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THE EFFECTIVE BEHAVIOR OF ELASTIC BODIES CONTAINING

MICROCRACKS OR MICROHOLES LOCALIZED ON A SURFACE

JEAN-JACQUES MARIGO∗ AND CATHERINE PIDERI

Abstract. We propose a two-scale method to find the effective behavior of a three-dimensional
linear elastic medium containing a series of microcracks or microholes located on a surface. The
obtained effective behavior is that of a homogeneous body with, in place of the actual microde-
fects, a surface across which the displacements and the stresses suffer jump discontinuities. The
transmission conditions are in general of Ventcel’s type. The coefficients entering in these jump
conditions are obtained by solving six elastic problems posed on an infinite representative cell.
The theoretical analysis is illustrated by a few examples.

1. Introduction and notations

This paper is devoted to the study of the influence of localized (by opposition to diffuse)
defects on the overall response of linearly elastic bodies. Typical examples of such “damage”
distributions can be seen in Figure 1: on the left figure, we see a family of micro-holes localized
on a (plane) surface of a homogeneous body; in the middle, the localized defects are transverse
micro-cracks in the matrix of a fiber-reinforced composite; on the right, the defects are an array
of holes whose size is larger than that of the population of holes existing in the bulk. Since the

Figure 1. Some examples of defects localized on a surface

defects are not distributed in all or a large part of the body, we cannot use the classical methods
and results of the homogenization theory, cf Sanchez-Palencia (1980), Léné (1984) or Suquet
(1987). The influence of the defects cannot be represented by an effective rigidity tensor as it

Key words and phrases. two-scale method, asymptotic analysis, matched asymptotic expansions, homoge-
nization, microcracks, microholes, damage, Ventcel’s conditions.

∗ corresponding author.

1



is the case when the defects are periodically distributed in the body (or by an effective rigidity
tensor field depending on the local density of defects when the distribution is only “almost”
periodic) like in Marigo (1985), Andrieux et al. (1986) or Devries et al. (1989). Intuitively,
that gives rise to boundary layer effects because of the local loss of the homogeneity or of the
periodicity of the heterogeneity of the material. It should be quite similar to what happens at
the boundary of a periodic medium, cf Dumontet (1990).

That means that our problem is closer to that of finding the influence of a thin heterogeneous
layer inside a homogeneous body. There exists a large number of papers devoted to this type
of problems when the layer itself is assumed to be elastic and homogeneous. In most part they
use asymptotic methods based on the presence of at least one small parameter (the thinness of
the layer). That leads to a large variety of asymptotic models depending on the assumptions
made on the behavior of the layer and the possible presence of another small parameters, cf
Abdelmoula et al. (1998), Benveniste (2006), Benveniste and Miloh (2001), Bessoud et al.
(2009), Bessoud et al. (2008), Caillerie (1980), Geymonat et al. (1999), Huy and Sanchez-
Palencia (1974), Klarbring and Movchan (1998), Krasucki and Lenci (2000b), Krasucki and
Lenci (2000a), Licht and Michaille (1997). The “limit” model essentially consists in finding
effective transmission conditions across the “interface” (the surface where the layer is located).
However, in order that non trivial transmission conditions appear at the first order (i.e. when
the displacements or the stress vector are discontinuous), it is necessary to assume that the layer
is either soft or stiff in comparison to the material in the bulk. In other words, it is necessary
that the ratio between the stiffness of the layer and the stiffness of the material in the bulk
could be considered as either a small or a large parameter. In such cases the transmissions
conditions can be divided into two types: (i) Robin’s conditions, (ii) Ventcel’s conditions. In the
former case, the stress vector is continuous at the interface and the jump of the displacements
is proportional (in linear elasticity) to the stress vector. This corresponds to the case when the
layer is soft. In the latter case, considered by Ventcel (1959), both the stress vector and the
displacements are discontinuous at the interface and the jump of the stress tensor depends on
the tangential derivatives of the mean values of the stress components at the interface, cf Huy
and Sanchez-Palencia (1974), Caillerie (1980), Lemrabet (1987). This corresponds to the case
when the layer is stiff.

In our case of localized defects, if we assume that they are periodically distributed on a surface,
the unique small parameter is the characteristic length of the period. The immediate consequence
is that the defects have only second order effects (typical boundary layer effects). Therefore,
one needs to make an asymptotic analysis at least up to the second order. Moreover, due to
the fact that the heterogeneity is no more “layered”, it is necessary to develop an asymptotic
method coupling the local character of the heterogeneity with its periodical character. The
ideal candidate is the matched asymptotic expansion technique, first introduced in a similar
context by Nguetseng (1985), Nguetseng and Sanchez-Palencia (1986) and Sanchez-Palencia
(1986). Except for these pioneering works, there exist very few papers devoted to these types
of localized defects, see Abdelmoula and Marigo (2000) or Bilteryst and Marigo (2003). The
present paper is in the development of these approaches. Among those described in Figure 1, we
will consider the simplest case, but in a full three-dimensional anisotropic setting. Accordingly,
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we will consider the cases of micro-holes or micro-cracks periodically distributed on a surface of
a homogeneous linear elastic body. The goal is to obtain the local effective behavior of the body,
that is the transmission conditions induced by the micro-defects, and to study the influence of
the shape of the defects, of the period and of the anisotropy of the material.

The paper is organized as follows. In Section 2 we set the problem in which the body contains
a family of micro-defects periodically distributed on a cross-section, the characteristic period
length being the small parameter. Then, in Section 3, we make an asymptotic analysis of this
problem based on a matched asymptotic expansion method. Specifically, we assume that the
displacement and stress fields admit two asymptotic expansions, the outer one far from the sur-
face where the defects are located and the inner one near that surface. Then we construct the
outer and inner problems giving the different terms of the expansions. We show that the order
0 outer problem is that of a sound body, the defects being “invisible” at this order. The defects
become visible in the order 1 outer problem, their presence leading to Ventcel-type transmission
conditions across the surface where the defects are located. Those Ventcel’s transmission condi-
tions involve two effective tensors whose coefficients are given by six elementary inner problems
posed on a representative cell of the localized defects. The section 4 is devoted to the study of
those transmission conditions and on the effective tensors entering in their definition. We show
that the two effective tensors can be deduced from a symmetric fourth order tensor which can
be interpreted as the effective damage compliance tensor of the representative cell with holes.
These general results (established in a full anisotropic context) are illustrated by three examples.

The summation convention on repeated indices is implicitly adopted in the sequel. The vectors
and second order tensors are indicated by boldface letters, like u and σ for the displacement field
and the stress field. Their components are denoted by italic letters, like ui and σij . The third
or fourth order tensors as well as their components are indicated by a sans serif letter, like A or
Aijkl for the stiffness tensor. Such tensors are considered as linear maps applying on vectors or
second order tensors and the application is denoted without dots, like Aε whose ij-component
is Aijklεkl. The inner product between two vectors or two tensors of the same order is indicated
by a dot, like a · b which stands for aibi or σ · ε for σijεij . The symbol ⊗ denotes the tensor
product and ⊗s its symmetrized, i.e. 2e1 ⊗s e2 = e1 ⊗ e2 + e2 ⊗ e1.

As we make ample use of multiple scaling techniques, we adopt related notation. For instance,
x = (x1, x2, x3) always denotes a macroscopic coordinate while y = (y1, y2, y3) will represent a
microscopic one. Since the defects are located near the plane x1 = 0, we distinguish the normal
coordinates x1 and y1 from the tangential coordinates x′ = (x2, x3) and y′ = (y2, y3). The Latin
indices run from 1 to 3, while the Greek indices run from 2 to 3. When a spatial (scalar, vectorial
or tensorial) field depends both on x and y, the partial derivative with respect to one of these
coordinates appears explicitly as an index : for example, divxτ and εx(v) denote respectively
the divergence of the stress tensor field τ and the symmetrized gradient of the vector field v
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with respect to x, while divyτ and εy(v) are the corresponding derivatives with respect to y :

divxτ (x,y) ≡
∂τij
∂xj

(x,y)ei , divyτ (x,y) ≡
∂τij
∂yj

(x,y)ei, (1)

2εx(v)ij(x,y) ≡
∂vj
∂xi

(x,y) +
∂vi
∂xj

(x,y) , 2εy(v)ij(x,y) ≡
∂vi
∂yj

(x,y) +
∂vj
∂yi

(x,y). (2)

On a surface Γ across which a field f is discontinuous, we will denote by f+ and f− its right
and left limits and by [[f ]] its jump discontinuity. For instance, when Γ is a subset of the plane
x1 = 0, we set :

f±(x′) = f(0±,x′) ≡ lim
h↓0

f(±h,x′), [[f ]](x′) ≡ f+(x′)− f−(x′). (3)

2. The actual elastic problem on the damaged body

We consider a three-dimensional elastic body with natural reference configuration the bounded
regular connected open subset Ω of R3 and boundary ∂Ω. We denote by e1, e2, e3 the canonical
basis of R3 and by (x1, x2, x3) the associated cartesian coordinates. The body is occupied by a
linear elastic material, not necessarily isotropic, characterized by its symmetric positive stiffness
tensor A. The cross-section of the body in the plane x1 = 0 is denoted by Γ. The body
is weakened by a set of identical micro-holes or micro-cracks whose centers are periodically
distributed on Γ, cf Figure 2. The two vectors defining the periodicity are ǫa and ǫb where
a and b are two vectors of the plane e2 and e3, and ǫ is a small length (in comparison with
the diameter L of Γ) characterizing the size of the defects. In the sequel ǫ will be considered
as a small parameter. At the micro-scale y = x/ǫ, the representative cell of the body in the
neighborhood of Γ is a parallelepiped Y infinite in the direction y1, with a parallelogram P
defined by the vectors a and b as the cross-section (i.e. Y = R×P) and containing a hole or
a crack D (compact subset of Y), cf Figure 3. Note that D is not necessarily connected, that
means that D can be the union of a family of compact connected components. In other words, D
can correspond to several holes or cracks. With an abuse of language, we will always qualify D
as the hole or the crack of the cell. The parameter ǫ is chosen so that the area of P be equal to 1.
The sound part Y\D of the cell is supposed connected (in other words, the holes or the cracks do
not separate the body into two parts). The union of all the micro-defects is denoted by Dǫ and
accordingly the sound part of the body is Ω\Dǫ. In the sequel, we will establish the fundamental
results in the case where the defect is a hole, that is the case where 0 < vol(D) < +∞. (More
precisely, we will assume that D is closed and bounded in Y, is the closure of its interior and
vol(D) > 0.) The case of a crack, when vol(D) = 0, could be treated in a same manner with
minor changes. We will simply indicate at the end of the construction what differs in such a
case. The body is submitted to prescribed displacements on the part ∂DΩ of ∂Ω, to prescribed
surface forces on the complementary part ∂FΩ, while the body forces are assumed to be zero.
Moreover the surfaces of the micro-holes are free. Since the holes can intersect the boundary
∂Ω, we will assume that the surface forces F are prescribed to 0 in a neighborhood of ∂Γ.
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Figure 2. The body with the localized set of micro-defects. Top: the section
x2 = 0; Bottom : the cross-section Γ (x1 = 0) where the micro-holes are centered.

Accordingly, at equilibrium, the displacement field and the stress field resulting in the dam-
aged body are (uǫ,σǫ) — where the dependence with respect to the parameter ǫ appears ex-
plicitly — and have to satisfy the following set of equations, referred to in the sequel as the real
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Figure 3. The infinite representative cell Y = R×P with one hole D.

problem :

Equilibrium in Ω\Dǫ : divσǫ = 0, (4a)

Constitutive relation in Ω\Dǫ : σ
ǫ = Aε(uǫ), (4b)

Boundary conditions on ∂Dǫ : σ
ǫn = 0, (4c)

Boundary conditions on ∂FΩ : σ
ǫn = F, (4d)

Boundary conditions on ∂DΩ : uǫ = ud. (4e)

The first equation of (4) corresponds to the equilibrium, the second one to the anisotropic
Hooke law, the third one expresses that the holes are free of forces and the two last ones are
the boundary conditions, n denoting generically the unit outer normal. Using classical results
of the linear elasticity theory, the real problem (4) admits a unique solution.

3. Asymptotic analysis

Since the number of defects is large or equivalently the parameter ǫ is small, we propose to
deduce an approximation of the real fields (uǫ,σǫ) from their asymptotic behavior when ǫ goes
to 0.

3.1. The forms of the asymptotic expansions. Following a classical process, see Nguet-
seng and Sanchez-Palencia (1986) or Sanchez-Palencia (1986), we assume that (uǫ,σǫ) can be
expanded by using two asymptotic expansions, the first one — called the outer asymptotic
expansion — valid far from Γ, site of the micro-holes, and the second — called the inner asymp-
totic expansion — valid in the neighborhood of Γ. Moreover, assuming that both expansions
hold true in an intermediary zone, these two expansions are matched by the so-called matching
conditions.
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(1) Outer expansion. Far from Γ, that is when |x1| ≫ ǫ, we assume that (uǫ,σǫ) can be
expanded as

uǫ(x) =

∞
∑

i=0

ǫiui(x), σ
ǫ(x) =

∞
∑

i=0

ǫiσi(x). (5)

(2) Inner expansion. Near Γ, that is when |x1| ≪ L, we assume that (uǫ,σǫ) can be
expanded as

uǫ(x) =

∞
∑

i=0

ǫivi(x′,
x

ǫ
), σ

ǫ(x) =

∞
∑

i=0

ǫiτ i(x′,
x

ǫ
), (6)

where the vi’s and the τ i’s are functions of (x′, y1,y
′), periodic, with period a and b,

with respect to the transversal microscopic variable y′, i.e. :

vi(x′, y1,y
′ + pa+ qb) = vi(x′, y1,y

′) ∀p, q ∈ Z
2. (7)

τ
i(x′, y1,y

′ + pa+ qb) = τ
i(x′, y1,y

′) ∀p, q ∈ Z
2. (8)

(3) Matching conditions. Since the inner and the outer expansions (5)-(6) are both valid
when ǫ ≪ |x1| ≪ L, they have to satisfy the following matching conditions : for i ∈ N,

lim
y1→±∞



vi(x′,y)−
i

∑

j=0

yi−j
1

(i− j)!

∂i−juj

∂xi−j
1

(0±,x′)



 = 0, (9)

lim
y1→±∞



τ
i(x′,y)−

i
∑

j=0

yi−j
1

(i− j)!

∂i−jσj

∂xi−j
1

(0±,x′)



 = 0. (10)

with the convention that ∂0f/∂x0 = f and f(0±,x′) stands for f±(x′), cf (3). In the
sequel, we will only use the first two (i = 0, 1) which can read as

lim
y1→±∞

v0(x′,y) = u0±(x′), (11)

lim
y1→±∞

τ
0(x′,y) = σ

0±(x′), (12)

lim
y1→±∞

(

v1(x′,y)− u1±(x′)− y1
∂u0

∂x1
(0±,x′)

)

= 0, (13)

lim
y1→±∞

(

τ
1(x′,y)− σ

1±(x′)− y1
∂σ0

∂x1
(0±,x′)

)

= 0. (14)

Remark 1. The outer terms ui and σi have to be defined on the whole body Ω even if the
expansions (5) hold true only far away from Γ. The transmission conditions across Γ are not
known in advance. We have to deduce them from the matching conditions. It is one of the key
points of the study.

The inner terms vi and τ i have only to be defined on Γ×Y. Indeed, owing to (7)-(8), they
are extended by periodicity to Γ× R

3. However, vi and τ i are not defined a priori in the holed
parts Γ×D. It can be useful to extend them inside the holes so that they be defined in the whole
domain Γ×Y. We will explain how later. The behavior of vi and τ i at infinity in the direction
1 are not known in advance. That behavior will be also deduced from the matching conditions.
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As we shall see in the subsequent analysis, neither the outer expansion (5), nor the inner one
(6) are valid at (and near) the boundary curve ∂Γ. A third form of the expansions should be
used, but, in order to simplify the exposition and because the required information does not call
for such an expansion, we do not concern ourselves with it.

The main goal of the paper is to determine u0, σ0, u1 and σ1. That requires to determine
also v0, v1 and τ 0.

3.2. The family of equations governing the outer and inner terms. We insert the as-
sumed expansions of uǫ and σǫ in the set of equations of the real problem and obtain :

divσǫ(x) =

∞
∑

i=0

ǫidivσi(x) , divσǫ(x) =

∞
∑

i=0

ǫi
(

divxτ
i(x′,y) +

1

ǫ
divyτ

i(x′,y)

)

, (15)

ε(uǫ)(x) =
∞
∑

i=0

ǫiε(ui)(x) , ε(uǫ)(x) =
∞
∑

i=0

ǫi
(

εx(v
i)(x′,y) +

1

ǫ
εy(v

i)(x′,y)

)

. (16)

Identifying the terms with the same power of ǫ yields a set of equations which govern the inner
and outer terms, namely,

Equilibrium equations:

Order Outer : in Ω\Γ Inner : in Γ× (Y\D)
−1 none 0 = divyτ

0

i ≥ 0 0 = divσi 0 = divyτ
i+1 + divxτ

i

Constitutive relations:

Order Outer : in Ω\Γ Inner : in Γ× (Y\D)
−1 none 0 = Aεy(v

0)
i ≥ 0 σi = Aε(ui) τ i = Aεy(v

i+1) + Aεx(v
i)

Boundary conditions:

Order Outer Inner

0

{

σ0n = F on ∂FΩ
u0 = ud on ∂DΩ

τ 0n = 0 on Γ×∂D

i ≥ 1

{

σin = 0 on ∂FΩ
ui = 0 on ∂DΩ

τ in = 0 on Γ×∂D

Of course, we must add to this set of equations, at any order, the periodic conditions (7)-(8)
satisfied by vi and τ i.

Remark 2. As we said in Remark 1, it is useful to extend the definition of τ i to the whole cell
Y. The natural way is to extend τ i by 0 inside D. Accordingly, the inner equilibrium equations
can read as

divyτ
i+1 + divxτ

i = 0 in Γ×Y (17)
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and the boundary conditions on the surface of the hole are automatically verified. In the sequel,
when τ i needs to be extended, we implicitly assume that we have chosen that extension.

Addition of these relations to the matching conditions (9) and (10) yields a set of equations
coupling inner and outer terms. Through an inductive process, the next subsections are devoted
to a partial solving of this set of equations so as to get the first two terms of the inner and outer
expansions for displacements and stresses, namely u0, u1, v0, v1, σ0, σ1 and τ 0.

3.3. Determination of u0, σ0 and v0. From the constitutive relations of order −1, we get
εy(v

0) = 0 and, by virtue of the periodic conditions, v0 does not depend on y. Then, the
matching condition (11) yields both the continuity of u0 across Γ and the relation between v0

and u0, namely,

[[u0]] = 0 on Γ , (18)

v0(x′,y) = u0(0,x′). (19)

Let us prove now the continuity of the stress vector σ0e1 across Γ, i.e.

[[σ0]]e1 = 0 on Γ . (20)

First integrate over the holed cell Y\D the inner equilibrium equation of order −1, then use
both the periodic conditions and the boundary condition on the boundary of the hole to obtain

∫

P

(

τ
0(x′,+∞,y′)e1 − τ

0(x′,−∞,y′)e1
)

dy′ = 0.

On the other hand, integrating over the cell cross-section P and recalling that area(P) = 1, the
matching condition (12) yields

∫

P

τ
0(x′,±∞,y′)e1 dy

′ = σ
0±(x′)e1,

and the desired result follows by difference of the two limits. Therefore we have

Proposition 1. (u0,σ0) is the unique solution of the elastic problem set on a sound body:
{

divσ0 = 0 in Ω, σ0 = Aε(u0) in Ω
σ0n = F on ∂FΩ, u0 = ud on ∂DΩ.

(21)

Remark 3. In other words, the holes are not visible at the first order, they have only second
order effects. This result is classical but fundamental, cf Nguetseng (1985), Nguetseng and
Sanchez-Palencia (1986) or Abdelmoula and Marigo (2000), it could be entitled “the principle
of the dressmaker”, that is to say, “it is not necessary to sew entirely to pieces of fabrics in order
to render invisible their relative opening, it is sufficient to sew them at a great number of points
regularly spaced”. It is a major difference with the case usually considered in the literature of a
thin layer made of either a soft or a stiff material (by comparison to the material in the bulk).
In such cases, the effects of the layer are visible at the first order and lead to either Robin’s type
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transmission conditions in the soft case or Ventcel’s type transmission conditions in the stiff
case, see Geymonat et al. (1999), Bessoud et al. (2008).

At this stage, u0, v0 and σ0 are (in principle) determined.

3.4. Determination of v1 and τ 0. The inner terms v1 and τ 0 have to satisfy the inner
equilibrium of order −1 (divyτ

0 = 0), the inner constitutive relation of order 0 (τ 0 = Aεx(v
0)+

Aεy(v
1)), the vanishing stress condition on the boundary of the hole (τ 0n = 0), the periodic

conditions on the faces of the cell and the conditions at y1 = ±∞ furnished by the matching
conditions of order 0 for the stresses (τ 0(x′,±∞,y′) = σ0(0,x′)). This leads to a x′-indexed
family of elastic problems on the holed cell Y\D. They can be rewritten by introducing as new
unknowns the following fields v̂ and τ̂ ,

v1(x′,y) = y1
∂u0

∂x1
(0,x′) + v̂(x′,y), (22)

τ
0(x′,y) = σ

0(0,x′) + τ̂ (x′,y), (23)

which are interpreted as the boundary layer correctors for the displacements and the stresses
near the cross-section Γ due to the presence of the microholes. By virtue of (19) and after
remarking that

εy

(

y1
∂u0

∂x1
(0,x′)

)

+ εx(v
0)(x′) = ε(u0)(0,x′), (24)

a straightforward calculation shows that v̂ and τ̂ have to satisfy






















divyτ̂ = 0 in Γ×(Y\D)
τ̂ = Aεy(v̂) in Γ×(Y\D)
v̂ and τ̂n periodic on Γ×∂Y
τ̂ = 0 on Γ×{±∞}×P
τ̂ (x′,y)n(y) = −σ0(0,x′)n(y) on Γ×∂D

. (25)

Let us note that this problem is akin to finding the response of the holed cell when the surface
of the hole is submitted to surface forces. This type of linear elastic problem on an infinite
strip has been studied time and time again, and its solution is by now well known. Therefore,
we merely recall its main features and refer the interested reader to the specialized literature
for the details of the proofs, see for example Sanchez-Palencia (1986) or Dumontet (1990) and
references therein.

(1) For a given value of x′ ∈ Γ, (25) admits a solution (v̂, τ̂ ), unique for τ̂ and unique up
to a (x′-dependent) translation for v̂;

(2) The stress field τ̂ exponentially decays to zero when |y1| goes to infinity, while the
displacement field v̂ exponentially tends to a (x′-dependent) translation when y1 goes
to +∞, and to another (x′-dependent) translation when y1 goes to −∞.
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By linearity, (25) can be divided into six “elementary” problems (elementary in the sense that
they can be solved once and for all for a given cell Y and a given hole D, because they are
independent of x′ and of the value of σ0 on Γ). Specifically, we obtain the following

Proposition 2. v̂ and τ̂ can be decomposed into :

v̂(x′,y) = σ0
ij(0,x

′)Vij(y) + v̌(x′), (26)

τ̂ (x′,y) = σ0
ij(0,x

′)Tij(y), (27)

where v̌ stands for the (still arbitrary) x′-dependent vector field, while (Vij ,Tij) = (Vji,Tji)
denote the solutions to the elementary inner problems,























divTij = 0 in Y\D
Tij = Aε(Vij) in Y\D
Vij and Tijn periodic on R×∂P
Tij = 0 on {±∞}×P
Tijn = −1

2(njei + niej) on ∂D

. (28)

Remark 4. In the spirit of Remark 2, we can extend the definition of Tij to the whole cell
Y = R×P by setting

2T ij
kl = −(δikδjl + δilδjk) in D, (29)

where δ denotes the Kronecker symbol. Accordingly, we have divTij = 0 in Y and the boundary
condition on ∂D is automatically satisfied.

These six problems enjoy the same properties as (25) : Tij exponentially decays to zero and
Vij tends to a constant vector, say Vij±, when y1 goes to ±∞,

Vij+ ≡ lim
y1→+∞

Vij(y), Vij− ≡ lim
y1→−∞

Vi(y); (30)

Since Vij is unique up to a constant vector, the latter is determined by introducing the addi-
tional condition

Vij+ +Vij− = 0; (31)

this additional constraint involves the mean value of the two constant vectors to which Vij tends
at infinity, and it completes (28) which only gives the difference Vij+ −Vij−.

Remark 5. In the case of a crack we have vol(D) = 0 and D = ∂D. Thus, if we do not
take into account the possibility of interpenetration of the lips of the crack, the elementary
problems remain essentially the same as in the case of a hole, it suffices to read accordingly the
boundary condition. Of course, it is unnecessary (and even meaningless) to extend the fields in
D since the interior of D is empty. The situation is slightly different when we want to forbid
the interpenetration of the lips. In such a case, the boundary condition in the real problem must
be changed into unilateral contact conditions. Accordingly, if we assume that the contact takes
place without friction, the contact conditions read as

σ
ǫn ∧ n = 0, [[uǫ]] · n ≥ 0, σ

ǫn · n ≤ 0, σ
ǫn · n [[uǫ]] · n = 0.

In terms of the inner fields v̂ and τ̂ they read as

(τ̂ + σ
0)n ∧ n = 0, [[v̂]] · n ≥ 0, (τ̂ + σ

0)n · n ≤ 0, (τ̂ + σ
0)n · n [[v̂]] · n = 0 on D. (32)
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Therefore, we lose in general the linearity property and the order 0 inner problem cannot be
decomposed into 6 elementary problems. However, this decomposition remains possible when the
geometry of the crack is simple, see the examples in the last section.

The six universal problems will be studied in more detail in the next sections. At the present
time, we will assume that they are solved, which implies that v1 and τ 0 are now known, except
for the arbitrary field v̌ entering the expression of v̂. In fact, v̌ will be determined once u1 is
known. Indeed, the matching condition (13) becomes, in view of (22) , (26) and (30),

u1±(x′) = σ0
ij(0,x

′)Vij± + v̌(x′). (33)

By addition of the two limits, (31) yields the desired relation between v̌ and û :

2v̌(x′) = u1+(x′) + u1−(x′). (34)

In other words, v̌ is the mean value of u1 on Γ.

3.5. Construction of the order 1 outer problem. This subsection is devoted to the con-
struction of the problem giving u1 and σ1. We already know that u1 and σ1 must satisfy the
order 1 outer equilibrium equations, outer constitutive relations and outer boundary conditions,
i.e.

divσ1 = 0 in Ω\Γ, σ1 = Aε(u1) in Ω\Γ
σ1n = 0 on ∂FΩ, u1 = 0 on ∂DΩ

(35)

What is missing are the jump conditions across Γ. We immediately deduce from (33) that

[[u1]](x′) = σ0
ij(0,x

′)
(

Vij+ −Vij−
)

. (36)

To obtain the jump condition satisfied by σ1e1, we first integrate the order 1 stress matching
condition (14) over P and obtain

σ
1±(x′) = lim

y1→±∞

(∫

P

τ
1(x′, y1,y

′)dy′ − y1
∂σ0

∂x1
(0,x′)

)

. (37)

Further, using (23), the order 0 inner equilibrium equations, that is divyτ
1 + divxτ

0 = 0, can
read as

∂τ1ij
∂yj

(x′,y) +
∂σ0

iα

∂xα
(0,x′) +

∂τ̂iα
∂xα

(x′,y) = 0 in Γ×Y (38)

once we have extended τ 0 and τ 1 by 0 in D. Integrating first over (−y1,+y1)×P and then
passing to the limit when y1 goes to infinity lead to

∂

∂xα

∫

Y

τ̂iα(x
′,y)dy = − lim

y1→∞

(∫

P

(

τ1i1(x
′, y1,y

′)dy′ − τ1i1(x
′,−y1,y

′)
)

dy′ + 2y1
∂σ0

iα

∂xα
(0,x′)

)

.

(39)
In the derivation of (39) we have used the periodic conditions satisfied by τ 1 on R×∂P. But,
since ∂σ0

i1/∂x1 = −∂σ0
iα/∂xα, inserting (37) into (39) gives

[[σ1
i1]](x

′) = − ∂

∂xα

∫

Y

τ̂iα(x
′,y)dy. (40)

12



Finally, using (27) leads to

[[σ1
k1]](x

′) = −
∂σ0

ij

∂xα
(0,x′)

∫

Y

T ij
kα(y)dy (41)

where Tij is extended to D by (29).

Let us remark that the jump of σ1
11 always vanishes. Indeed, we have divTij = 0 in Y.

Integrating over P at a given y1 and using the periodic condition on ∂P give

∂

∂y1

∫

P

T ij
k1(y1,y

′)dy′ = 0, ∀y1 ∈ R, ∀k ∈ {1, 2, 3}.

Hence, using the vanishing of Tij at infinity, we obtain
∫

P
T ij
k1(y1,y

′)dy′ = 0 for all y1 and all
k. Integrating in y1 gives

∫

Y

T ij
k1(y)dy =

∫

Y

T ij
1k(y)dy = 0, ∀i, j, k ∈ {1, 2, 3}. (42)

Inserting in (41) gives the desired result. We have thus obtained the following fundamental
result

Proposition 3. The order 1 outer displacement and stress fields u1 and σ1 have to satisfy the
following jump conditions across Γ, expressed in terms of the order 0 outer stress field σ0 and
its derivatives on Γ: ∀k ∈ {1, 2, 3} and ∀α ∈ {2, 3},

[[u1k]](x
′) = Bkijσ

0
ij(0,x

′) , [[σ1
α1]](x

′) = −Cαβij

∂σ0
ij

∂xβ
(0,x′) , (43)

where the third order tensor B and the fourth order tensor C are related to the solutions of the
six elementary inner problems by

Bkij = V ij+
k − V ij−

k , Cαβij =

∫

Y

T ij
αβ(y)dy. (44)

Remark 6. Those jump conditions across Γ are of Ventcel’s type when the tensor C is not zero.
That means that, in general, the influence of the holes cannot be identified with a surface density
of springs as it is usually assumed in simplified models, cf Rose (1987), see also the examples
in the last section. Indeed, a surface density of springs give rise to Robin’s type transmission
conditions, i.e. the jump conditions can read as

[[u1i ]] = Bijσ
0
j1, [[σ1

i1]] = 0 ∀i ∈ {1, 2, 3}. (45)

Thus, in (43) the jump of the displacement depends on all the components of the stress tensor
σ0 at the interface while it depends only of the components of the stress vector σ0e1 in Robin’s
condition; the stress vector is discontinuous in (43) while it is continuous in Robin’s condition.

Note, however, that (43) are not exactly the jump conditions which appear when the material
in the layer is stiff and constitute the “true” Ventcel’s conditions, cf Bessoud et al. (2008).
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Indeed, in such a case, u0 and σ0 are discontinuous and the jump conditions read as

[[u0k]] = Bkijσ
0
ij , [[σ0

α1]] = −Cαβij

∂σ0
ij

∂xβ

where f = (f+ + f−)/2.

To complete the construction of the order 1 outer problem, we should carefully analyze the
behavior of the fields u1 and σ1 near the boundary ∂Γ. First we can see from (41) that there
generally exists a misfit between the vanishing of the stress vector on the boundary (σ1n = 0
on ∂FΩ) and the jump of σ1e1 on Γ because the limit of the latter one will not be, in general,
equal to 0 when x′ goes to ∂Ω. That shows that a second boundary layer effect exists in the
neighborhood of ∂Γ which requires to consider a third type of asymptotic expansion of the
solution in this zone. A careful analysis should also show that this misfit leads to the existence
of a linear density of forces on ∂Γ for the order 1 outer problem which induces singularities
in the fields u1 and σ1. However this part of the analysis is outside the scope of the present
paper and the interested reader can refer to Abdelmoula and Marigo (2000) for such an analysis.
Accordingly, we consider that the construction of the order 1 outer problem is closed and we
will focus on the analysis of the jump conditions (43) and on the involved coefficients (44) in
the last section.

4. The effective damage tensor and the effective transmission conditions

4.1. The effective damage compliance tensor associated with the holed cell. Let us
define the fourth order tensor D by

Dijkl =

∫

Y

A
−1Tij ·Tkldy (46)

where the Tij ’s have been extended to D by (29) and A−1 denotes the inverse of A, i.e. the
compliance tensor of the material. D can be also expressed in terms of the Vij ’s without using
their extensions, namely

Dijkl =

∫

Y\D
Aε(Vij) · ε(Vkl)dy + A

−1

ijklvol(D). (47)

Note that D has the dimension of the inverse of a pressure, like a compliance tensor, since y
and Tij are dimensionless. Let σ be a stress tensor corresponding to the applied loading to the
cell at infinity. Then, σijT

ij represents the difference between the stress field which holds in
the holed cell and the constant stress field σ which would hold in the sound cell. Therefore,
Dσ · σ can be seen as a measure of the increase of elastic energy due to the hole in the holed
cell (which becomes more compliant) submitted to σ at infinity. (Note also that Tij = 0 and
hence D = 0 when there is no hole in the cell.) Accordingly, D can be considered as the effective
damage compliance tensor associated with the holed cell.
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It is also useful to give a variational definition of the damage tensor so that to compare the
effects of different defects. From the classical theorem of the minimum of the complementary
energy in linear elasticity, we get

Dσ · σ = min
T∈S(σ)

∫

Y

A
−1T ·Tdy (48)

where S(σ) denotes the set of statically admissible stress fields, i.e.

S(σ) =
{

T : T P−periodic, lim
|y1|→∞

T(y) = 0, divT = 0 in Y, T = −σ in D
}

. (49)

(Of course, the minimizer is T = σijT
ij .) We immediately deduce from its definition (46) that

D admits some symmetry and positivity properties. Specifically, we have

Proposition 4. The damage tensor D admits the classical symmetry properties of a compliance
tensor, namely

Dijkl = Djikl = Dklij , ∀i, j, k, l ∈ {1, 2, 3}. (50)

Moreover, D is non negative and even D is positive if the defect is a hole, i.e. if vol(D) > 0. D

is non definite only when the defect is a “planar” crack (that is an union of cracks whose unit
current normal is parallel to a fix direction) or an “antiplanar” crack (that is an union of cracks
whose unit current normal remains orthogonal to a fix direction).
Furthermore D is an increasing function of the size of the defect, i.e. D(D) ≥ D(D′) if D ⊃ D′.

Proof. The symmetry of D is a direct consequence of its definition (46), of the fact that
Tij = Tij by construction and of the symmetry of A−1. Moreover, by virtue of the positivity of
A−1, we deduce also from (46) that D is non negative and even we have by virtue of (47) the
following lower bound

Dσ · σ ≥ vol(D)A−1
σ · σ ≥ 0, ∀σ. (51)

Therefore D is positive if vol(D) > 0.

Let us now consider the case of a crack, i.e. when vol(D) = 0 and D = ∂D. D is non definite
if and only if there exists σ 6= 0 such that Dσ · σ = 0. Assume that such a tensor σ exists.
By virtue of (46), Dσ · σ = 0 is equivalent to σijT

ij = 0 in Y\D. Using (28), it is equivalent
to σn = 0 on D. Therefore n(y) must be an eigenvector of σ associated with a necessarily 0
eigenvalue of σ for every y ∈ D. Since σ 6= 0, σ has necessarily a non zero eigenvalue. Let N
be the eigenspace of σ associated with its 0 eigenvalue, we have 1 ≤ dimN ≤ 2. Since n(y)
must belong to N for every y on D, we have to consider two cases:

(1) If dimN = 1, then n(y) is parallel to a fix direction, say ν. That means that n(y) = ±ν

for every y ∈ D, the crack is planar in the sense given in the statement of the Proposition.
(Note that D can correspond to a family of parallel planar connected cracks.) Conversely,
if the crack is planar with ν as normal vector, then taking σ = t⊗ t with t · ν = 0, we
have σν = 0 and hence Dσ · σ = 0.
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(2) If dimN = 2, then n(y) must belong to N and hence be orthogonal to a fix direction,
say ν. That means that n(y) · ν = 0 for every y ∈ D, the crack is anti-planar in the
sense given in the statement of the Proposition. Conversely, if the crack is anti-planar
with ν as a vector orthogonal to every n(y), then taking σ = ν ⊗ ν, we get σn(y) = 0
for every y ∈ D and hence Dσ · σ = 0.

Let D and D′ be two defects with D ⊃ D′. Let us denote by D and D′ the associated damage
tensors and by S(σ) and S ′(σ) the associated set of statically stress fields for the same “loading”
σ, cf (49). Since S(σ) ⊂ S ′(σ), we have Dσ · σ = minS(σ)

∫

Y
A−1T ·Tdy ≥ minS′(σ)

∫

Y
A−1T ·

Tdy = D′σ · σ and hence D ≥ D′. �

By virtue of (50), D has, at most, 21 independent coefficients. This number is smaller when
the material, the cell and the hole possess symmetries. The reader interested by a general
discussion on the symmetries of effective elastic tensors in the framework of the homogenization
theory of periodic media can refer to Léné (1984), Suquet (1987) or Michel et al. (1999). We
will only consider particular cases in the examples below.

4.2. The relationships between the tensors B, C and D. By construction the tensors B

and C given by (44) have the following symmetries:

Bkij = Bkji, Cαβij = Cβαij = Cαβji, ∀i, j, k ∈ {1, 2, 3}, ∀α, β ∈ {2, 3}. (52)

Accordingly, there exist at most 3 × 6 = 18 independent coefficients for B and also 3 × 6 = 18
independent coefficients for C. It turns out that these 36 coefficients can be expressed in terms
of the coefficients of the damage compliance tensor D of the holed cell and of the stiffness tensor
A of the material. Before establishing these relations, let us introduce the

Definition 1. Let P be the projection onto the in-plane symmetric second order tensors, that is
the symmetric fourth order tensor which associate to σ = σijei ⊗ ej the tensor Pσ defined by

Pσ = σαβeα ⊗ eβ , (53)

recalling that the Latin indices run from 1 to 3 and the Greek indices from 2 to 3.

Specifically, we have

Proposition 5. The components of B are related to those of D by

B1ij = D11ij − A
−1

11αβA
P

αβγδDγδij , Bηij = 2Dη1ij − 2A−1

η1αβA
P

αβγδDγδij , (54)

whereas the components of C are related to those of D by

Cαβij = −A
P

αβγδDγδij , (55)

where AP denotes the “in-plane” stiffness tensor, i.e. the symmetric fourth order tensor such
that APPA−1P = P.
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Proof. Let σ and σ∗ be two symmetric second order tensors. Let τ and τ ∗ be the associated
stress tensor fields, i.e. τ (y) = σ + σijT

ij(y) and τ ∗(y) = σ∗ + σ∗
ijT

ij(y), which are extended

to 0 in D. Let v and v∗ be the associated displacement fields, i.e. v(y) = σijV
ij(y) and

v∗(y) = σ∗
ijV

ij(y). Let us compute
∫

Y\D τ ∗ · ε(v)dy by two ways.

First, using (28) and (30), we have
∫

Y\D
τ
∗ · ε(v)dy = −

∫

Y\D
divτ ∗ · vdy +

∫

∂(Y\D)
τ
∗n · vdS

= σ
∗e1 ·

(

Vij+ −Vij−
)

σij .

Therefore, by virtue of (44), we get
∫

Y\D
τ
∗ · ε(v)dy = Bkijσ

∗
k1σij . (56)

Second, using (28) and (47) , we get
∫

Y\D
τ
∗ · ε(v)dy = σ

∗ ·
∫

Y\D
ε(v)dy +

∫

Y\D
Aε(v∗) · ε(v)dy

= A
−1
σ
∗ ·

∫

Y\D
Tijσijdy +

∫

Y\D
Aε(Vijσ∗

ij) · ε(Vklσkl)dy

= A
−1
σ
∗ ·

∫

Y\D
Tijσijdy − A

−1
σ
∗ · σvol(D) + Dσ

∗ · σ

= A
−1
σ
∗ ·

∫

Y

Tijσijdy + Dσ
∗ · σ.

Therefore, by virtue of (44), we have also
∫

Y\D
τ
∗ · ε(v)dy = A

−1

αβklCαβijσ
∗
klσij + Dijklσ

∗
klσij . (57)

Comparing (56) and (57), which hold for all σ and σ∗, leads to

Bkijσ
∗
k1 =

(

A
−1

αβklCαβij + Dijkl

)

σ∗
kl, ∀σ∗. (58)

Taking first for σ∗ an in-plane tensor, i.e. σ∗ such that Pσ∗ = σ∗, the left-hand side of (58)
vanishes and we obtain A

−1

αβγδCγδij = −Dαβij . In an intrinsic form, since PC = C, that reads as

PA−1PC = −PD. Multiplying on the left by AP and using APP = PAP = AP, we get APPA−1PC =
−APD. Using the definition of AP, we obtain C = −APD, that is (55). Taking then σ = e1 ⊗ e1
in (58) we get B1ij = A

−1

11αβCαβij + D11ij , which can read as B1ij = (A−1C + D)11ij . Using (55)

we obtain B1ij = (D − A−1APD)11ij , that is (54a). Finally, taking σ = 2eη ⊗s e1 in (58) and
using (55), we get (54b). �

Of course, the symmetries of A and D are directly transmitted to B and C. On the other
hand, the general positivity properties of B and C need a more careful analysis. It is outside the
scope of this paper.
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4.3. Examples. We consider three “typical” examples: one where the defect is a hole, the two
other where the defect is a crack. In each case, the material is isotropic. Accordingly, the
compliance tensor A−1 and the in-plane stiffness tensor AP of the material are given by

A
−1 =

1 + ν

E
I− ν

E
I⊗ I, A

P =
E

1 + ν

(

P+
ν

1− ν
PI⊗ PI

)

, (59)

where I and I are respectively the fourth order and the second order identity tensors, and E and
ν are the Young modulus and the Poisson ratio of the material. Moreover, the dependence of D
on E is explicit and D can be read as

D =
1

E
D̂(ν,a,b,D) (60)

where D̂ is a dimensionless fourth order tensor whose components depend on the geometrical
parameters of the holed cell and on the Poisson ratio.

Example 1: (An hexagonal array of spherical holes) Let ℓ = 3−1/4
√
2, a = ℓe2, b =

ℓ(e2+
√
3e3)/2 and D be the ball of center 0 and radius R < ℓ/2. Thus the defect is a spherical

hole of radius R and we can choose for P a perfect hexagon with center 0, see Figure 4. Since

a

b

e3

e1

Figure 4. Case when the defect is a spherical hole

the material is isotropic, we can use the results of Léné (1984) to obtain that D is a positive
transversely isotropic fourth order tensor with axis e1. Therefore, D can be written

Dσ · σ =
dL
E

σ2
11 +

2δL
E

σ11σαα +
δT
E

σ2
αα +

2dT
E

σαβσαβ +
4dS
E

σ1ασ1α (61)

where the five dimensionless coefficients dL, dT , dS , δT and δL are functions of R and ν which
satisfy the following inequalities:

dL > 0, dT > 0, dS > 0, δT + dT > 0, (δT + dT )dL > δ2L. (62)
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Inserting (61) into (54)–(55) and using (59) give the tensors B and C. The details of the
calculations are left to the reader. We finally obtain





































B111 =
dL
E

+
2ν

1− ν

δL
E

C2211 = C3311 = − δL
1− ν

B212 = B313 =
2dS
E

C2222 = C3333 = − δT
1− ν

− 2dT
1− ν2

B122 = B133 =
δL
E

+
2ν

1− ν

δT + dT
E

C2233 = C3322 = − δT
1− ν

− 2νdT
1− ν2

C2323 = − 2dT
1 + ν





































(63)

the other components being either zero or obtained by the symmetries (52). Therefore the jump
conditions (43) read as

[[u11]] =

(

dL +
2ν

1− ν
δL

)

σ0
11

E
+

(

δL +
2ν

1− ν
(δT + dT )

)

σ0
22 + σ0

33

E
(64)

[[u12]] = 4dS
σ0
21

E
[[u13]] = 4dS

σ0
31

E
(65)

[[σ1
21]] =

δL
1− ν

∂σ0
11

∂x2
+

(

δT
1− ν

+
2dT

1− ν2

)

∂σ0
22

∂x2
+

(

δT
1− ν

+
2νdT
1− ν2

)

∂σ0
33

∂x2
+

4dT
1 + ν

∂σ0
23

∂x3
(66)

[[σ1
31]] =

δL
1− ν

∂σ0
11

∂x3
+

(

δT
1− ν

+
2dT

1− ν2

)

∂σ0
33

∂x3
+

(

δT
1− ν

+
2νdT
1− ν2

)

∂σ0
22

∂x3
+

4dT
1 + ν

∂σ0
23

∂x2
(67)

where it clearly appears that the effective behavior of the holes cannot be assimilated to a surface
density of springs, see Remark 6. Note also that we have considered the most symmetric case for
a hole and hence that for less symmetric cases the effective behavior will be even more complex.

Example 2: (A square array of transverse penny-shaped cracks) Let a = e2, b = e3,
Y = R×(−1/2, 1/2)2, R < 1/2 and D = {0}×DR where DR denotes the disk {y22 + y23 ≤ R2}.
Thus the defect is a penny-shaped crack of radius R in the plane (e2, e3), cf Figure 5. The
unit normal to the crack is e1 and vol(D) = 0. Consequently, we deduce from Proposition 4
(see also the proof) that T22 = T23 = T32 = T33 = 0. The unique non zero elementary stress
fields are T11, T12 = T21 and T13 = T31. Moreover, since the material is isotropic, we can
follow the procedure of Léné (1984) to check that, by symmetry, D1212 = D1313 := dT /E > 0,
D1111 := dL/E > 0 and all other coefficients which are not deduced from them by (50) vanish.
In other words, the damage compliance tensor is given by

Dσ · σ =
dL
E

σ2
11 +

4dT
E

σ1ασ1α (68)
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e2

e3 e3

e1

Figure 5. Case when the defect is a penny-shaped crack in the plane y1 = 0

where the dimensionless coefficients dL and dT are increasing functions of the radius R of the
crack.

Since PD = 0, by virtue of Proposition 5, the tensor C vanish and B is given by

B =
dL
E

e1 ⊗ e1 ⊗ e1 +
dT
E

eα ⊗ (e1 ⊗s eα). (69)

Therefore, the jump conditions (43) become

[[u1]] =
dL
E

σ0
11e1 +

4dT
E

σ0
α1eα , [[σ1e1]] = 0 , (70)

which correspond to Robin’s transmission conditions, see Remark 6. In other words, this array
of cracks behave like a surface density of normal and tangential springs whose compliance is
equal to ǫdL/E and 4ǫdT /E, respectively. It is striking to see the difference with the case of
a spherical hole. We have obtained here the simplest effective behavior. That example could
suggest that the effective behavior of planar cracks is always that of a surface density of springs.
The next example, where we simply change the orientation of the cracks, prove the converse.

Remark 7. The jump conditions (70) have been obtained without taking account of the non
interpenetration conditions of the lips of the crack. In the present case, the conditions (32) read
as

τ̂21 + σ0
21 = τ̂31 + σ0

31 = 0, [[v̂1]] ≥ 0, τ̂11 + σ0
11 ≤ 0, (τ̂11 + σ0

11)[[v̂1]] = 0.

It is easy to check that the solution is then

v̂ =
〈

σ0
11

〉

V11 + 2σ0
21V

21 + 2σ0
31V

31, τ̂ =
〈

σ0
11

〉

T11 + 2σ0
21T

21 + 2σ0
31T

31

where 〈·〉 denotes the positive part and the Vij’s and Tij’s are the solutions of the elementary
problems without non interpenetration conditions. Accordingly, the effective jump conditions
become

[[u1]] =
dL
E

〈

σ0
11

〉

e1 +
4dT
E

σ0
α1eα, [[σ1e1]] = 0 (71)

and we see that the order 1 normal displacement is discontinuous only in tension.
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Example 3: (A square array of longitudinal penny-shaped cracks) Let us change the
orientation of the penny-shaped cracks and consider now that they are in the plane (e1, e2), i.e.
D = DR×{0} with DR = {y21 + y22 ≤ R2}, cf Figure 6. Hence the normal vector to the crack is

e2

e3

e1

e2

Figure 6. Case when the defect is a penny-shaped crack in the plane y3 = 0

e3 and we deduce from Proposition 4 that T11 = T12 = T21 = T22 = 0. The unique non zero
elementary stress fields are T33, T13 = T31 and T23 = T32. Moreover, by symmetry, we have
D1313 := d1/E > 0, D2323 := d2/E > 0 and D3333 := d3/E > 0 and all other coefficients which
are not deduced from them by (50) vanish. In other words, the damage compliance tensor is
given by

Dσ · σ =
4d1
E

σ2
13 +

4d2
E

σ2
23 +

d3
E
σ2
33 (72)

where the three dimensionless coefficients di are increasing functions of the radius R of the crack.
(Note that the directions 2 and 3 are no more equivalent.)

Inserting (72) into (54)–(55) and using (59) give the tensors B and C. We obtain

B133 =
ν

1− ν

d3
E
, B313 =

2d1
E

(73)

C2233 = − νd3
1− ν2

, C3333 = − d3
1− ν2

, C2323 = − 2d2
1 + ν

(74)

the other components being either zero or obtained by the symmetries (52). Therefore the jump
conditions (43) read as

[[u1]] =
νd3
1− ν

σ0
33

E
e1 + 4d1

σ0
13

E
e3 (75)

[[σ1
21]] =

νd3
1− ν2

∂σ0
33

∂x2
+

4d2
1 + ν

∂σ0
23

∂x3
, [[σ1

31]] =
4d2
1 + ν

∂σ0
23

∂x2
+

d3
1− ν2

∂σ0
33

∂x3
. (76)

We see that the jump conditions are now of Ventcel-type and that the previous case was an
“accident”.
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5. Conclusion

We have obtained that the order 1 transmission conditions across the interface, conditions
which give the macroscopic influence of periodically distributed micro-holes or micro-cracks on
the interface, are in general of Ventcel-type with discontinuity of both the displacement and the
stress vector. The coefficients entering in the jump conditions are obtained by solving first six
elementary elastic problems characteristic of the defect distribution. Those problems, posed on
the infinite representative cell, give us in return the effective damage compliance tensor from
which we deduce the desired coefficients. It appears that, even if the hole, the cell and the
material have the highest degree of symmetry, the effective behavior of the interface is rather
complex and far to be that of a surface density of springs. Comparatively, the simplest situation
is that of planar transversal cracks. From a theoretical viewpoint, an interesting perspective is
to interpret these results in terms of surface energy and to propose a variational formulation of
the effective outer problem in the spirit of Abdelmoula and Marigo (2000). From a practical
viewpoint, it should be interesting to quantify all these results by computing, for instance by
the finite element method, the effective damage compliance tensor and the coefficients entering
in the transmission conditions for several families of defects.
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