ �

pi
e � pi�1

e

Dt
, (4.2)

where qi
e and pi

e are the degrees of freedom in an element at time ti and where the time step Dt � ti � ti�1. With the above

space and time discretization and using the right-hand rule for time integration of F, a discrete action F
d is defined by

F �

Z tM

t0
LðA;u;u

�
Þdt

� Dt
X

M

i¼1

L
d
i ðq

i;pi�1;piÞ � F
d, (4.3)

where the Lagrangian is given in Eq. (3.1) and its discrete approximation at time ti, Ld
i ðq

i;pi�1;piÞ, follows from applying

the discretization equations (4.1) and (4.2). Also, qi and pi are the degrees of freedom at time ti throughout the space

domain. Upon application of Hamilton’s variational principle with respect to these discrete degrees of freedom, the discrete

governing equations are

F
d
;qi ½dq

i� ¼ 0; F
d
;pi ½dpi� ¼ 0, (4.4)

where dq0 ¼ dqM ¼ 0 and dp0 ¼ dpM ¼ 0. These equations provide the time stepping routine to solve for the degrees of

freedom at each time step, i.e. given ½qi;qi�1;pi;pi�1� one calculates ½qiþ1;piþ1�. The choice of the approximations to the time

derivatives and integral in Eqs. (4.2) and (4.3), respectively, results in implicit time integration for q and explicit time

integration for p.

That is, at each time step the finite element problem is

Kðpiþ1Þ � qiþ1 ¼ f qðq
i;piþ1

; tiþ1Þ,

R � piþ1 ¼ f pðq
i;pi�1;piÞ ) piþ1 ¼ R�1 � f p, (4.5)

where K is the tangent matrix associated with the electromagnetic degrees of freedom, f q is the force vector associated

with the electromagnetic degrees of freedom, R is the constant mass matrix associated with the mechanical degrees of

freedom, and f p is the force vector associated with the mechanical degrees of freedom. One may calculate nodal

displacements piþ1 from Eq. (4.5)2 where the mass matrix R is constant. Then the nodal vector potential qiþ1 is given in

terms of qi and piþ1 by Eq. (4.5)1 where the tangent matrix Kðpiþ1Þ depends on the current geometry. Notice that the

resulting scheme is an efficient staggered solution algorithm with two uncoupled solution steps, neither of which requires

an iterative solution technique.
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To complete the implementation the initial and boundary conditions are needed. The initial conditions are given by

A ¼ 0; u ¼ 0; u
�
¼ 0 at t ¼ 0. (4.6)

Note that the problem is driven by the time dependent input electric current IðtÞ, as discussed in Section 3.2.2.

The problem also requires application of the essential boundary conditions. In addition to axisymmetry, the processes

modeled subsequently will all have mirror symmetry around Z ¼ 0. This implies the essential boundary conditions for A

are

AY ¼ 0 at R ¼ 0,

AY ! 0 as R2 þ Z2 ! 1. (4.7)

R ¼ 0 is the axis of rotational symmetry, implying AY ¼ 0, and the electromagnetic fields decay to zero at infinity. For

simplicity, the latter boundary condition is implemented by taking a large area of meshed air and applying AY ¼ 0 at the

edges. In the following calculations it has been confirmed that the size of the air mesh is large enough as to accurately

model the infinity boundary condition. For u, we need to impose only the boundary condition

uZ ¼ 0 at Z ¼ 0, (4.8)

which is dictated by mirror symmetry about Z ¼ 0.

Note that outside the workpiece the displacements are not determined by the variational procedure. The coil is

stationary, and in the surrounding air the equation of motion is satisfied identically, as expected. However, it is necessary to

assume a kinematically admissible displacement field in the air in order to ensure the mapping between reference and

current configurations remains invertible, i.e. a non-singular Kðpiþ1Þ in Eq. (4.5). Moreover, this distribution affects the

numerical solution and if not carefully chosen can cause the simulation to give poor results. In the present work, a simple

linear distribution of displacements in the air is implemented that adjusts with the displacements in the workpiece as

necessary.

It is also important to note the influence of the forming coil on the finite element matrices. Eq. (3.19) implies that each

degree of freedom in a coil turn cross-section is directly coupled to every other one, through the integral over the cross-

section. This introduces non-local relations into the finite element method, and the resulting tangent matrix K in Eq. (4.5)

is asymmetric.

In the most general case c also depends on internal variables n. Accordingly, evolution laws for n
�

must also be included

into the numerical algorithm. The constitutive law adopted for the metallic tubes simulated here is for simplicity a

deformation theory of plasticity with unloading, which could be cast as a one internal variable model. Due to the relative

simplicity of this model, the numerical algorithm does not need an internal variable evolution law, as it is detailed in the

Appendix.

The numerical techniques detailed above are implemented using the finite element program FEAP (2005). Moreover, the

choice of the numerical integration techniques will be discussed further in a subsequent publication, where details of the

solution algorithm will be given, along with an analysis of the technique and possible alternatives.

5. Simulation results

The ensuing simulations of electromagnetically driven, freely expanding tubes are inspired by the experimental work of

Seth (2006). These experiments addressed the onset of necking in freely expanding, electromagnetically loaded tubes, and

their localization of deformation aspects were modeled by Thomas et al. (2007). Given that the expanded tubes remained

mostly axisymmetric in these experiments, we will use the geometries, material properties, and currents of some of these

experiments for the calculations in this work. In the following simulations, a cylindrical four turn coil expands three tubes

of varying height: one taller than the coil, one of approximately even height with the coil (denoted as ‘‘intermediate’’), and

one shorter than the coil. Moreover, motivated by the work of Zhang and Ravi-Chandar (2008a) on the influence of coatings

on the ductility of tubes under high strain rates, the expansion of the tall tube externally coated by a non-conductive

hyperelastic material is also analyzed.

The geometry of the tube expansion setup is shown in Fig. 1a, where the coil is idealized as axisymmetric rings. Fig. 1b

shows the simulation domain (top right quarter of the plane Y ¼ 0) with the relevant dimensions. The midlines of the coil

turns and tube are denoted with solid dots, and the midplane of the tube is denoted with a dashed line. The relevant

dimensions are: radius of the coil midlines, Rc; radius of tube midline, Rt; pitch of the coil, Pc; one-half height of the tube,

Zt; coil turn cross-section thickness, Tc; tube cross-section thickness, T t; and hyperelastic coating cross-section thickness,

Th. Note that the coil dimensions from Section 3.2.2 are thus hk ¼ Tc , ak ¼ Rc � Tc=2, and bk ¼ Rc þ Tc=2.

This section starts with a presentation of the meshing and time steps, followed by the choice of constitutive properties

and proceeds with the simulation results.
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5.1. Meshing and time steps

The reference configuration finite element meshes are for simplicity distorted Cartesian grids. As a check, the mesh

density employed was shown to give, during the duration of the simulation, a maximum midline displacement for the tall

tube less than 1% different than a mesh four times denser. Fig. 2 is an FEMmesh of the intermediate tube. The tube and coil

are depicted in dark gray, and the air is depicted in white and light gray. Throughout the following calculations we use the

same basic mesh, with adjustments to accommodate changes in tube geometry, that has four elements in each square coil

turn, approximately 700 elements in the tall tube, and the same density of elements in the coatings as in the tubes. The

result is 5000–10,000 nodes in each problem.

There are two regions of air mesh: one that moves during the process with assigned displacements (necessary near the

tube, see Section 4) and one fixed. The air region in light gray in Fig. 2 has displacements that vary linearly from the tube

surface to the boundary of the region. This region covers, in the R direction, from the outside radius of the coil ðR ¼

Rc þ Tc=2Þ to a distance DRd
mesh beyond the outside of the tube and, in the Z direction, from Z ¼ 0 to a distance DZd

mesh

beyond the top of the coil or tube, whichever is taller. The remaining air in the simulation domain (white in Fig. 2) is fixed,

and the simulation domain extends beyond the region with non-zero air displacements distances of DRmesh and DZmesh in

the R and Z directions, respectively. These dimensions, which are labeled in Fig. 2, are chosen relative to the inner radius of

the tube, Rin
t ¼ Rt � T t=2. Based on convergence studies, all the subsequent simulations use DRd

mesh ¼ DZd
mesh ¼ Rin

t and

DRmesh ¼ DZmesh ¼ 10Rin
t .

The time step Dt is chosen for stability and accuracy, which are affected by the elastic wave speed (and thus the size of

the elements in solids) and characteristic time of the electric current pulse. The need to resolve elastic waves is the limiting

factor, and since the mesh and problem geometry are similar in each of the following simulations, the time step is kept

constant throughout the following work. The characteristic time of the electric current pulse, where t0 will be one-half the

pulse time, controls the macroscopic deformation, and for the values of t0 in this work we have Dt=t0 ¼ 3� 10�4 or less. In

general, decreasing the time step below the value we use showed negligible change in the solution. The influence of mesh

and time step will be discussed in detail in a subsequent publication.
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Fig. 2. Example FEM mesh for axisymmetric tube expansion.
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Fig. 1. (a) Idealized tube expansion setup. (b) Simulation domain and dimensions.
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5.2. Material constitutive behavior

In the interest of simplicity temperature effects are ignored. The corresponding electromagnetic and mechanical

material response models adopted are discussed below.

5.2.1. Electromagnetic constitutive response

Since the applications of interest involve metals under high current density, magnetization and polarization can be

safely ignored, and Eq. (2.25) gives the constitutive relations between the magnetic field and H field and between the

electric field and electric displacement. In addition, Ohm’s law is required to relate electric current density with electric

field, and its constant conductivity version is given in Eq. (3.10). The resistivity of aluminum, rAl (the experimental tubes

were made of AA6063-T6 aluminum alloy), and copper, rCu (typical actuators are made of copper), have been obtained from

standard tables. Also, note that the coatings applied to the tall tube are assumed to have zero conductivity. The values of

the electromagnetic constitutive parameters (which in addition to the resistivities include m0 and �0 the permeability and

permittivity of vacuum) are given in Table 1.

5.2.2. Mechanical constitutive response

The constitutive law employed for the tubes is a finite strain model extension of J2 deformation theory of plasticity (a

generalization of the model employed by Abeyaratne and Triantafyllidis (1981), and see the references cited therein for

more details). For metals undergoing moderate deformations with nearly proportional loading, the J2 deformation theory

of plasticity model has been shown to give reasonable experimental predictions (Anand, 1979). A useful feature of this

formulation is that it can be fit to any uniaxial stress–strain response. Because of this feature, this formulation can also be

used to model the polyurea coating of interest in Zhang and Ravi-Chandar (2008a), which is approximated as an isotropic

hyperelastic solid. For comparison purposes a compressible Mooney–Rivlin model (Hallquist, 2006) is also used as an

alternative coating on the tall tube. For completeness these two constitutive models may be found in the Appendix.

The experimentally obtained quasistatic uniaxial response for the tube alloy AA6063-T6 has been fitted to a piecewise

power law. The resulting Young’s modulus E, yield stress ty, and hardening exponent m are given in Table 2. A comparison

of the uniaxial stress–strain data and the piecewise power law fit is shown in Fig. 3. Poisson’s ratio n and the reference

configuration mass density r0 also shown in Table 2 are obtained from standard tables on aluminum (they are not alloy

sensitive).

A similar procedure has been followed to obtain the piecewise power law fit parameters for the polyurea coating used in

the experiments of Zhang and Ravi-Chandar (2008a) (for uniaxial data see the cast polyurea material of Chakkarapani et al.,

2006). Poisson’s ratio is chosen such that the material is close to incompressible while also avoiding numerical difficulties,

and the mass density was obtained from Zhang and Ravi-Chandar (2008a). The resulting material parameters are given in

Table 3.

A comparison of the uniaxial stress–strain data and the piecewise power law fit is shown in Fig. 4. On the same figure is

plotted the uniaxial stress–strain response of a Mooney–Rivlin coating with the same Young’s modulus E and Poisson’s

ratio n.
All the ingredients are now in place to proceed with the simulations of electromagnetically expanded tubes.

5.3. Tube expansion

The geometry of the four different tube expansion simulations (three uncoated and one coated tube) is given in Table 4.

Each coil turn has a square cross-section with the same area as the circular cross-sections of the coils in the experiments of

Seth (2006) (square-cross-sections simplify meshing of the coil). Also, the height of the short tube is two thirds that of the

intermediate tube (the short tube case is not based on an experiment), and the coated tubes are simply the tall tube with

coating applied to the outside surface.

Table 1

Electromagnetic constitutive parameter values.

m0 ¼ 1:26� 10�6 N=A2 �0 ¼ 8:85� 10�12 F=m rAl ¼ 2:65� 10�8 Om rCu ¼ 1:68� 10�8 Om

Table 2

AA6063-T6 uniaxial mechanical constitutive parameter values.

E ¼ 69� 109 Pa ty ¼ 195� 106 Pa m ¼ 13:89 n ¼ 0:33 r0 ¼ 2700kg=m3
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Table 3

Polyurea uniaxial mechanical constitutive parameter values.

E ¼ 73� 106 Pa ty ¼ 3:8� 106 Pa m ¼ 2:817 n ¼ 0:45 r0 ¼ 1200kg=m3
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Fig. 3. Comparison of experimental data and piecewise power law fit for AA6063-T6.
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Fig. 4. Comparison of experimental data and piecewise power law fit for polyurea coatings. The response of a Mooney–Rivlin coating with the same

Young’s modulus E and Poisson’s ratio n is also plotted.

Table 4

Geometry of tube expansion simulations.

Tall tube (m) Intermediate tube (m) Short tube (m) Coated tall tubes (m)

Rc 0.023825 0.023825 0.023825 0.023825

Rt 0.029375 0.029375 0.029375 0.029375

Pc 0.0094 0.0094 0.0094 0.0094

Zt 0.04255 0.01585 0.01057 0.04255

Tc 0.0056275 0.0056275 0.0056275 0.0056275

Tt 0.00175 0.00175 0.00175 0.00175
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Since in the experiments the electric current in the forming coil is very close to an exponentially decaying sinusoid, the

general form taken in the present work is

IðtÞ ¼ I0 sin
pt

2t0

� �

exp lnðkÞ
t

2t0

� �

�
lnðkÞ

2

� �

, (5.1)

where 2t0 is the characteristic time of the current pulse, I0 is the electric current at t ¼ t0, and k is a decay parameter,

k ¼ �Ið3t0Þ=I0. This general form is found to give a satisfactory fit to the experimentally measured data.

In the simulations of the tall and intermediate tubes the driving input electric current in the coil has been measured

experimentally (Seth, 2006), and the analytical form in Eq. (5.1) is used to find the value of the parameters I0, t0, and k. In

the absence of experiments for the short uncoated and tall coated tubes a reasonable guess of the corresponding

parameters has been made. The resulting parameter values used in the simulations are given in Table 5.

5.3.1. Expanded tubes without coating

The first tube simulation pertains to a tube taller than the forming coil. The undeformed and deformed (at maximum

expansion) configurations are plotted in Fig. 5, where light gray depicts the undeformed tube and black depicts the

deformed tube. Comparing the final deformed shape of the simulated tube with that in the corresponding experiment

(Seth, 2006) shows that the deformed configuration is captured reasonably well.

The hoop engineering strain of the tall tube midline is plotted with respect to non-dimensional time in Fig. 6. The

dimensionless currents in the coil (dashed line) and the tube (dotted line) versus the dimensionless time are also plotted in

the same figure. Notice that the maximum expansion of the tube, as measured by the midline strain, peaks at t=t0 ¼ 5:9

where the currents are almost zero, well past the peaks of the first two significant current pulses at t=t0 ¼ 0:8 and 2:8. The

considerable delay of maximum deformation with respect to current peak time is attributable to important inertial effects.

Small amplitude elastic vibrations follow the maximum tube expansion. The period and amplitude of these vibrations

agree reasonably well with recent experiments performed at The Ohio State University (Vivek and Daehn, 2008).

The electric current density in the tube for the times t=t0 ¼ 0:5, 1.3, and 2.0 is depicted in Figs. 7, 8, and 9, respectively.

Note that the r-axis and z-axis have been rescaled to increase the aspect ratio of the tube’s section in order to show the

Table 5

Input electric current parameters.

Tall tube Intermediate tube Short tube Coated tall tubes

I0 (A) 137� 103 130� 103 117� 103 137� 103

t0 (s) 17� 10�6 26:6� 10�6 26:6� 10�6 17� 10�6

k 0.3 0.3 0.3 0.3
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Fig. 5. Undeformed configuration (in gray) and deformed configuration (in black) at maximum midline displacement of tall tube: t=t0 ¼ 5:9.

18



electric current density more clearly. In Fig. 7 the electric current density at t=t0 ¼ 0:5 is plotted, which is just prior to the

coil’s first electric current pulse. As expected, the electric current is concentrated on the inside surface of the tube, near the

coil. Note that the maximum electric current density here is negative because the corresponding coil electric current

density is positive. Fig. 8 shows the electric current density at t=t0 ¼ 1:3, which is after the peak of the first current pulse of

the coil. The maximum electric current density has moved from the inside surface to the middle of the tube and has

decreased in intensity. In Fig. 9 the electric current density is shown at t=t0 ¼ 2, when the coil electric current is equal to

zero. The electric current density distribution in the tube has already reversed from what it was initially, with Fig. 9 an

inverse image of Fig. 7 (allowing for deformation) but with significantly lower intensity.
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Fig. 7. Electric current density (A/m2) distribution in the cross-section of tall tube: t=t0 ¼ 0:5.
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Fig. 8. Electric current density (A/m2) distribution in the cross-section of tall tube: t=t0 ¼ 1:3.
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The second simulation pertains to the expansion of a tube approximately the same height as the forming coil. In Fig. 10

(the counterpart of Fig. 5), the undeformed configuration is depicted in light gray and the deformed configuration is shown

in black. The simulation uses an axisymmetric approximation of the experimental geometry that makes the tube slightly

shorter than the coil, which produces the mildly toroidal shape. The corresponding experiments of Seth (2006) also show

toroidal deformation in some specimens. In Fig. 11 (the counterpart of Fig. 6) the hoop engineering strain of the tube’s

midline as well as the electric currents of the coil and tube are plotted as functions of dimensionless time. The maximum

expansion of the tube, as measured again by the midline strain, peaks at t=t0 ¼ 4:5, well past the peaks of the first

significant current pulses, as was the case for the tall tube.

The third simulation is that of a tube much shorter than the forming coil. Fig. 12 (the counterpart of Fig. 10) shows the

deformed configuration in gray and the undeformed configuration in black. The deformation qualitatively agrees with the

experimentally obtained toroidal shape in the case where the tube is much shorter than the coil. In Fig. 13 (the counterpart

of Fig. 11) the hoop engineering strain and electric currents are again given together. The midline strain peaks at t=t0 ¼ 5:1,

well past the significant current peaks as in the previous simulations.

The three tube expansion simulations discussed above are in reasonable qualitative agreement with the experimental

results of Seth (2006) and the more recent ones of Vivek and Daehn (2008). This indicates the simulation correctly captures

the important aspects of the electromagnetic–mechanical interactions of free tube expansion.

5.3.2. Expanded tubes with coating

Recent work by Zhang and Ravi-Chandar (2008a) examines the effect of a polyurea coating applied to the outside

surface of a freely, electromagnetically expanded ring or tube. To investigate this novel EMF problem, the fourth simulation

pertains to the tall tube with hyperelastic coatings of varying thickness, with the coating modeled as either a power law
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Fig. 10. Undeformed configuration (in gray) and deformed configuration (in black) at maximum midline displacement of intermediate tube: t=t0 ¼ 4:5.
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Fig. 12. Undeformed configuration (in gray) and deformed configuration (in black) at maximum midline displacement of short tube: t=t0 ¼ 5:1.
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material (fit to polyurea uniaxial data) or a Mooney–Rivlin type material (with the same Young’s modulus as the polyurea)

as discussed in Section 5.2.2 and the Appendix.

As an example, in Fig. 14 the deformed midplane of the tube (excluding coating) is plotted for the case with no coating

(solid line) and with a polyurea power law coating half the thickness of the tube (i.e. Th=Tt ¼ 0:5). The deformed shape is

plotted at the first maximum of the midline displacement, which corresponds to approximately t=t0 ¼ 5:9 for the uncoated

tube and t=t0 ¼ 6:3 for the coated tube. The maximum displacement at Z ¼ 0 is significantly decreased, but the overall

shape of the deformed tube is only slightly changed.

To quantify the effect of the coating we look at the maximum displacement of the tube midline (non-dimensionalized

with respect to the maximum deformationwithout coating) versus the coating thickness (non-dimensionalized by the tube

wall thickness, i.e. Th=Tt) for each coating material. This result is given in Fig. 15. As expected, increasing the coating

thickness decreases the deformation, but the difference in coating material does not have a pronounced effect. This result

suggests the coating’s inertia plays the major role in the decrease of displacement.

The polyurea based power law and Mooney–Rivlin results in Fig. 15 are essentially identical (with small differences

attributed to numerical accuracy, due to the mesh used). This is due to the extremely low coating stiffness (relative to the

aluminum tubes).

To examine the effects of coating mass density and stiffness we now vary the coating constitutive response. In one case

the coating density is doubled while leaving all other material parameters as in Table 3 and in a second case the material

parameters other than density are modified to make the coating stiffer. The parameters of the stiffer coating are based on

the sprayed polyurea material in Chakkarapani et al. (2006), and Table 6 gives the parameters for both cases.
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The results corresponding to the two cases in Table 6 are given in Fig. 16. Increasing the coating mass density

significantly decreases the maximum displacement but the results from the two coating materials remain essentially

identical. On the other hand, increasing the stiffness (on the order of three times stiffer) does not as greatly affect the

maximum displacement but does separate the response of the two coating materials. This is due to the coating materials

having different stiffening characteristics with increasing strain (see Fig. 4), and the increased stiffness of Table 6 causes

this difference to be significant relative to the inertial effects.

6. Discussion

The modeling of freely expanding axisymmetric tubes has a number of simplifying assumptions that can be easily

addressed within the theoretical context proposed. Moreover the present methodology can be extended to a more general

class of problems involving coupled electromagnetic–mechanical processes.

To begin, the mechanical constitutive models in this work have been idealized as hyperelastic materials (coating) and as

finite strain J2 deformation theory of plasticity with unloading (metallic tube). The mechanical response of the workpiece

and coatings can be more accurately captured by other elasto-plastic, elasto-visco-plastic, or thermo-visco-plastic material

constitutive models, which will allow quantitative comparisons with experiments, a task in progress by the authors.

The simulations’ coil electric current is assumed to be known a priori through independent measurement. Modeling the

forming circuit would be useful for predicting the coil current. Implementing a capacitor circuit coupled to the FEM

solution is straightforward, and the authors have already produced results with such a circuit.

The efficiency of the simulations may be improved by combining the FEM technique, applied to the nonlinear, complex

solids, with a boundary element method, applied to the air where a linear equation holds for the H field, thus avoiding the

need to mesh the air with deforming finite elements and to mesh a large domain to approximate the infinity boundary

conditions. Other researchers currently use such techniques (L’Eplattenier et al., 2006), making these ideas a promising

direction for future work.

There are several other phenomena that are associated with the free expansion of tubes that have not been presently

addressed, such as localization of deformation, stability, and energy partition. One may implement the strain localization
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Fig. 16. Effect of modified coating materials on the maximum midline displacement of tall tube.

Table 6

Modified coating uniaxial mechanical constitutive parameter values.

Increased density Increased stiffness

E (Pa) 73� 106 250� 106

ty (Pa) 3:8� 106 8:7� 106

m 2.817 8.333

n 0.45 0.45

r0 ðkg=m3Þ 2400 1200
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modeling of Thomas et al. (2007) and/or relevant inertial effects into the formulation here to produce more accurate

predictions of ductility in EMF expansion processes. Other forms of failure can also be explored, in particular those under

electromagnetic compression of tubes that require stability considerations to investigate ovalization and collapse.

Simulation of more complex geometry problems might require a 3-D implementation. The general theory presented up

to Section 3.1 is applicable to any electromagnetic–thermal–mechanical process that admits the eddy current

approximation, while Sections 3.2, 4, and 5 develop an axisymmetric implementation for the processes of interest in

this work. However, a 3-D implementation is necessary to predict the transition of axisymmetric problems to non-

axisymmetric deformation and failure (Zhang and Ravi-Chandar, 2006). Even more generally, some aspects of the current

problem, such as the helicity of the coil, must be analyzed in 3-D, and many problems of industrial interest, e.g. the

electromagnetic forming of fuel cell plates (Bradley et al., 2005), have 3-D features not captured by the present analysis.

7. Conclusion

Of interest is the modeling of EMF processes, a task requiring the solution of coupled electromagnetic–mechanical (and

thermal, as necessary) problems, where the governing equations are Maxwell’s equations in solids—under the eddy current

approximation—and Newton’s equations. The present work is motivated by the need for a consistent, fully coupled

variational formulation that should also lead to an efficient numerical algorithm. Past work in modeling EMF processes has

not been based on such a unified variational framework nor provided adequate justification for the algorithms employed.

The present work introduces a fully coupled, reference configuration-based least-action variational principle involving a

magnetic flux potential and the displacement field as independent variables. The corresponding Euler–Lagrange equations

are Maxwell’s and Newton’s equations in the reference configuration, which are shown to coincide with their current

configuration counterparts obtained independently by a direct approach. Moreover, this variational principle, combined

with a variational integration numerical scheme, provides an efficient staggered solution algorithm. The proposed

formulation is illustrated with simulations of the free electromagnetic expansion of uncoated and coated tubes. Although

the simulation geometries, material properties, and process characteristics are borrowed to a large extent from

experiments, the main goal is to demonstrate with the help of realistic examples the applicability of the general theory.

The general formulation proposed can be applicable to other related areas, besides EMF. One such possibility is the

modeling of microelectromechanical devices (e.g. Li and Aluru, 2002). Another area of interest pertains to electroactive

materials with magnetization and/or polarization. In particular, problems involving magnetic field-responsive polymers

and elastomers (Kankanala and Triantafyllidis, 2004, 2008; Filipcsei et al., 2007) could be investigated by considering a

magnetization-dependent free energy. We believe that the variational formulation proposed here and the resulting

efficient discretization algorithm can be the starting point for the study of many interesting problems in the rapidly

growing area of coupled electromagnetic–mechanical processes.
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Appendix A. Mechanical constitutive models

For initially isotropic, rate independent metallic materials undergoing large strain proportional loading, a finite strain

version of J2 deformation theory of plasticity has been shown to produce reasonably accurate experimental predictions

(Anand, 1979). Although this theory can accommodate any uniaxial response, a piecewise power law uniaxial response will

be employed here for simplicity, namely

�
�y

¼
t

ty
for tpty;

�
�y

¼
t

ty

� �m

for t4ty, (A.1)

where � is the uniaxial logarithmic strain, �y is the logarithmic yield strain, t is the uniaxial mechanical Kirchhoff stress, ty
is the mechanical Kirchhoff yield stress, and m is the hardening exponent. The logarithmic yield strain �y is related to the

mechanical Kirchhoff yield stress ty by �y ¼ ty=E, where E is Young’s modulus. The corresponding 3-D model used by
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Abeyaratne and Triantafyllidis (1981) will be employed, i.e.
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(A.2)

where n is Poisson’s ratio, �i ¼ lnðliÞ are the principal logarithmic strains (li are the principal stretch ratios), and G is a

constant resulting from continuity of r0c at the yield point. In the above expressions the equivalent mechanical Kirchhoff

stress te is given in terms of the principal values ti of the mechanical Kirchhoff stress tensor sm by

te � 1
2ðt

2
1 þ t22 þ t23 � t1t2 � t2t3 � t3t1Þ

1=2, (A.3)

while the equivalent logarithmic strain �e is

�e � 2
3ð�

2
1 þ �22 þ �23 � �1�2 � �2�3 � �3�1Þ

1=2. (A.4)

From Eqs. (2.30), (A.1)–(A.4) the relation between the mechanical Kirchhoff stress sm and the deformation gradient F

sm ¼ r0

@c

@F
� FT (A.5)

can be shown (Abeyaratne and Triantafyllidis, 1981) to result due to isotropy in the following principal axes relationship:

1� 2ns
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¼
1� 2n

E
; Es ¼

t

�
; �e ¼

2

3
ð1þ nsÞ�,

ti ¼
Es

1þ ns
�i þ

ns
1� 2ns

ð�1 þ �2 þ �3Þ
� �

, (A.6)

where the secant Young’s modulus Es and secant Poisson’s ratio ns are defined such that Eqs. (A.6)1, (A.6)2, and (A.6)3 hold.

Due to the inevitable presence of unloading, a simple extension of the model is hereby introduced. The proposed model

could be cast as a one internal variable model, in accordance with the general theory presented earlier. However, an

evolution law is not needed in this case, since a simpler formulation is possible. Once unloading has started, i.e. once

teotmax
e where tmax

e is the maximum value of the equivalent stress prior to the onset of unloading at the point in question,

the material is assumed to continue unloading according to isotropic linear elasticity and the mechanical Kirchhoff stress is

given by

sm ¼ smax
m þ L��DeF , (A.7)

where smax
m is the mechanical Kirchhoff stress at tmax

e and DeF is the unloading part of the current configuration logarithmic

strain based on the change in F. This is given by

DeF � lnððDF � DFT Þ1=2Þ; DF � F � F�1
max, (A.8)

where Fmax is the deformation gradient at tmax
e . Also, L are the linear, isotropic elastic moduli, given by

Lijkl ¼ ldijdkl þ mðdikdjl þ dildjkÞ, (A.9)

where l and m are the Lamé constants.

To investigate alternative coatings for the tall tube, a compressible Mooney–Rivlin hyperelastic material response is also

implemented. The strain energy density is given by

r0c � AðI1 � 3Þ þ BðI2 � 3Þ þ CðI�2
3 � 1Þ þ DðI3 � 1Þ2, (A.10)

where I1, I2, and I3 are the invariants of the right Cauchy–Green tensor C and A, B, C, and D are material constants given by

A ¼
E

8ð1þ nÞ
; B ¼ A; C ¼

1

2
Aþ B; D ¼

Að5n� 2Þ þ Bð11n� 5Þ

2ð1� 2nÞ
. (A.11)
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