HAL CCSD
2-D non-periodic homogenization of the elastic wave equation: SH case
Guillot, Laurent
Capdeville, Yann
Marigo, Jean-Jacques
Institut de Physique du Globe de Paris (IPGP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de mécanique des solides (LMS) ; École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
International audience
ISSN: 0956-540X
EISSN: 1365-246X
Geophysical Journal International
Oxford University Press (OUP)
hal-00549622
https://polytechnique.hal.science/hal-00549622
https://polytechnique.hal.science/hal-00549622/document
https://polytechnique.hal.science/hal-00549622/file/10-GJI-SH.pdf
https://polytechnique.hal.science/hal-00549622
Geophysical Journal International, 2010, 182 (2), pp.1438-1454. ⟨10.1111/j.1365-246X.2010.04688.x⟩
DOI: 10.1111/j.1365-246X.2010.04688.x
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-246X.2010.04688.x
en
[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]
[SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph]
info:eu-repo/semantics/article
Journal articles
In the Earth, seismic waves propagate through 3-D heterogeneities characterized by a large variety of scales, some of them much smaller than their minimum wavelength. The costs of computing the wavefield in such media using purely numerical methods, are very high. To lower them, and also to obtain a better geodynamical interpretation of tomographic images, we aim at calculating appropriate effective properties of heterogeneous and discontinuous media, by deriving convenient upscaling rules for the material properties and for the wave equation. To progress towards this goal we extend our successful work from 1-D to 2-D. We first apply the so-called homogenization method (based on a two-scale asymptotic expansion of the field variables) to model antiplane wave propagation in 2-D periodic media. These latter are characterized by short-scale variations of elastic properties, compared to the smallest wavelength of the wavefield. Seismograms are obtained using the 0th-order term of this asymptotic expansion, plus a partial first-order correction. Away from boundaries, they are in excellent agreement with solutions calculated at a much higher computational cost, using spectral elements simulations in the reference media. We then extend the homogenization of the wave equation, to 2-D non-periodic, deterministic media.
2010-05-31
info:eu-repo/semantics/OpenAccess
ANR-06-BLAN-0283,MUSE,Dynamic and multi-scale homogenization for wave propagation, seismic imaging and rupture propagation.(2006)