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Dynamic fracture: an example of convergence

towards a discontinuous quasi-static solution

P.-E. Dumouchel a J.-J. Marigo a,∗
aInstitut Jean le Rond d’Alembert, Université Paris VI, 75005 Paris

M. Charlotte b

bLaboratoire de Mécanique des Solides, Ecole Polytechnique, 91128 Palaiseau

Abstract

Considering a one-dimensional problem of debonding of a thin film in the context
of Griffith’s theory, we show that the dynamical solution converges, when the speed
of loading goes down to 0, to a quasi-static solution including an unstable phase of
propagation. In particular, the jump of the debonding induced by this instability is
governed by a principle of conservation of the total quasi-static energy, the kinetic
energy being negligible.

1 Introduction

Griffith’s theory of fracture mechanics is universally used to treat the prop-
agation of cracks in brittle elastic bodies. When the load varies slowly with
time, the quasi-static approach is preferred to the dynamic approach for its
simplicity. But it turns out that, even when the crack path is known in ad-
vance, Griffith’s law is unable to give the evolution of the crack if the total
(quasi-static) energy is not a convex function of the crack length. Indeed, in
this case, an unstable phase of propagation takes place and the quasi-static
Griffith law, which does not allow discontinuous crack evolutions, cannot be
applied any more. It is generally claimed that in a such situation the quasi-
static framework must be abandoned because the crack propagation becomes
dynamic and that the kinetic energy plays an important role. The goal of
the paper is to show that, in a one-dimensional particular context, that claim
is not true and that the unstable phase of propagation can also be treated
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by considering only quasi-static energies. But the price to pay is to replace
the Griffith law of propagation based on the concept of critical energy release
rate by that of conservation of the total quasi-static energy, at least during
the phases of unstable propagation. This result is proved by solving the full
dynamical problem and by passing to the limit when the loading speed goes
down to zero. To our best knowlegde, a similar argument has been used only
by Berry [1,2] in his approximate analysis of dynamic fracture (in 2D), which
refered to a quasi-static G for evaluating the kinetic energy and the fracture
energy at crack arrest in an homogeneous medium. Consequently, that gives
a theoretical basis to the variational approach suggested by [3], [4] and [5]
where the crack evolution is governed by two criteria: a stability criterion and
an energy balance. Indeed, the variational formulation can be applied even
if the total quasi-static energy is a non convex function of the crack length,
the jumps of the crack are governed by that energy balance whereas the two
criteria are equivalent to Griffith’s law when the crack length evolves smoothly.

The paper is organized as follows. In Section 2, we first introduce the one-
dimensional problem which corresponds to a simplified version of the peeling
test. Then, we set the dynamic problem and introduce the two cases of tough-
ness repartition that are considered in the sequel, i.e. the so-called Case a

and Case b. Follows a discussion where it is shown that we cannot solve the
non convex Case b in a quasi-static context by using Griffith’s law alone
because the debonding evolution is necessarily discontinuous. As an alterna-
tive the energy conservation principle is proposed to determine the value of
the jump. Section 3 is devoted to the dynamic analysis of each case. We first
introduce the general structure of the dynamic response made of a sequence
of shock waves which interact with the front of debonding. Then, we obtain
the solutions in a closed form. Finally, we pass to the limit when the speed of
loading goes down to 0 to prove the convergence to the quasi-static solutions
in each case.

2 Setting of the problem

2.1 The dynamical problem

2.1.1 Notation and main assumptions

The problem deals with a simplified version of the peeling test, cf [6], [7], [8]
and Figure 1. We consider a semi-infinite perfectly flexible and inextensible
thin film which is initially perfectly bonded to a rigid substrate with normal e2.
The end x1 = 0 of the film is submitted both to a constant tension −Ne1, N >
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Fig. 1. Debonding of a thin inextensible film.

0, and to an opening W linearly increasing with time t so that

W = ǫct, c =

√

N

ρ
. (1)

In (1), ρ is the mass of a unit length of the film, c is the velocity of the
transversal waves propagating in the film and ǫ represents the dimensionless
speed of loading. In the sequel, ǫ will be considered as a (small) parameter.
Therefore, the dependence of the response on ǫ is made explicit by denoting
the solution with ǫ as a superscript. The main goal of the paper is to determine
the asymptotic behavior of the dynamical response when ǫ goes down to 0.
Moreover, in order to simplify the expressions we introduce dimensionless
quantities. Specifically, if L denotes a characteristic length of the film (which
will correspond to the point where there is a change of toughness in the model
developed below), we set

x =
x1

L
, T = ǫ

ct

L
(2)

and consider that the displacement field uǫ of the film is a function of (x, T )
defined on the quadrant Q := (0, +∞)2,

uǫ(x, T ) = uǫ(x, T )Le1 + wǫ(x, T )Le2. (3)

In (2), T can be considered as a dimensionless rescaled time. Assuming that
wǫ is small and using a linearized inextensibility condition, uǫ can be expressed
in terms of wǫ as follows:

uǫ(x, T ) =
1

2

∫ ∞

x

(∂wǫ

∂x

)2
(s, T )ds. (4)

The debonded part of the film at time t corresponds to the points x such
that supS≤T wǫ(x, S) > 0. To simplify the presentation, we assume that the
debonding grows from x = 0 at T = 0 in such a way that the debonded
part of the film at time t corresponds to the interval (0, ℓǫ(T )). Thus ℓǫ(T )L
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represents the physical debonded length at time t. Therefore,

uǫ = wǫ = 0 in Qǫ
0 := {(x, T ) ∈ Q : x ≥ ℓǫ(T )} (5)

with ℓǫ(0) = 0.

2.1.2 The equations of motion

The motion of the debonded part of the film is governed by the (classical)
wave equation, cf [10]:

∂2wǫ

∂x2
− ǫ2∂2wǫ

∂T 2
= 0 in Q \ Qǫ

0. (6)

Let us note that the wave velocity in the (x, T )–plane is equal to 1/ǫ because of
the time rescaling and the use of dimensionless coordinates. Moreover, since
the gradient of the displacement is discontinuous across some curves of the
(x, T )–plane, it is better to set the problem in terms of the gradient compo-
nents. Thus, let us denote by ωǫ and vǫ the partial derivatives of wǫ:

ωǫ =
∂wǫ

∂x
, vǫ =

∂wǫ

∂T
. (7)

The field ωǫ represents the infinitesimal rotation of the film and the field vǫ is
the rescaled transverse velocity of the film (the real transverse velocity of the
material points of the film is equal to ǫcvǫ because of the time rescaling).

The rescaled transverse velocity must satisfy the boundary condition

vǫ(0, T ) = 1,∀T > 0. (8)

Both fields have to satisfy the Hadamard compatibility condition and the
equation of motion

0 =
∂ωǫ

∂T
− ∂vǫ

∂x
, 0 =

∂ωǫ

∂x
− ǫ2∂vǫ

∂T
. (9)

Let Sǫ be the set of points (x, T ) ∈ Q\Qǫ
0 where ωǫ and vǫ are discontinuous;

that corresponds to the shock waves. The equations (9) are to be satisfied in
Q\(Sǫ∪Qǫ

0). On Sǫ, they have to be replaced by the Hadamard compatibility
condition and the Rankine-Hugoniot condition, see [11]:

0 = s[[ωǫ]] + [[vǫ]], 0 = [[ωǫ]] + sǫ2[[vǫ]]. (10)

In (10), s denotes the local velocity of a shock wave at a point of Sǫ, [[f ]]
denotes the jump discontinuity of the function f across Sǫ:

[[f ]] = f+ − f− on Sǫ, (11)
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f+ and f− denoting respectively the limit after and before the passage of the
wave. We deduce from (10) that s2ǫ2 = 1, i.e. , the shock waves propagate with
a velocity equal to ±1/ǫ (in the (x, T )–plane). Accordingly, we can divide Sǫ

into two subsets: the forward shock waves Sǫ
+ where s = +1/ǫ and the back-

ward shock waves Sǫ
− where s = −1/ǫ. Then, the only jump condition which

remains to satisfy is the Hadamard compatibility condition which becomes:

0 = [[ωǫ]] + ǫ[[vǫ]] on Sǫ
+, 0 = [[ωǫ]] − ǫ[[vǫ]] on Sǫ

−. (12)

2.1.3 Griffith’s law of debonding

Let us denote by Γǫ the front of debonding and ℓ̇ǫ its local speed in the (x, T )–
plane:

Γǫ := {(ℓǫ(T ), T ) : T > 0}, ℓ̇ǫ =
dℓǫ

dT
. (13)

The displacement wǫ is continuous on Γǫ (and equal to 0), but ωǫ and vǫ are
discontinuous and must satisfy the Hadamard compatibility condition

0 = [[vǫ]] + ℓ̇ǫ[[ωǫ]] on Γǫ. (14)

In (14) the double brackets denote, like in (11), the difference between the
limit after and the limit before the passage of the front of debonding. The
debonding of the film is governed by Griffith’s law [9] which is is formulated
in terms of the dynamic energy release rate Gǫ. In a general two-dimensional
context, Gǫ is defined as the limit of a path integral where the path tends to
the tip of the crack, see [12]. In our one-dimensional context, Gǫ is given by

Gǫ =
N

2

(

[[ωǫ2]] − ǫ2[[vǫ2]]
)

, (15)

where the jumps are defined on Γǫ, cf the appendix. Therefore, since the limits
before the passage of the debonding front vanish, upon using (14), Gǫ reads
as

Gǫ =
N

2

(

1 − (ǫℓ̇ǫ)2
)

(ωǫ
+)2. (16)

Denoting by x 7→ Gc(x) the spatial repartition of the toughness, the Griffith
law reads as, cf [9,13]:

ℓ̇ǫ ≥ 0, Gǫ ≤ Gc(ℓ
ǫ),

(

Gǫ − Gc(ℓ
ǫ)
)

ℓ̇ǫ = 0. (17)

In (17) the first inequality is the irreversibility condition, the second inequality
is the Griffith criterion requiring that the dynamic energy release rate must
be always less than the local toughness Gc(ℓ), and the last equality stipulates
that the debonding evolves only when the dynamic energy release rate is equal
to the local toughness. According to (16) and (17), we obtain

0 < ǫℓ̇ǫ < 1, (18)
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meaning that the speed of debonding is necessarily less than the wave speed.

2.1.4 Last definitions

The interpretation of the solution in energetic terms is fundamental in the
sequel. Let us define the various energies involved. Since the film is perfectly
flexible, the bending energy is neglected and the potential energy at time t is
simply equal to the opposite of the work produced by the tension N in the
displacement uǫ(0, T ). Therefore, using (4), the potential energy of the film at
time t can be written

Pǫ(T ) =
NL

2

∫ ∞

0

(∂wǫ

∂x

)2
(x, T )dx. (19)

The kinetic energy of the film at time t can be read as

Kǫ(T ) = ǫ2NL

2

∫ ∞

0

(∂wǫ

∂T

)2
(x, T )dx, (20)

the factor ǫ2 being due to the rescaling (2) of the time. Following Griffith’s
assumption the surface energy of the film at time t reads as

Sǫ(T ) = L
∫ ℓǫ(T )

0
Gc(x) dx. (21)

To summarize this setting of the dynamic debonding evolution, the fields ωǫ,
vǫ and the debonding length ℓǫ must satisfy (8), (9), (12), (14), (16)–(17). We
will solve that problem in two particular cases of spatial toughness repartition:

Case a : Gc(x) =







γ1N if 0 < x < 1

γ2N if x ≥ 1
, (22)

Case b : Gc(x) =







γ2N if 0 < x ≤ 1

γ1N if x > 1
, (23)

where in both cases γ2 > γ1 > 0.

Remark 1 We construct in each case a (particular) solution. The issue of the
uniqueness will not be discussed in this paper.

2.2 The quasi-static approach

In the quasi-static approach, the kinetic energy is neglected as well as any
inertial effect and the film is assumed to be at equilibrium for every value of
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the given opening T . Therefore, let T and ℓ be the given opening and the
debonding length. By virtue of the theorem of potential energy minimum, the
transverse displacement field at equilibrium, w0, is that which minimizes the
potential energy on all kinematically admissible vertical displacement fields
w. Since w is admissible if and only if w ≥ 0, w = 0 in [ℓ, +∞) and w(0) = T ,
and, since the associated potential energy reads as

∫ ℓ
0 NLw′(x)2/2 dx, then

the potential energy of the film at equilibrium, P(T, ℓ), is given by

P(T, ℓ) = min
{w≥0 : w(0)=T}

∫ ℓ

0

NL

2
w′(x)2 dx. (24)

In (24) and above the prime denotes the derivative with respect to x. Then
we easily deduce that the minimizer w0 is given by

w0(x) = T
(

1 − x

ℓ

)+

, (25)

the superscript + denoting the positive part. Therefore the potential energy
and the surface energy are given by

P(T, ℓ) =
NLT 2

2ℓ
, S(ℓ) = L

∫ ℓ

0
Gc(x) dx (26)

and the quasi-static potential energy release rate reads as

G := − 1

L

∂P
∂ℓ

(T, ℓ) =
NT 2

2ℓ2
. (27)

Let us note that P is a strictly convex function of ℓ at given T > 0, while S is
a convex function of ℓ if and only if x 7→ Gc(x) is monotone increasing. There-
fore, the total energy E(T, ℓ) := P(T, ℓ) + S(ℓ) is a strictly convex function of
ℓ at given T > 0 in Case a, but not in Case b.

If we still assume that the debonding evolution is governed by Griffith’s law,
then the function T 7→ ℓ(T ) giving the evolution of the length debonding
must be an absolutely continuous function (see [14] for a precise definition of
absolutely continuous functions) which satisfies, for almost all T > 0:

ℓ̇(T ) ≥ 0,
NT 2

2ℓ(T )2
≤ Gc(ℓ(T )),

(

NT 2

2ℓ(T )2
− Gc(ℓ(T ))

)

ℓ̇(T ) = 0, (28)

with the initial condition ℓ(0) = 0. We have so the fundamental result

Proposition 2.1 In Case a, Griffith’s law (28) admits the solution given by

ℓ(T ) =















T/
√

2γ1, if 0 ≤ T ≤ √
2γ1

1, if
√

2γ1 ≤ T ≤ √
2γ2

T/
√

2γ2, if T ≥ √
2γ2

. (29)
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In Case b there is no (absolutely continuous) solution.

Proof. In Case a let us verify that T 7→ ℓ(T ) given by (29) is a solution of
(28). Its continuity and its monotonicity are easily checked. We have G(T ) =
γ1N = Gc(ℓ(T )) for T ∈ (0,

√
2γ1) and G(T ) = γ2N = Gc(ℓ(T )) for T ≥ √

2γ2.
For T ∈ (

√
2γ1,

√
2γ2), we have G(T ) < Gc(ℓ(T )) = γ2N and ℓ̇(T ) = 0.

Let us consider Case b and assume that there exists an absolutely continuous
solution T 7→ ℓ(T ). Then ℓ(T ) grows from 0 to ∞ when T grows from 0 to
+∞. (Indeed, assume the contrary and set ℓM = limT→∞ ℓ(T ) < ∞. Then,
according to (28)2, we should have T 2 ≤ 2γ2ℓM , ∀T > 0, what is impossible.
Hence limT→∞ ℓ(T ) = ∞.) Therefore, ℓ(T ) = 1 for some T . Moreover, because
of the monotonicity of T 7→ ℓ(T ), there exist T0 and T1 with 0 < T0 ≤ T1 <
+∞ such that ℓ(T ) < 1 for T < T0, ℓ(T ) = 1 for T ∈ [T0, T1] and ℓ(T ) > 1 for
T > T1. We should have G(T0) = γ2N . (Indeed, if not, G(T0) < γ2N and by
continuity G(T ) < γ2N in some interval (T0 −h, T0]. Hence, according to(28)3

and by the absolute continuity assumption, ℓ(T ) = 1 in that interval, what is in
contradiction with the definition of T0.) But, we should have also G(T1) ≤ γ1N .
(Indeed, G(T ) ≤ Gc(ℓ(T )) = γ1N for T > T1 and hence by continuity the
inequality holds at T1.) Finally, we should have 2γ2 = T 2

0 ≤ T 2
1 ≤ 2γ1, which

is in contradiction with the assumption on the toughness. Accordingly, there
is no absolutely continuous solution. ✷

In Case a, a more careful analysis could show that (29) is the unique (ab-
solutely continuous) solution of (28) and that ℓ(T ) is, at every T , the global
minimizer of l 7→ E(T, l) on {l ≥ 0}. The proof is not reproduced here, but
the interested reader is referred to [15] for similar results relating global mini-
mization to Griffith’s law. The graph of T 7→ ℓ(T ) is plotted in Figure 2. The

1
!

!"""""""""
2!Γ1

!"""""""""
2!Γ2

T

Fig. 2. The quasi-static evolution of the debonding in Case a by using Griffith’s
law.
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evolution of the potential and surface energies are given by

P(T ) =















√
2γ1TNL/2 if T ≤ √

2γ1

T 2NL/2 if
√

2γ1 ≤ T ≤ √
2γ2√

2γ2TNL/2 if T ≥ √
2γ2

(30)

and

S(T ) =















√
2γ1TNL/2 if T ≤ √

2γ1

γ1NL if
√

2γ1 ≤ T ≤ √
2γ2

(

γ1 − γ2 +
√

2γ2T/2
)

NL if T ≥ √
2γ2

(31)

In Case b, the debonding evolution is necessarily discontinuous. We can ex-
pect that the debonding evolves continuously and follows Griffith’s law until
the debonding reaches the point x = 1 where there is a loss of toughness.
In other words, we can expect that ℓ(T ) = T/

√
2γ2 for T ∈ [0,

√
2γ2). As it

is shown in the proof of Proposition 2.1, at T =
√

2γ2, ℓ must jump from 1
to a certain ℓc > 1. This phase of instability of the debonding can be inter-
preted from the evolution of the graph of the total energy as a function of the
debonding length when the given opening grows, cf Figure 3 and see also [16]
for the use of the concepts of instability in Fracture Mechanics. For T <

√
2γ2,

ℓ(T ) = T/
√

2γ2 is a local minimum of l 7→ E(T, l). But at T =
√

2γ2, this local
minimum disappears and the debonding length must jump from l = 1. The
question is: “what is the equation giving the value of the jump?”. Clearly, the
quasi-static Griffith law is unable to give the answer because it is written only
for smooth evolutions. We must introduce a new criterion and the main goal
of the paper is to deduce the right equation from a dynamic analysis. Consid-
ering the graph of l 7→ E(

√
2γ2, l) and by analogy with the motion of a ball

in a basin, we could propose that the debonding length “falls” in the energy
well, i.e. at the point ℓm such that ∂E/∂l(

√
2γ2, ℓm) = 0 or in other words to

the point such that G = γ1N . The dynamic analysis will show that this is not
the good value, but that the right principle is the energy conservation: the
jump of the debonding is such that the total quasi-static energy just after the
jump remains equal to that just before the jump. Let us assume that this rule
holds. Then, the length debonding after the jump, ℓc, is such that ℓc > 1 and
E(
√

2γ2, 1) = E(
√

2γ2, ℓc). A direct calculation gives

ℓc =
γ2

γ1

> ℓm =

√

γ2

γ1

. (32)

After this jump, the debonding front will propagate in a medium with a
constant toughness and we can assume that the debonding evolution will follow
the quasi-static Griffith law again. Since ℓc > ℓm, the energy release rate just
after the jump is less than γ1N and the debonding length will remain at its
value ℓc as long as the opening T is not sufficiently large so that the energy

9
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!
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!m1 !c
!
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Fig. 3. The graph of the total energy as a function of the debonding length ℓ for a
given opening T in Case b. left: when T <

√
2γ2; right: when T =

√
2γ2 and the

value ℓc of the debonding length after the jump given by the energy conservation
principle.

release rate be equal to γ1N . That holds as long as T ≤ Tc with Tc given by

Tc =
2γ2√
2γ1

. (33)

Then, when T > Tc, the debonding restarts and the debonding length grows so
that the energy release rate remains equal to γ1N . Therefore, ℓ(T ) = T/

√
2γ1

for T > Tc.

To summarize this analysis of Case b, if we assume that the debonding evolu-
tion follows always Griffith’s law except during the unstable phase where the
jump is governed by the energy conservation principle, the graph of T 7→ ℓ(T )
should be that plotted in Figure 4,

ℓ(T ) =















T/
√

2γ2 if 0 ≤ T <
√

2γ2

γ2/γ1 if
√

2γ2 < T ≤ 2γ2/
√

2γ1

T/
√

2γ1 if T ≥ 2γ2/
√

2γ1

. (34)

The main goal of the paper is to justify this conjecture by solving the full
dynamic problem and by passing to the limit when the speed of loading goes
down to 0. We will also state a result of convergence for the energies. Their
values corresponding to the conjectured quasi-static solution are given by

P(T ) =















√
2γ2TNL/2 if T <

√
2γ2

T 2NL/2ℓc if
√

2γ2 < T ≤ Tc√
2γ1TNL/2 if T ≥ Tc

(35)

and

S(T ) =















√
2γ2TNL/2 if T <

√
2γ2

(2γ2 − γ1)NL if
√

2γ2 < T ≤ Tc
(

γ2 − γ1 +
√

2γ1T/2
)

NL if T ≥ Tc

. (36)
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!c1
!

!"""""""""
2!Γ2

Tc

T

Fig. 4. The quasi-static evolution of the debonding in Case b by using both Grif-
fith’s law for the continuous phases and the principle of energy conservation for the
jump.

Let us remark that their respective values just before and just after the jump
are given by

P−
(
√

2γ2

)

= γ2NL, P+
(
√

2γ2

)

= γ1NL, (37)

S−
(
√

2γ2

)

= γ2NL, S+
(
√

2γ2

)

= (2γ2 − γ1)NL. (38)

Of course, since the total energy is conserved, all the released potential energy
is so transformed into surface energy.

3 The dynamic analysis

3.1 The structure of the dynamic solution

The structure of the dynamic solution is the same for each case. The solution
contains a first phase of debonding evolution where the debonding front prop-
agates at a constant speed until it reaches the point x = 1 where the toughness
changes. That change of the toughness generates a backward (traveling) shock
wave as well as a change of the speed of debonding. The backward shock wave
is reflected at x = 0 and is transformed into a forward (traveling) shock wave.
Since the wave speed is necessarily greater than the speed of debonding, the
forward shock wave intersects the front of debonding. Then, the speed of
debonding changes again and the forward shock wave is transformed into a
backward shock wave. This second backward shock wave is reflected itself at
x = 0 into a forward shock wave, which in its turn will intersect the front of
debonding. Then, the speed of debonding changes, a backward shock wave is
generated and so on.

We seek for a solution for which the speed of debonding as well as the rota-
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Fig. 5. Structure of the dynamic solution and numbering of the sectors. Thick line:
debonding front; thin lines: backward and forward shock waves.

tion and the velocity fields are piecewise constant, i.e. constant in each sector
delimited by the backward shock wave, the forward shock wave and the front
of debonding, see Figure 5. Those sectors are denoted by {Qǫ

i}i∈N. The sec-
tor Qǫ

0 corresponds to the sector ahead of the front of debonding, i.e. where
ωǫ = vǫ = 0. The sector Qǫ

1 is delimited by the front of debonding before x = 1,
Γǫ

0, the backward shock wave generated at x = 1, Sǫ
1, and the boundary x = 0.

Then the index i of the sector is incremented at each reflection of the shock
wave. In the sector Qǫ

i , i ≥ 0, the (constant) values of (ωǫ, vǫ) are denoted
(ωǫ

i , v
ǫ
i ). Thus, ωǫ

0 = vǫ
0 = 0. The speed of debonding before x < 1, that is the

slope of the line segment Γǫ
0 separating Qǫ

0 and Qǫ
1, is denoted by ℓ̇ǫ

0 and the
associated dynamic energy release rate by Gǫ

0. The front of debonding reaches
x = 1 at T = T ǫ

1 . Once the debonding propagates in the part x > 1, the speed
of debonding and the energy release rate on the line segment Γǫ

i separating
Qǫ

0 and Qǫ
2i, i ≥ 1, are denoted by ℓ̇ǫ

i and Gǫ
i . The values of the opening when

the backward shock wave is reflected at x = 0 and is transformed into a for-
ward shock wave are denoted T ǫ

2i, i ≥ 1. The values of the opening when the
forward shock wave intersects the front of debonding and is transformed into
a backward shock wave are denoted T ǫ

2i−1, i ≥ 2. The associated position of
the debonding front is denoted ℓǫ

i .

We put T ǫ
0 = 0 and ℓǫ

1 = 1. The equation of the first front of propagation reads
as

Γǫ
0 : l = ℓ̇ǫ

0T, 0 < T < T ǫ
1 . (39)

The equations of backward shock wave Sǫ
2i−1 between Qǫ

2i−1 and Qǫ
2i, and of

the forward shock wave Sǫ
2i between Qǫ

2i and Qǫ
2i+1 can be written as

Sǫ
2i−1 : T = T ǫ

2i − ǫl, 0 < l < ℓǫ
i , Sǫ

2i : T = T ǫ
2i + ǫl, 0 < l < ℓǫ

i+1, (40)

whereas the equation of Γǫ
i , for i ≥ 1 reads as

Γǫ
i : l = ℓǫ

i + ℓ̇ǫ
i(T − T ǫ

2i−1), T ǫ
2i−1 ≤ T < T ǫ

2i+1. (41)
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Therefore

Sǫ =
⋃

i≥1

Sǫ
i , Γǫ =

⋃

i∈N

Γǫ
i (42)

and the T ǫ
i ’s are related to the ℓǫ

i ’s by

T ǫ
2i − T ǫ

2i−1 = ǫℓǫ
i , T ǫ

2i+1 − T ǫ
2i = ǫℓǫ

i+1, ∀i ≥ 1. (43)

Since the fields are piecewise constant, (9) is automatically satisfied in Q\
(

Sǫ∪
Γǫ
)

. It remains to find the sequences ωǫ
i , vǫ

i and ℓ̇ǫ
i for i ∈ N. The procedure

is the same in both cases and we use in this subsection the following notation
for the toughness

Gc(x) =







γ−N if x < 1

γ+N if x > 1
. (44)

Let us begin by the first phase of debonding. The boundary condition (8)1

gives vǫ
1 = 1 and (14) leads to ℓ̇ǫ

0ω
ǫ
1 = −1. Hence ℓ̇ǫ

0 6= 0 and, according to
(17)3, Gǫ

0 = γ−N . Using (16), we get ℓ̇ǫ2
0 = (2γ− + ǫ2)−1. Since ℓ̇ǫ

0 > 0 by virtue
of (17)1, we finally have

ℓ̇ǫ
0 =

1
√

2γ− + ǫ2
, ωǫ

1 = −
√

2γ− + ǫ2, vǫ
1 = 1. (45)

To find the debonding evolution in the part x > 1, we use the following
statement:

Proposition 3.1 Let i ≥ 1. In Qǫ
2i−1, vǫ

2i−1 = 1; let us assume that ωǫ
2i−1 and

ℓǫ
i are known. Then ωǫ

2i, vǫ
2i and ℓ̇ǫ

i are given by

ℓ̇ǫ
i =

1

ǫ

(

(ωǫ
2i−1 − ǫ)2 − 2γ+

)+

(ωǫ
2i−1 − ǫ)2 + 2γ+

, ωǫ
2i =

ωǫ
2i−1 − ǫ

1 + ǫℓ̇ǫ
i

, vǫ
2i = −ℓ̇ǫ

iω
ǫ
2i, (46)

the superscript + in the first relation denoting the positive part. Furthermore,
ωǫ

2i+1, vǫ
2i+1 and ℓǫ

i+1 are given by

ωǫ
2i+1 = 2ωǫ

2i − ωǫ
2i−1, vǫ

2i+1 = 1, ℓǫ
i+1 =

1 + ǫℓ̇ǫ
i

1 − ǫℓ̇ǫ
i

ℓǫ
i . (47)

Moreover the different energies are piecewise linear function of T . Their values
at T ǫ

i are given by
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Pǫ(T ǫ
2i−1) =

NL

2
ωǫ

2i−1
2ℓǫ

i , (48)

Kǫ(T ǫ
2i−1) =

ǫ2NL

2
ℓǫ
i , (49)

S(T ǫ
2i−1) =

(

γ− + γ+(ℓǫ
i − 1)

)

NL, (50)

Pǫ(T ǫ
2i) =

NL

2
ωǫ

2i
2(1 + ǫℓ̇ǫ

i)ℓ
ǫ
i , (51)

Kǫ(T ǫ
2i) =

ǫ2NL

2
vǫ

2i
2(1 + ǫℓ̇ǫ

i)ℓ
ǫ
i , (52)

S(T ǫ
2i) =

(

γ− + γ+

(

(1 + ǫℓ̇ǫ
i)ℓ

ǫ
i − 1

))

NL. (53)

Proof. Most of the above relations are direct consequences of the boundary
condition (8)1, the Hadamard compatibility conditions (12) and (14) or the
geometric properties (40), (41) and (43). In particular, (46)2 is obtained by
a simple combination of (12) and (14). The only part which needs a careful
analysis is the formula (46)1 for ℓ̇ǫ

i . Let us first use (14) and (16) to obtain

vǫ
2i = −ℓ̇ǫ

iω
ǫ
2i, Gǫ

i =
N

2

(

1 − ǫ2ℓ̇ǫ2
i

)

ωǫ
2i

2. (54)

According to (17), if Gǫ
i < γ+N then ℓ̇ǫ

i = 0. In such a case, because of (54),
|ωǫ

2i| <
√

2γ+. Otherwise, if Gǫ
i = γ+N , then, because of (54) again, we have

|ωǫ
2i| ≥

√

1 − ǫ2ℓ̇ǫ2
i |ωǫ

2i| =
√

2γ+.

Therefore, it is sufficient to compare |ωǫ
2i| to

√
2γ+ to determine whether the

debonding grows and find ℓ̇ǫ
i . But, according to (46)2, |ωǫ

2i| ≥
√

2γ+ is equiva-

lent to
∣

∣

∣ωǫ
2i−1

∣

∣

∣+ ǫ ≥ √
2γ+. Inserting the relationship (46)2 giving ωǫ

2i in terms

of ℓ̇ǫ
i and ωǫ

2i−1 into the equation Gǫ
i = γ+N , we finally obtain ℓ̇ǫ

i in terms of
ωǫ

2i−1.

The energies are piecewise linear functions of T because ωǫ, vǫ and ℓ̇ǫ are piece-
wise constant. By using their definition (19), (20) and (21), and by remarking
that ℓǫ(T ǫ

2i) = (1 + ǫℓ̇ǫ
i)ℓ

ǫ
i leads to (48)–(53). ✷

3.2 Case a

3.2.1 The dynamic solution

The speed of loading ǫ is assumed to be small enough to remove some par-
ticular cases. We can distinguish three phases in the debonding evolution, cf
Figure 6.
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T

Fig. 6. Case a : Dynamic solution with the three phases of the debonding propa-
gation for γ1 = 0.5, γ2 = 2. and ǫ = 0.075

3.2.1.1 Debonding in the zone with the lower toughness. In the
sector Qǫ

1, we can use (45) with γ− = γ1 to obtain

ℓ̇ǫ
0 =

1√
2γ1 + ǫ2

, ωǫ
1 = −

√

2γ1 + ǫ2, vǫ
1 = 1. (55)

The debonding front reaches x = 1 at T ǫ
1 given by

T ǫ
1 =

√

2γ1 + ǫ2. (56)

Then the debonding evolution is governed by Proposition 3.1 with γ+ = γ2.

3.2.1.2 Arrest at the change of toughness. For ǫ small enough, since
|ωǫ

1| + ǫ =
√

2γ1 + ǫ2 + ǫ <
√

2γ2, we deduce from (46) that ℓ̇ǫ
1 = 0. The

debonding stops at x = 1 in the interval (T ǫ
1 , T

ǫ
1 + 2ǫ) corresponding to the

first back and forth of the shock wave. Upon inserting into (46) and (47), we
deduce the values of the constants in Qǫ

2 andQǫ
3

ωǫ
2 = −

√

2γ1 + ǫ2 − ǫ, vǫ
2 = 0, ωǫ

3 = −
√

2γ1 + ǫ2 − 2ǫ, vǫ
3 = 1. (57)

Let us show that the debonding does not evolve during a certain number nǫ of
back and forth of the shock wave. Specifically, let us show by induction that,
if 1 ≤ i ≤ nǫ, with nǫ to be determined, then ℓ̇ǫ

i = 0 and

ωǫ
2i = −

√

2γ1 + ǫ2−(2i−1)ǫ, vǫ
2i = 0, ωǫ

2i+1 = −
√

2γ1 + ǫ2−2iǫ vǫ
2i+1 = 1.

(58)
That holds for i = 1. Let us assume that it is true until i − 1 ≥ 1 and let
us find under which condition that remains true for i. Using the induction
assumption, we have

∣

∣

∣ωǫ
2i−1

∣

∣

∣+ ǫ =
√

2γ1 + ǫ2 +(2i− 1)ǫ. Therefore, because of
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(46), if
√

2γ1 + ǫ2 + (2i− 1)ǫ ≤ √
2γ2, then ℓ̇ǫ

i = 0 and all the other properties
follow. Hence, (58) holds as long as i ≤ nǫ with

nǫ =
〈

1

2ǫ

(

√

2γ2 −
√

2γ1 + ǫ2 + ǫ
)〉

, (59)

〈·〉 denoting the integer part. In terms of the opening, this phase of arrest
corresponds to the interval (T ǫ

1 , T
ǫ
2nǫ+1) with

T ǫ
2nǫ+1 = T ǫ

1 + 2ǫnǫ. (60)

Let us note also that

T ǫ
i = −ωǫ

i =
√

2γ1 + ǫ2 + (i − 1)ǫ, 1 ≤ i ≤ 2nǫ + 1. (61)

3.2.1.3 Debonding in the zone with the higher toughness. At T =
T ǫ

2nǫ+1 the debonding restarts and propagates inside the zone where the tough-
ness is γ2. To find the solution, we use Proposition 3.1 and the following Lemma

Lemma 3.2 Let η and X0 be such that 0 < 1 − 2η < X0 < 1. Then the
sequence {Xi}i∈N defined by

1

Xi+1

= Xi + 2η (62)

remains always between 1 − 2η and 1, its generic element Xi is given by

1

Xi + η +
√

1 + η2
− 1

2
√

1 + η2

= (−1)i
(

√

1 + η2 − η
)2i

(

1

X0 + η +
√

1 + η2
− 1

2
√

1 + η2

)

(63)

and converges, with oscillations, to
√

1 + η2 − η.

Proof. Let us verify that the sequence remains between 1 − 2η and 1. By
assumption, it is true for X0. Let i ≥ 1. If Xi ∈ (1 − 2η, 1), then

1 >
1

Xi + 2η
= Xi+1 >

1

1 + 2η
> 1 − 2η,

thus Xi+1 ∈ (1 − 2η, 1). Let us establish (63). We first make the following
change of variable: Yi = Xi +

√
1 + η2 + η. That allows to change the former

sequence into

1

Yi+1

=
1√

1 + η2 + η
−
(√

1 + η2 − η
)2

Yi

,
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from which we easily deduce (63). Since
√

1 + η2 − η < 1, the term on the
right hand side of (63) tends to 0 when i grows to infinity and the result of
convergence follows. The oscillations around the limit are due to the change
of sign with i in that term. ✷

Let us set, for j ≥ 0,

Xǫ
j =

√
2γ2

∣

∣

∣ωǫ
2nǫ+1+2j

∣

∣

∣+ ǫ
, ηǫ =

ǫ√
2γ2

. (64)

By definition of nǫ, we have
√

2γ2 <
∣

∣

∣ωǫ
2nǫ+1

∣

∣

∣ + ǫ =
√

2γ1 + ǫ2 + (2nǫ + 1)ǫ ≤√
2γ2 + 2ǫ and hence, for ǫ small enough, 0 < 1− 2ηǫ < (1 + 2ηǫ)

−1 ≤ Xǫ
0 < 1.

Furthermore, since ℓ̇ǫ
nǫ+1 > 0, we get from (46) and (47), 1/Xǫ

1 = Xǫ
0 + 2ηǫ.

Since 0 < Xǫ
1 < 1, we have ℓ̇ǫ

nǫ+2 > 0 and we can iterate the procedure to
obtain (62). Hence, we can use Lemma 3.2. By (46), (47) and (63), we obtain
the debonding evolution for T ≥ T ǫ

2nǫ+1. In particular, ℓ̇ǫ
i can be read as

ǫℓ̇ǫ
i =

1 − (Xǫ
i−nǫ−1)

2

1 + (Xǫ
i−nǫ−1)

2 (65)

and we have the results of convergence

lim
i→∞

ℓ̇ǫ
i = ℓ̇ǫ

∞ :=
1√

2γ2 + ǫ2
, lim

i→∞
ωǫ

i = −
√

2γ2 + ǫ2,

setting that the speed of debonding and the rotation of the film tend to those
corresponding to the propagation in a homogeneous medium with toughness
γ2. The speed of debonding ℓ̇ǫ

i oscillates around that limit value and tends
exponentially to it (with i). That phenomenon of oscillation can be interpreted
as a boundary layer effect generated by the phase of propagation into the first
zone and the phase of arrest at the interface which modify the initial conditions
corresponding to the problem of propagation into a homogeneous medium.

3.2.2 Convergence to the quasi-static solution when ǫ → 0

When the speed of loading goes down to 0 we obtain the following expected
convergence result

Proposition 3.3 The dynamic solution T 7→ ℓǫ(T ) converges to the quasi-
static solution T 7→ ℓ(T ) given by (29), uniformly on any compact, see Fig-
ure 7. Moreover, the potential and surface energies converge also uniformly
on any compact to their quasi-static homologue given by (30)–(31), the kinetic
energy converges to 0.

Proof
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Step 1: Convergence of the first two phases.
We deduce from (55) and (56) that limǫ→0 ℓ̇ǫ

0 = 1/
√

2γ1 and limǫ→0 T ǫ
1 =

√
2γ1.

Furthermore, since (59) gives limǫ→0 2ǫnǫ =
√

2γ2−
√

2γ1, we also deduce from
(60) that limǫ→0 T ǫ

2nǫ+1 =
√

2γ2.

Step 2: Convergence of the third phase.
It is the most difficult part of the proof, because of the oscillations. We know
from Lemma 3.2 that ℓ̇ǫ

i oscillates around the limit speed (2γ2 + ǫ2)−1/2 and
converges to it when i → ∞. Let us define the mean value of the slope of the
debonding front during one oscillation, i.e.

pǫ
i :=

ℓǫ
i+2 − ℓǫ

i

T ǫ
2i+3 − T ǫ

2i−1

, i ≥ 1. (66)

Using (47), (62) and (65), we obtain after a tedious calculation

ℓ̇ǫ
∞ − pǫ

i =
2ℓ̇ǫ

∞

(

Xǫ
i−nǫ−1 + ηǫ −

√

1 + η2
ǫ

)2

(Xǫ
i−nǫ−1 + 2ηǫ)2 + (Xǫ

i−nǫ−1)
2 + 2

.

Since
∣

∣

∣Xǫ
i + ηǫ −

√

1 + η2
ǫ

∣

∣

∣ decreases as i increases, at given ǫ, (that quantity

tends to 0 when i → ∞,) it is less than
∣

∣

∣Xǫ
0 + ηǫ −

√

1 + η2
ǫ

∣

∣

∣ which is of the
order of ǫ. Therefore, denoting generically by C any positive constant inde-
pendent of ǫ and i, we have

0 ≤ ℓ̇ǫ
∞ − pǫ

i ≤ Cǫ2.

Furthermore, since 0 ≤ (2γ2)
−1/2 − ℓ̇ǫ

∞ ≤ Cǫ2 and
∣

∣

∣T ǫ
2nǫ−1 −

√
2γ2

∣

∣

∣ ≤ Cǫ, we

get |ℓǫ(T ) − ℓ(T )| ≤ CǫT for T ≥ √
2γ2.

1
!

T

QuasiStatic

Dynamic

Fig. 7. Case a : Comparison of the dynamic solution when ǫ = 0.075 with the
quasi-static solution for γ1 = 0.5, γ2 = 2.

Step 3: Convergence of the energies.
Since ℓǫ(T ) → ℓ(T ), we also have Sǫ(T ) → S(T ), uniformly on any compact.
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For the potential and the kinetic energies, we have for 1 ≤ i ≤ 2nǫ + 1:

Pǫ(T ǫ
i ) =

NL

2
(T ǫ

i )2, Kǫ(T ǫ
i ) =







ǫ2NL/2, if i odd

0, if i even
(67)

with T ǫ
i given by (61). Since T ǫ

1 → √
2γ1, since T ǫ

2nǫ+1 →
√

2γ2, since the T ǫ
i ’s

are equi-partitioned between T ǫ
1 and T ǫ

2nǫ+1 and since the energies are piecewise
linear, we obtain the uniform convergence of Pǫ to P given by (30)–(31) and
of Kǫ to 0, in the interval [0,

√
2γ2].

Since limǫ→0 Xǫ
j = 1 for all j ≥ 0 (with a uniform convergence with respect

to j), we obtain from (46), (64) and (65) that limǫ→0 ǫℓ̇ǫ
i = 0, limǫ→0 ǫvǫ

2i−1 =
limǫ→0 ǫvǫ

2i = 0 and limǫ→0 ωǫ
2i−1 = limǫ→0 ωǫ

2i =
√

2γ2, for all i ≥ nǫ + 1 (with
a uniform convergence with respect to i). Inserting that into (48) and (49),
we obtain the uniform convergence of Pǫ to P given by (30)–(31) and of Kǫ

to 0 for T ≥ √
2γ2. ✷

3.3 Case b

3.3.1 The dynamic solution

The speed of loading ǫ is assumed to be small enough to remove some par-
ticular cases. We can divide the debonding evolution into four phases, see
Figure 8.

1 !
2

Ε
!

T
1

Ε

T
2"nΕ#1

Ε

T

Fig. 8. Case b : Dynamic solution with the four phases of the debonding propagation
for γ1 = 0.5, γ2 = 2. and ǫ = 0.05
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3.3.1.1 Slow debonding in the zone with the lower toughness. In
the sector Qǫ

1, (45) gives

ℓ̇ǫ
0 =

1√
2γ2 + ǫ2

, ωǫ
1 = −

√

2γ2 + ǫ2, vǫ
1 = 1, T ǫ

1 =
√

2γ2 + ǫ2. (68)

For T > T ǫ
1 , the debonding evolution is governed by Proposition 3.1.

3.3.1.2 Rapid debonding in the zone with the higher toughness.

There is major difference between the two cases when the front of debonding
reaches the point x = 1 where the toughness changes. In Case a since the
toughness increases, the debonding stops. On the contrary, in Case b since
the toughness decreases, the debonding accelerates. Specifically, we deduce
from (46) that

ǫℓ̇ǫ
1 =

(
√

2γ2 + ǫ2 + ǫ)2 − 2γ1

(
√

2γ2 + ǫ2 + ǫ)2 + 2γ1

. (69)

Hence, ǫℓ̇ǫ
1 is less than 1 but of the order of 1, i.e. the debonding propagates at

a speed of the same order that the wave speed which remains an unreachable
limit speed. The first backward wave reaches x = 0 at T ǫ

2 = T ǫ
1 + ǫ. Then,

it is reflected and the generated forward shock wave intersects the front of
debonding at (ℓǫ

2, T
ǫ
3) given by

ℓǫ
2 =

1 + ǫℓ̇ǫ
1

1 − ǫℓ̇ǫ
1

, T ǫ
3 = T ǫ

1 +
2ǫ

1 − ǫℓ̇ǫ
1

. (70)

At T ǫ
1 and T ǫ

3 , the kinetic energy is of the order of ǫ2 while it is of the order
of 1 at T ǫ

2 . Specifically, we have

Kǫ(T ǫ
1) = ǫ2NL

2
, Kǫ(T ǫ

3) = ǫ2 1 + ǫℓ̇ǫ
1

1 − ǫℓ̇ǫ
1

NL

2
, (71)

Kǫ(T ǫ
2) =

(

ǫℓ̇ǫ
1

)2
(
√

2γ2 + ǫ2 + ǫ)2

1 + ǫℓ̇ǫ
1

NL

2
. (72)

3.3.1.3 Arrest at the point x = ℓǫ
2. At T = T ǫ

3 , the debonding stops.
Indeed, we have

|ωǫ
3| =

2γ1√
2γ2 + ǫ2 + ǫ

+ ǫ. (73)

Therefore, for ǫ small enough, since |ωǫ
3|+ ǫ <

√
2γ1, we deduce from (46) that

ℓ̇ǫ
2 = 0. Furthermore, by virtue of (46) and (47) we get

vǫ
4 = 0, ωǫ

4 = − 2γ1√
2γ2 + ǫ2 + ǫ

− 2ǫ, vǫ
5 = 1, ωǫ

5 = − 2γ1√
2γ2 + ǫ2 + ǫ

− 3ǫ.
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With the same procedure as in 3.2.1.2, using (46), we can show that

ℓ̇ǫ
i = 0, vǫ

2i = 0, vǫ
2i+1 = 1, 2 ≤ i ≤ nǫ (74)

and

ωǫ
i = − 2γ1√

2γ2 + ǫ2 + ǫ
− (i − 2)ǫ, 4 ≤ i ≤ 2nǫ + 1 (75)

with

nǫ =

〈

1

2ǫ

(

√

2γ1 −
2γ1√

2γ2 + ǫ2 + ǫ
+ 2ǫ

)

〉

. (76)

In terms of T , the debonding does not evolve in the interval (T ǫ
3 , T

ǫ
2nǫ+1) with

T ǫ
2nǫ+1 = T ǫ

3 + 2ǫnǫℓǫ
2. (77)

3.3.1.4 Slow debonding in the zone with the higher toughness.

At T = T ǫ
2nǫ+1 the debonding restarts. Indeed, for j ≥ 0 let us put

Xǫ
j =

√
2γ1

∣

∣

∣ωǫ
2nǫ+1+2j

∣

∣

∣+ ǫ
, ηǫ =

ǫ√
2γ1

. (78)

By definition of nǫ, we have
√

2γ1 <
∣

∣

∣ωǫ
2nǫ+1

∣

∣

∣ + ǫ ≤ √
2γ1 + 2ǫ and hence, for

ǫ small enough, 0 < 1 − 2ηǫ < (1 + 2ηǫ)
−1 ≤ Xǫ

0 < 1. Furthermore, since
ℓ̇ǫ
nǫ+1 > 0, we get from (46) and (47), 1/Xǫ

1 = Xǫ
0 + 2ηǫ. Since 0 < Xǫ

1 < 1, we

have ℓ̇ǫ
nǫ+2 > 0 and by induction we obtain 1/Xǫ

j+1 = Xǫ
j + 2ηǫ. We can use

Lemma 3.2. Owing to (46), (47) and (63), we obtain the debonding evolution
for T ≥ T ǫ

2nǫ+1. In particular, for i ≥ nǫ + 1, ℓ̇ǫ
i can be read as

ǫℓ̇ǫ
i =

1 − (Xǫ
i−nǫ−1)

2

1 + (Xǫ
i−nǫ−1)

2 (79)

and we get the convergence result

lim
i→∞

ℓ̇ǫ
i = ℓ̇ǫ

∞ ≡ 1√
2γ1 + ǫ2

.

The speed of debonding ℓ̇ǫ
i oscillates around this limit value and tends expo-

nentially to it (with respect to i).

3.3.2 Convergence to the quasi-static solution when ǫ → 0

We pass to the limit when ǫ goes down to 0 and compare the limits of the
dynamic solution to that of the conjectured quasi-static response given by
(34).
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Fig. 9. Case b : Comparison of the dynamic solution when ǫ = 0.05 with the
quasi-static solution for γ1 = 0.5, γ2 = 2.

3.3.2.1 Convergence of the first phase. We deduce from (68) that
limǫ→0 ℓ̇ǫ

0 = 1/
√

2γ2 and limǫ→0 T ǫ
1 =

√
2γ2. Hence, the convergence to the

corresponding quasi-static first phase. Let us note that the kinetic energy
converges to 0 like ǫ2.

3.3.2.2 Convergence of the second phase to the predicted jump.

Let us remark first that

lim
ǫ→0

ǫℓ̇ǫ
1 =

γ2 − γ1

γ2 + γ1

, (80)

then that
lim
ǫ→0

T ǫ
1 = lim

ǫ→0
T ǫ

3 =
√

2γ2, lim
ǫ→0

ℓǫ
2 =

γ2

γ1

. (81)

Therefore, the second phase tends to the jump of the debonding length from
ℓ = 1 to ℓ = ℓc at T =

√
2γ2 as in (34). This convergence result can be

interpreted in terms of the energies. Thus, at T ǫ
1 , T ǫ

2 and T ǫ
3 , the kinetic energy

takes the values

Kǫ(T
ǫ
1) = ǫ2NL

2
, Kǫ(T

ǫ
3) = ǫ2 1 + ǫℓ̇ǫ

1

1 − ǫℓ̇ǫ
1

NL

2

and

Kǫ(T
ǫ
2) =

(

ǫℓ̇ǫ
1

)2
(
√

2γ2 + ǫ2 + ǫ)2

1 + ǫℓ̇ǫ
1

NL

2
.

Therefore, at the limit

lim
ǫ→0

Kǫ(T
ǫ
1) = lim

ǫ→0
Kǫ(T

ǫ
3) = 0, lim

ǫ→0
Kǫ(T

ǫ
2) =

(γ2 − γ1)
2

γ2 + γ1

NL

2
. (82)

For the surface energy, we have

Sǫ(T
ǫ
1) = γ2NL, Sǫ(T

ǫ
3) =

(

γ2 +
2ǫℓ̇ǫ

1

1 − ǫℓ̇ǫ
1

γ1

)

NL (83)
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and at the limit
lim
ǫ→0

Sǫ(T
ǫ
3) = (2γ2 − γ1)NL. (84)

The potential energy takes the following values

Pǫ(T
ǫ
1) = (2γ2 + ǫ2)

NL

2
, (85)

Pǫ(T
ǫ
3) =

(

1 − ǫℓ̇ǫ
1

1 + ǫℓ̇ǫ
1

(

√

2γ2 + ǫ2 + ǫ
)

+ ǫ

)2
1 + ǫℓ̇ǫ

1

1 − ǫℓ̇ǫ
1

NL

2
(86)

and at the limit

lim
ǫ→0

Pǫ(T
ǫ
1) = γ2NL, lim

ǫ→0
Pǫ(T

ǫ
3) = γ1NL. (87)

While comparing to (37) and (38), we see that the limits of the initial values

T
Ε

2
T

!Ε!TΕ
2"

!

Fig. 10. Evolution of the kinetic energy with T when γ1 = 0.5, γ2 = 2. and ǫ = 0.05.

and of the final values are those of the quasi-static response, because the
kinetic energy is then negligible. However, the kinetic energy is not always
negligible during this phase because it takes a finite limit at T ǫ

2 . Specifically,
let us examine the evolution of the kinetic energy. It is negligible during the
first phase. Then, it grows rapidly during the propagation of the first backward
shock wave to become maximal when that wave is reflected at x=0. But the
kinetic energy decreases rapidly during the propagation of the first forward
shock wave to become negligible again when that wave intersects the front of
debonding, see Figure 10. During this come back of the wave, all the kinetic
energy is transformed into surface energy. Finally, the jump of the debonding
satisfies the principle of conservation of the quasi-static energy.

3.3.2.3 Convergence of the phase of arrest. Passing to the limit in
(76) and (77) we get

lim
ǫ→0

T ǫ
2nǫ+1 =

2γ2√
2γ1

= Tc. (88)
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Hence, the phase arrest converges to that of the quasi-static solution. Since vǫ
i

oscillates between 0 and 1 during that phase, the kinetic energy converges to
0 as ǫ2. We easily deduce that the other energies converge to their quasi-static
homologue.

3.3.2.4 Convergence of the last phase. The proof that the dynamic
last phase (where the debonding restarts and propagates with a oscillating
speed) converges to the quasi-static last phase is quite similar to that given
in Case a, see Step 2 of Proposition 3.3. During this phase the kinetic energy
remains of the order of ǫ2 and all the energies converge to their quasi-static
homologue. We can summarize the convergence result obtained in Case b by

Proposition 3.4 When the speed of loading ǫ goes down to 0, the dynamic
solution of Case b converges to the extended quasi-static solution (34). Thus
the evolution is given by the quasi-static Griffith’s law during the first, third
and fourth phases where the debonding evolution is continuous, but the sec-
ond phase leads to a jump of the debonding which satisfies the principle of
conservation of the total quasi-static energy. The role of the kinetic energy
is transitory. It takes finite values only during the first back and forth of the
shock waves, being negligible before and after the jump.

4 Conclusion

We can learn two major lessons from this model problem of dynamic fracture:

(1) Contrary to what is generally claimed, we can treat the phase of rapid
propagation by considering only quasi-static quantities, because the ki-
netic energy plays only a transitory role.

(2) The right criterion giving the value of the crack jump is not Griffith’s cri-
terion formulated in terms of the energy release rate but the conservation
of the total energy.

Of course, it remains to generalize those results to two- or three-dimensional
heterogeneous bodies. In particular, by considering layered composite materi-
als we could obtain their effective toughness.
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A Definition of the dynamic potential energy release rate

Let us consider a two-dimensional homogeneous elastic medium in which a
crack propagates in the direction 1. In dynamics, the potential energy release
rate G can be defined by the limit of an integral over a path which tends to
the tip of the crack. Let Γr be a such path — for instance a circle of radius r
and of center the tip of the crack — G can be read as (cf [12])

G = lim
r→0

∫

Γr

(

(

ρ

2
u̇iu̇i + W (ε(u))

)

n1 − σijnj
∂ui

∂x1

)

ds, (A.1)

where ρ is the mass density of the material, u̇ the velocity vector field, u the
displacement vector field, ε(u) the strain tensor field, W the elastic potential,
σ the stress tensor field and n the output unit normal to the path. The dy-
namic energy release rate differs from its static homologue by the first term
corresponding to the kinetic energy.

This relationship of G can be used for the peeling test as follows. Let ℓ be
the position of the debonding tip. The path Γr corresponds to the points
{ℓ−r, ℓ+r}, the normal to the path at ℓ±r is equal to ±1, all the indices take
the value 1, the displacement u corresponds to the opening w and the strain
reads as ε = w′. Assuming that the elastic potential is quadratic, W (w′) =
Nw′2/2, the stress becomes σ = Nw′ and the dynamic energy release rate
reads as

G =
ρ

2

(

ẇ(ℓ+)2 − ẇ(ℓ−)2
)

− N

2

(

w′(ℓ+)2 − w′(ℓ−)2
)

, (A.2)

where the dot denotes the time derivative and the prime the spatial derivative.
Furthermore, if we assume that the debonding grows in the direction 1 and
if the front of debonding is oriented in the space-time so that the + side
corresponds to the points after the passage of the tip debonding, we get

G =
N

2
[[w′2]] − ρ

2
[[ẇ2]], (A.3)

remaining that the double brackets denote the jump.
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