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Abstract

The aim of this paper is to present an alternative solution to the finite element method

for the determination of the elastic stress field for an axi-symmetric notched tube under

tension and bending loadings. The proposed solution is an extension of the work of Filippi

and Lazzarin (2004) to tubular specimens. It provides the stress field distribution along the

notch bisector. A good agreement was found between the solution proposed in the present

paper and the results from a finite element analysis. A sensitivity analysis is performed

to establish the domain of validity of the solution with respect to the dimensions of the

notched tube
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σ stress field associated to the local system of coordinates

Σ stress field associated to the global system of coordinates

ρ root radius of the notch

α half opening angle of the notch

Re, Ri and Ro external, internal and notch tip radii of the tube

p depth of the notch

l ligament length of the notch

e thickness of the tube

Kt
ZZ axial stress concentration factor for tension loading

Kf
ZZ axial stress concentration factor for bending loading

ξ dimensionless parameter characterizing the geometry

of the notched tube

1 Introduction

Fatigue design is a complex engineering field where materials, geometry and load-

ing define the lifetime of a structure. The fatigue design methodology is a two step

process based on a mechanical analysis devoted to the computation of the stresses

and a fatigue analysis devoted to lifetime prediction. As fatigue cracks initiate fa-

vorably near notches, holes or generally in regions of stress concentration, it is

important to estimate stresses precisely in these parts in order to obtain accurate

lifetime predictions.

Additional difficulties to estimate the fatigue life of notched components come from

different factors which are essentially related to the stress gradient [29,25,12,13] or

the scale effect [10,26,20]. These factors influence the fatigue process leading to

unsatisfactory fatigue predictions when classical fatigue criteria such as the Cross-

land criterion or the Findley criterion are employed.

Fortunately the application of these fatigue criteria combined with different meth-

ods such as the critical distance [15,23,30] or modified to incorporate the influence

of the stress gradient [24] shows good agreements to estimate fatigue limits. How-

ever, all these techniques need the knowledge of the stress distribution near the

notch tip either to compute the stress gradient or to compute the stress components

at a different distance from notch tip.
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To achive the first step of the fatigue design methodology, engineers can use dif-

ferent numerical or analytical methods and tools. Numerical methods like finite

boundary elements method provide solutions for a large class of geometries, but

are mesh dependent in areas of stress concentration and time consuming. More-

over, sensitivity analysis with respect to different parameters will further increase

the computational burden.

Classical closed-form solutions for infinite bodies containing holes have been pre-

sented by Savin [28] based on the complex potentials proposed previously by

Muskeshishvilli [21]. This solution employs the theory of complex elasticity which

has been a powerful mathematical tool for many different problems such as contact

problem [14], slope stability [18] or crack problem [3].

Several papers [31,17,11,4] have proposed expressions for the stress field ahead of

a notch depending on two parameters: the notch root radius ρ and the axial stress

concentration factor Kt. Indeed, they showed that in the vicinity of the notch tip,

the stress field distribution is more influenced by the notch root radius than by the

global geometry of the notch and is very similar for a variety of notches when

stresses are normalized by the stresses at the notch tip.

Thus the stress distribution obtained by these solutions, when considered away

from the notch, is not dependent on the stress concentration factor, which is in-

coherent with the assumptions of the analysis [27]. Therefore these solutions are

not accurate enough [5] for a distance ahead of the notch tip larger than 3ρ in the

case of a sharp notch (Kt > 5) and ρ in the case of blunt notch (Kt < 5 ).

[16,9,2] proposed elaborate approximate closed-form expressions for a unique so-

lution applicable both for blunt and sharp notches. Their solutions are valid for

notched bars and plates under tension and bending loading.

The present work proposes a further extension of these solutions in the form of

an approximate stress field solution devoted to tubes presenting an internal or an

external notch under tension and bending loadings. The application of this solution

to a threaded connection is presented in [6,7]

The paper is organized as follows: the next section presents a short review of the

solution proposed by Filippi and Lazzarin (2004) dedicated to notched bars. The

third section is dedicated to the extension of the preceding solution to tubular ge-

ometries with an external or an internal notch and the determination of the different

parameters introduced in the solution. The final section discusses the comparisons

of the semi-analytical solution with the finite element results for a variety of notch

geometries and defines the validity of the solution with regards to a dimensionless

parameter ξ representing a ratio between notch depth and the tube thickness.
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2 Stress problem for notched tubes

In this section, we are interested in the formulation of an approximate solution of

the elastic stress field Σ in the vicinity of a notched axi-symmetrically tube under

tension and bending loading.

The geometry of the tubes is depicted in Fig. 1. We shall consider two systems

of coordinates, the former is a global system of coordinates {eR, eΘ, eZ} with the

z-axis along the axis of the tube and the latter is a local system of coordinates
{

ex, ey, ez

}

in the neighborhood of the notch. The tube is defined by an internal

and an external radius, Ri and Re respectively. The notch has its tip at a distance

Ro from the axis of the tube and its depth p is equal to

p =











Re − Ro for external notch

Ro − Ri for internal notch
. (1)

The notch has a rounded V-shaped geometry with an opening angle 2α and a root

radius ρ.

Along the bisector of the notch, the stress field Σ has the following matrix form for

tension and bending loading in the global system of coordinates {eR, eΘ, eZ}, due

to the symmetry of the problem, and to some simplifications regarding the order of

magnitude of the stress components with respect to the axial component ΣZZ

Σ =















ΣRR 0 0

0 ΣΘΘ 0

0 0 ΣZZ















. (2)

On the same bisector, we shall denote σ the associated stress field expressed in the

local system of coordinates
{

ex, ey, ez

}

. In our case, its components are defined by

σ =















σx 0 0

0 σy 0

0 0 σz















=















ΣRR 0 0

0 ΣZZ 0

0 0 ΣΘΘ















. (3)

One can note that the shear component σxy is equal to zero everywhere along the

notch ligament, i.e 0 > r − ro > Re − Ro, due to the symmetry of the problem.
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Recently, a set of closed-form equations valid for V-shaped notched axi-symmetric

bars, i.e Ri = 0, subjected to mode I loadings (tension and bending) has been

proposed in [8].

The local elastic stress field σ has been obtained with the use of the Kolosoff-

Mushkelishvili’s complex potential function [21] and the conformal mapping in-

troduced by Neuber [22]. This solution has been obtained under plane stress or

plane strain condition with respect to the local coordinate system, which is verified

for sufficiently large R.

The solution in [8] for the stress field σ along the notch bisector, i.e. y = 0 or θ = 0,

of a cylindrical bar expressed in the local system of coordinates
{

ex, ey, ez

}

(see

Fig. 1) is

σy =
σmax

4 (q − 1) + qω1

g (r)

[

4 (q − 1) f (r)λ1−1 + qω1

(

r

ro

)µ1−1
]

, (4)

σx =
σmax

η1 [4 (q − 1) + qω1]

[

4 (q − 1)
(

r

ro

)λ1−1

+ qδ1

(

r

ro

)µ1−1
]

(5)

where σmax is the maximum stress in the y-direction and functions f (r) and g (r)
will be defined later. The other parameters q, ro, λ1, µ1, ω1, δ1 and η1 involved in

(4) and (5) are defined in Appendix 1.

The stress field defined by (4) and (5) is an approximate solution, in the sense that

the free surface boundary condition is satisfied only at the notch tip and on the

rectilinear flanks of the V-notch, where the boundary conditions were set according

to Williams [19].

Originally [8] the function f (r) in (4) was linear, expressed as:
r

ro

. This solution

gives good results close to the neighborhood of the notch tip but becomes less

accurate far away from it. Thereby, in order to obtain a better solution all along the

notch bisector, the function f (r) was modified in the form

f (r) = 1 +
atan [m (r − ro)]

mro

(6)

where the parameter m will be defined later. This solution has shown good agree-

ments with respect to FEM results [8] . It is worth noting that (6) matches the linear

law
r

ro

in the vicinity of the notch tip.

The function g (r) expressed in (4) is related to the loading mode, tension or bend-

ing, and is equal to
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g (r) =











1 − r − ro

κ
for bending

1 for tension
(7)

where κ is the distance from the neutral axis to the notch tip, and is equal to Ro.

At this stage, the solution is complete up to the determination of the parameter m
(see [8]) and to the determination of σmax:

In order to identify the best values of these two parameters, for a given geometry,

two additional relations are then needed. These two values will then be identified by

equating the theoretical axial stress concentration factor KZZ , with the stress con-

centration Kt computed with the finite element method, and by writing the global

equilibrium condition of the tube. As it will be shown later in section 5., the value of

the parameter m varies only weakly with the notch root radius. This result, equally

reported in [8], permits to perform the sensitivity studies without performing ad-

ditional finite element analysis, and justifying the pratical interest in the present

approach.

The results can be summerized by the following expressions:

ΣRR =
E

1 − ν2

(

duR

dR
+ ν

uR

R

)

+ ΣZZ

ν

1 − ν
, (8)

ΣΘΘ =
E

1 − ν2

(

uR

R
+ ν

duR

dR

)

+ ΣZZ

ν

1 − ν
(9)

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively,

whereas uR is the radial displacement. The first of the previous equations provides

the radial displacement by integration with an initial condition uR = 0 at R = 0
which is valid for bars only. Then the distribution of the hoop stress, with respect

to R, is obtained by substituting the solution uR into the second equation.

3 Local formulation of the solution for notched tubes

In order to extend this solution to tubular geometries subjected to tension and bend-

ing loadings, the stress component σx must satisfy the free surface condition, i.e.

σx = 0 at R = Ri and R = Re for an internal and external notched tube, respec-

tively.

As a consequence the function h (r) is added to (5) such that the boundary condi-

tion is satisfied. Thus, the stress component σx becomes
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σx =
σmax

η1 [4 (q − 1) + qω1]

[

4 (q − 1)
(

r

ro

)λ1−1

+ qδ1

(

r

ro

)µ1−1

− h (r) Γ

]

(10)

where the function h (r) satisfies the two following conditions

h (ro) = 0 and h (ro + l) = 1. (11)

Moreover, the coefficient Γ in (10) and the ligament length l in (11) are given by

Γ = 4 (q − 1)

(

1 +
l

ro

)λ1−1

+ qδ1

(

1 +
l

ro

)µ1−1

, (12)

l =











Ro − Ri ext

Re − Ro int
. (13)

Here ’ext’ and ’int’ simply denote the formula to use for an external or an internal

notch, respectively.

The simplest function satisfying (11) is the linear function, thus

h (r) =
r − ro

l
. (14)

For the component σy, its expression is given by

σy =
σmax

4 (q − 1) + qω1

g (r)

[

4 (q − 1) f (r)λ1−1 + qω1

(

r

ro

)µ1−1
]

(15)

with the modified g function

g (r) =









































1 − r − ro

κ
ext

1 +
r − ro

κ
int

bending

1 tension

. (16)

Therefore the axial ΣZZ and the radial ΣRR components of the stress field Σ along

the ligament are equal to
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ΣZZ =
σmax

4 (q − 1) + qω1

g (r)

[

4 (q − 1) f (r)λ1−1 + qω1

(

r

ro

)µ1−1
]

, (17)

ΣRR =
σmax

η1 [4 (q − 1) + qω1]

[

4 (q − 1)
(

r

ro

)λ1−1

+ qδ1

(

r

ro

)µ1−1

−h (r) Γ] . (18)

Once again, the hoop stress can be determined with the help of the constitutive

equations 9. One can however remark that the initial condition used for bars : uR =
0 for R = 0, has to be modified. For this reason, we assume that, far away from

the notch tip, the mechanical fields are the same as for a tube without the notch. In

other words, we assume that ΣΘΘ = 0 at R = Ri for the case of an external notch

and ΣΘΘ = 0 at R = Re for the case of an internal notch. Solving for uR in (8) and

(9) and using the boundary condition, one obtains:

uR|R=Ri
= −νRi

E
ΣZZ |R=Ri

external (19)

uR|R=Re
= −νRe

E
ΣZZ |R=Re

internal (20)

Finally the hoop stress ΣΘΘ is determined by introducing uR and ΣZZ into (9).

4 Global formulation of the solution for notched tubes

At this stage, the solution is complete up to the determination of the parameter

m (see (6)) which belongs to the open range [0, +∞[ and depends on the notch

geometry and the relative dimensions of the tubular components. This parameter is

obtained numerically by equaling the theoretical axial stress concentration factor

KZZ with the stress concentration Kt computed with the finite element method

Kt = KZZ =
σmax

σnom

(21)

where σnom is the applied gross nominal stress and σmax is the maximal axial stress

as depicted in Fig. 2. It is well known, that the precision of the numerical computed

stress concentration is influenced by the mesh density. A short discussion of this

point will be presented in the next section and is illustred in Fig. 4.
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Invoking the global equilibrium condition for tension and bending loadings, one can

obtain an equation which can be solved numerically as a function of the parameter

m.

The global equilibrium condition for tension loading takes the following form

T =











∫ Ro

Ri ΣZZ (R) 2πRdR ext
∫ Re

Ro
ΣZZ (R) 2πRdR int

, (22)

R =











Ro − r + ro ext

Ro + r − ro int
(23)

where T is the tension load linked to the gross nominal stress σnom by

T = π
(

R2
e − R2

i

)

σnom. (24)

Substituting (17) into (22) and rearranging the obtained equation, one obtains the

following relation for Kt
ZZ for tension loading

Kt
ZZ =

(R2
e − R2

i ) [4 (q − 1) + qω1]

2 (Am + B)
(25)

with

Am = 4 (q − 1)
∫ l

0

{

1 +
atan (mx)

mro

}λ1−1

(Ro ± x) dx, (26)

B =
qω1ro

µ1

{

Ro

[(

1 +
l

ro

)µ1

− 1

]

±




ro

µ1 + 1

(

1 +
l

ro

)µ1+1

− l

ro

[(

1 +
l

ro

)µ1

− 1

]



 (27)

where the signs + and − in (26) and (27) stand for an internal and external notch,

respectively.

For bending loading (see Fig. 3), the balance of angular moment is employed after

having specified which is the peak stress σmax to use in (8) and which is the distance

κ to introduce in (7). To carry out the calculation, we assume that along a vertical
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strip dX , as depicted in Fig. 3, the axial stress component ΣZZ is given by (17) and

the peak stress σmax is only a function of X such that

σmax (X) = σ′

max

√

√

√

√1 −
(

X

Ro

)2

(28)

where σ′

max is the maximum axial stress at X = 0.

Regarding the strip dX , the parameter κ is now defined as the distance between the

notch tip at X and the plan Y = 0 and, as for the stress peak, we assume that κ is

equal to

κ = Ro

√

√

√

√1 −
(

X

Ro

)2

. (29)

Moreover, in the case of an internal notch, the stress component ΣZZ is not defined

in the region Re ≥ X ≥ Ro, therefore we assume that, in this region, ΣZZ is equal

to the axial stress of the same geometrical tube without notch, thus

Σ∗

ZZ =
Y

κ
σnom. (30)

Therefore, under the preceeding assumptions, the balance of angular moment be-

comes

M

4
=















































∫ Ri

0

∫

√
R2

o−X2√
R2

i
−X2

ΣZZY dY dX +
∫ Ro

Ri

∫

√
R2

o−X2

0 ΣZZY dY dX

for an external notch

∫ Ro

0

∫

√
R2

e−X2√
R2

o−X2
ΣZZY dY dX +

∫ Re

Ro

∫

√
R2

e−X2

0 Σ∗

ZZY dY dX

for an internal

, (31)

Y =











√

R2
o − X2 + ro − r for an external

√

R2
o − X2 − ro + r for an internal

and for X ≤ Ro (32)

where M denotes the bending load that related to the maximal gross nominal stress

σnom by
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M =
I

Re

σnom, (33)

I =
π

4

(

R4
e − R4

i

)

. (34)

Substituting (17) into (31), one obtains for bending loading the expression for the

axial stress concentration factor Kf
ZZ

Kf
ZZ = Ro

(

I

4Re

− G
)

4 (q − 1) + qω1

Cm

(35)

with

Cm =



















{

∫ Ri

0

∫

√
R2

o−X2√
R2

i
−X2

· + ∫ Ro

Ri

∫

√
R2

o−X2

0 ·
}

Gm (Y,X) Y 2dY dX ext

∫ Ro

0

∫

√
R2

e−X2√
R2

o−X2
Gm (Y,X) Y 2dY dX int

, (36)

G =











0 ext

∫ Re

Ro

∫

√
R2

e−X2

0 Σ∗

ZZY dY dX int
, (37)

Gm (Y,X) = 4 (q − 1)







1 ±
atan

[

m

(

Y −

√
R2

o−X2

)]

mro







λ1−1

+ qω1

(

1 ± Y −

√
R2

o−X2

ro

)µ1−1

(38)

where the signs + and − in (38) stand respectively for an internal and external

notch.

5 Results and limitations of the solution for notched tubes

In this section, we shall compare the predictions of the solution with FEM results

along the notch ligament. If not mentioned, all the results presented below are done

for a notch geometry with an opening angle 2α of 60o and a notch root radius ρ of

1mm.

For accuracy purpose, a study of the mesh size has been performed for tension

and bending loading using the ABAQUS commercial software [1]. For the ten-

sion case, 2D axi-symmetric model has been used with linear four noded elements
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CAX4R and for the bending case, 3D axi-symmetric model has been used with lin-

ear eight-node elements C3D8R. Both models have been set up to obtain a regular

and smooth mesh in the neighborhood of the notch tip.

The geometry of the mesh as well as the results are depicted in Fig. 4. This figure

presents the value of the axial concentration factor Kt with respect to the mesh

size ratio
ǫ

ρ
. To reach a comfortable accuracy, the mesh size ratio has been chosen

equal to 0.01 for tension loading and equal to 0.02 for bending loading. This choice

is also motivated by the limitation of the number of degrees of freedom created;

about 3000 and 10000 elements respectively for tension and bending loading.

Figs. 5 and 6 illustrate the distribution of the stress components ΣZZ , ΣRR and

ΣΘΘ along the notch ligament for the case of an external and internal notch under

tension and bending loadings. A good agreement is found between the FEM results

(markers) and the closed-form solution (line) for the axial stress component ΣZZ .

Concerning the radial stress component ΣRR, the semi-analytical solution is more

accurate in the neighborhood of the notch tip and becomes less accurate for r > ρ;

this error is principally due to the choice of the linear function h (r) in (18). This

mismatch influences slightly the distribution of the hoop stress component ΣΘΘ

except for the case of an internal notched tube under bending (see Fig. 6).

A way to correct this mismatch is to choose another function h (r). Instead of the

initial linear function introduced in (14), we propose the following hyperbolic func-

tion

h (r) =
tanh

(

r−ro

ρ

)

tanh
(

l
ρ

) . (39)

However, let us remark that the form has been chosen without any a priori informa-

tion or optimization, and therefore we expect that better functions can be found for

this role.

In this case, an improvement is attained on the accuracy of the hoop stress ΣΘΘ,

as for example depicted in Fig. 7. This comparison with FEM results has been ob-

tained for the same notch geometry as before in tension loading. The improvement

is less impressive in the case of bending loading.

Figs. 8 and 9 illustrate, for a variety of geometrical parameters α and ρ, the distri-

bution of the principal stress component ΣZZ along the notch ligament for the case

of an external and internal notch under tension. Again good agreements are found

between the FEM results (markers) and the closed-form solution (line).

Let us now explore the limitation of the solution with respect to the dimensions

of the tube and the notch. This discussion is important in the case of a tubular
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geometry when the ligament length l is of the same order of magnitude as the

radius of the notch ρ. Indeed, the solution derived in the last sections has been

obtained under some assumptions with respect to the dimensions of the tube [16],

therefore the closed-form solution expressed here will not necessarily be suitable

for any type of geometry. This section is therefore devoted to define the range of

application of the solution.

As mentioned earlier, the parameter m will take a value between 0 and +∞ for

a given set of notch geometry (ρ, α and p) and tube dimension (Ri and Re) and

therefore a given stress concentration factor Kt. On this range, the axial stress con-

centration factor KZZ defined by (25) for tension loading and (35) for bending

loading is continuously decreasing, leading to a maximum value for m = 0 and a

minimum value for m = +∞.

For this two limits, the function f (r) introduced in (4) takes the following expres-

sions

lim
m→0

f (r) =
r

ro

, (40)

lim
m→+∞

f (r) = 1. (41)

Introducing this two limiting functions into (25), one can derive analytically the two

bounds of the axial stress concentration factor Kt
ZZ in the case of tension loading

Kt,max

ZZ =
(R2

e − R2
i ) [4 (q − 1) + qω1]

2 (Ao + B)
, (42)

Kt,min

ZZ =
(R2

e − R2
i ) [4 (q − 1) + qω1]

2 (A∞ + B)
(43)

where the upper fix max and min are respectively related to m = 0 and m = ∞.

The coefficient B is given by (27) and the coefficients Ao and A∞ are given by

Ao = 4 (q − 1)















ro (Ro ± ro)

(

1 +
l

ro

)λ1

− 1

λ1

± r2
o

(

1 +
l

ro

)λ1+1

− 1

λ1 + 1















, (44)

A∞ = 4 (q − 1)







(Ro ± ro) l ± r2
o

2





(

1 +
l

ro

)2

− 1











. (45)
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For the case of bending loading, the bounds for the axial stress concentration factor

Kf
ZZ are obtained numerically

Kf,max

ZZ =
(

I

4Re

− G
)

4 (q − 1) + qω1

Co

, (46)

Kf,min

ZZ =
(

I

4Re

− G
)

4 (q − 1) + qω1

C∞

(47)

where the coefficients G, C∞ and Co are given respectively by (36) and (37).

In order to define the range of application of the solution, we define a parameter ξ
characterizing the geometry of the tube which is equal to

ξ =
Ri

Re

× p

e
(48)

where p is the depth of the notch defined by (1) and e is the thickness of the tube

e = Re − Ri. (49)

The parameter ξ is equal to zero for a notched bar (i.e. Ri = 0) and tends to ∞
for thin tubes with the tickness going to zero. We can remark that this parameter

ξ is not dependent on the geometry of the notch as the notch root radius ρ and the

half opening angle α and therefore the following results shall only be applied to the

notch geometry tested (ρ = 1mm and α = 30o).

Thereby to define the range of application of the closed-form solution, we have to

find the value of the parameter ξ at which the maximum axial stress concentration

factor Kmax
ZZ becomes smaller than the real axial stress concentration (computed

with FEM).

Figs. 10 and 11 illustrate the range of validity of the closed-form solution with

respect to ξ. These results show the evolution of the axial stress concentration factor

Kt computed with FEM solution (marked dashed lines) and the maximum axial

stress concentration factor Kmax
ZZ (solid lines) obtained by (42) for tension loading

and (46) for bending loading. These results are obtained by varying the parameter ξ
for tubes presenting an internal and external notch submitted to tension and bending

loading and for three different notch depths p (1mm, 2mm and 5mm). To vary the

parameter ξ, all dimensions have been kept constant excepted the internal radius Ri

for an external notch and the external radius Re for an internal notch.
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The figures display the intersections between Kt and Kmax
ZZ represented with a

bigger marker, and one remark that all the intersection lie on a small interval

[0.21, 0.27]. Therefore we conclude that the closed-form solution is only valid for

a notched tubes with a parameter ξ smaller than a critical value ξ∗. The fact that ξ
higher than the critical value ξ∗ express the fact that the notch depth becomes large

with respect to the tube thickness. This can be interpreted by saying that the solution

in [8] provided in equations (4) and (5) can not be applied for this configuration, as

the free internal surface of the tube is too close to the notch tip.

Moreover, as mentioned before this critical value ξ∗ should depend on the notch

geometry and we have found that for ρ = 1mm and α = 30o, the critical value is

equal to 0.086.

An alternative to the numerical procedure to determine the parameter m has been

developed based on an empirically function depending of the notch root radius for

notched bar geometry. Investigation has been performed to determine the influence

of the notch root radius ρ, the half-opening angle α and the parameter ξ on the

parameter m for notched tube geometry. The results are presented in Figs. 12 and

13 for which the computations have been done with ξ equal to 0.1. We remark in

Fig. 12.a that the notch root radius ρ does not influences the parameter m both for

an external and an internal notched tube, but has a greater influence on the opening

angle α and the parameter ξ.

6 Conclusions

We proposed a semi-analytical stress solution suitable for notched axi-symmetrically

tube submitted to tension and bending loading. This closed-form solution is a gen-

eralization of the stress solution [8] devoted to notched axi-symmetric bar. The

proposed semi-analytical solution is based on an approximate elastic stress solu-

tion where the local balance condition is always satisfied by the use of a biharmonic

stress function but boundary conditions are not satisfied except at specific points.

The solution has been adapted to tubular geometries by adding a supplementary

term in the expression of the radial stress components ΣRR. The free stress bound-

ary condition at the inner or the outer radius could therefore be respected for exter-

nally or internally notched tubes.

The proposed semi-analytical solution has shown good agreements with respect to

finite element solution in the case of an external notched tube. The match is less

accurate with an internal notch on the radial and the circumferential stress compo-

nents. This error has been reduced by changing the linear term in the expression of

the radial stress component with a hyperbolic function as example.
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Finally a study of the validity of the semi-analytical solution regarding to the di-

mension of the notched tube has been performed. This study has highlighted the

fact that the solution is not capable to model too high stress concentration factors.

A numerical study has shown that it is possible to define a parameter ξ which char-

acterizes the geometry of the notched tube and the solution is applicable for only

notched tube presenting a ξ parameter smaller than ξ∗ which can be considered as

independent on the notch depth but only on the notch opening angle and the notch

root radius.

Moreover we have shown that the m parameter introduced in (6) is highly depen-

dent on the half opening angle α and the ξ parameter and slightly dependent on the

notch root radius ρ.

The application of this solution for the design of threaded components is presented

in a companion paper [7].
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Appendix 1

Recently, a set of closed-form equations valid for V-shaped notched axi-symmetric

bar under Modes I and II loading has been proposed in [8]. The stress field has been

obtained by the use of the Kolosoff-Mushkelishvili’s complex potential function

[21] and the following conformal mapping introduced by Neuber [22]

z = x + iy = (u + iv)q = ξq (50)

where z is the complex representation of the cartesian coordinates {x, y} and {u, v}
is the auxiliary system of curvilinear coordinates (see Fig. 14).

The parameter q in (50) is linked to the opening angle 2α by the following relation

q = 2
(

1 − α

π

)

. (51)

The origin of the cartesian coordinate system is located at a distance ro from the tip

of the notch, where ro depends on the notch root radius ρ and the opening angle 2α
according to

ro = ρ
q − 1

q
= ρ

π − 2α

2π − 2α
. (52)

For Mode I loading, the stress field along the notch bisector, i.e. θ = 0, is
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σθ|θ=0
= σy =

σmax

4 (q − 1) + qω1



4 (q − 1)

{

1 +
atan [m (r − ro)]

mro

}λ1−1

+qω1

(

r

ro

)µ1−1
]

, (53)

σr|θ=0
= σx =

σmax

η1 [4 (q − 1) + qω1]

[

4 (q − 1)
(

r

ro

)λ1−1

+ qδ1

(

r

ro

)µ1−1
]

(54)

where the parameters introduced in (53) and (54) are equal to

ω1 =
χd1

(1 + µ1) + χc1

1 + λ1 + χb1 (1 − λ1)
, (55)

η1 =
1 + λ1 + χb1 (1 − λ1)

3 − λ1 − χb1 (1 − λ1)
, (56)

δ1 =
χd1

(3 − µ1) − χc1

3 − λ1 − χb1 (1 − λ1)
, (57)

χb1 =
sin [(1 − λ1) qπ/2]

sin [(1 + λ1) qπ/2]
, (58)

χc1 =

[

(1 − µ1)
2 − 1 + µ1

q

]

[3 − λ1 − χb1 (1 − λ1)] − (3 − µ1) ε1, (59)

χd1
=

[

1 − q (1 + µ1)

q

]

[3 − λ1 − χb1 (1 − λ1)] − ε1, (60)

ε1 = (1 − λ1)
2 + χb1

(

1 − λ2
1

)

− 1 + λ1 − χb1 (1 − λ1)

q
(61)

and the constants λ1 and µ1 are such that they satisfy the following equations

sin (λ1qπ) + λ1 sin (qπ) = 0, (62)
{

1 − q (1 + µ1)

q
[3 − λ1 − χb1 (1 − λ1)] − ε1

}

(1 + µ1) ε1 cos
[

(1 − µ1) q
π

2

]

+

{[

(1 − µ1)
2 − 1 + µ1

q

]

[3 − λ1 − χb1 (1 − λ1)] − (3 − µ1) ε1

}

× cos
[

(1 + µ1) q
π

2

]

= 0. (63)

Table 1 provides useful values of the different parameters for various opening angle

2α
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2α [o] q λ1 µ1 χb1 χc1 χd1
δ1 η1 ω1

0 2 0.5 −0.5 1 4 0 −2 1 2

30 1.83 0.502 −0.456 1.07 3.79 0.063 −1.82 1.04 1.88

60 1.67 0.512 −0.406 1.31 3.28 0.096 −1.6 1.17 1.55

90 1.5 0.544 −0.345 1.84 2.51 0.105 −1.33 1.47 1.08

120 1.33 0.616 −0.268 3 1.51 0.087 −1 2.25 0.57

Table 1

Value parameters of the closed-form solution for various opening angle 2α.

7 Figures
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Figure 1. Geometry of tubular components with an internal (right) and external (left) notch

and geometry of the notch (center).
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Figure 2. Schematic view of the distribution of the axial stress component ΣZZ along the

ligament for tension loading.
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Figure 3. Schematic view of the distribution of the axial stress component ΣZZ along the

ligament for bending loading.
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Figure 5. Stress field distribution along the ligament of an external notch.
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Figure 6. Stress field distribution along the ligament of an internal notch.
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Figure 7. Distribution of the radial (a) and the hoop stress (b) components under tensile

loading in the case of an internal notch for differents choices of h: linear see equation (14)

and the new nonlinear h see equation (39).
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Figure 8. Distribution of the axial stress component for different notch root radius under

tension loading and with α = 40o for (a) an externally notched tube (b) an internally

notched tube.
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Figure 9. Distribution of the axial stress component for different opening angle under ten-

sion loading and with ρ = 1mm for (a) an externally notched tube (b) an internally notched

tube.
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Figure 10. Limiting values of the axial stress concentration factor Kt computed by FEM

(marked dashed lines) and the maximum axial stress concentration factor Kmax
ZZ (solid

lines) predicted with the semi-analytical solution for different tubular geometries for an

external notch.
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Figure 11. Limiting values of the axial stress concentration factor Kt computed by FEM

(marked dashed lines) and the maximum axial stress concentration factor Kmax
ZZ (solid

lines) predicted with the semi-analytical solution for different tubular geometries for an

internal notch.
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Figure 12. Evolution of the parameter m (a) for various notch radius ρ with α = 40o and

(b) for various notch opening angle α with ρ = 1mm.
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Figure 13. Evolution of the parameter m for various ξ with α = 30o.
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Figure 14. Representation of the auxiliary system of coordinates {u, v}. The curve u = uo

represents the geometry of the notch.
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