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THE INCOMPRESSIBLE EULER LIMIT

OF THE BOLTZMANN EQUATION

WITH ACCOMMODATION BOUNDARY CONDITION

CLAUDE BARDOS, FRANÇOIS GOLSE, AND LIONEL PAILLARD

Abstract. The convergence of solutions of the Navier-Stokes equa-
tions set in a domain with boundary to solutions of the Euler equa-
tions in the large Reynolds number limit is a challenging open prob-
lem both in 2 and 3 space dimensions. In particular it is distinct
from the question of existence in the large of a smooth solution of
the initial-boundary value problem for the Euler equations. The
present paper proposes three results in that direction. First, if
the solutions of the Navier-Stokes equations satisfy a slip bound-
ary condition with vanishing slip coefficient in the large Reynolds
number limit, we show by an energy method that they converge
to the classical solution of the Euler equations on its time interval
of existence. Next we show that the incompressible Navier-Stokes
limit of the Boltzmann equation with Maxwell’s accommodation
condition at the boundary is governed by the Navier-Stokes equa-
tions with slip boundary condition, and we express the slip coeffi-
cient at the fluid level in terms of the accommodation parameter
at the kinetic level. This second result is formal, in the style of
[Bardos-Golse-Levermore, J. Stat. Phys. 63 (1991), 323–344]. Fi-
nally, we establish the incompressible Euler limit of the Boltzmann
equation set in a domain with boundary with Maxwell’s accommo-
dation condition assuming that the accommodation parameter is
small enough in terms of the Knudsen number. Our proof uses
the relative entropy method following closely [L. Saint-Raymond,
Arch. Ration. Mech. Anal. 166 (2003), 47–80] in the case of
the 3-torus, except for the boundary terms, which require special
treatment.

To C. David Levermore
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1. Introduction

In a program initiated more than 20 years ago with Dave Lever-
more [3, 4, 5], we outlined a strategy for deriving incompressible fluid
dynamic equations from the theory of renormalized solutions of the
Boltzmann equation invented by R. DiPerna and P.-L. Lions [12].
At the time of this writing, complete derivations of the Stokes [24,

25], Stokes-Fourier [14] and Navier-Stokes-Fourier [15, 16, 20] have been
obtained following that program, in the greatest possible generality
allowed by the current existence theories for both the fluid dynamic
and the Boltzmann equations: see [36] for a survey of these issues.
The case of the incompressible Euler equations in space dimension 3

stands out, in the first place because there does not exist a satisfactory
theory of global weak solutions of these equations analogous to Leray’s
theory of weak solutions of the Navier-Stokes equations [21] in space di-
mension 3. Even if there was a global existence theory of weak solutions
of the incompressible Euler equations in the energy space L∞

t (L2
x) in

dimension 3, such solutions would not satisfy the weak-strong unique-
ness property observed by Leray in the case of the Navier-Stokes equa-
tions. (Indeed there exist nontrivial compactly supported solutions of
the incompressible Euler equations in energy space: see [32, 33, 11].)
In [23], P.-L. Lions proposed a notion of dissipative solution of the
incompressible Euler equations — in the same spirit of his definition
of the notion of viscosity solutions of Hamilton-Jacobi equations, but
using the conservation of energy instead of the maximum principle as
in the Hamilton-Jacobi case. The weak-strong uniqueness property is
verified by dissipative solutions of the incompressible Euler equations
(essentially by definition): if there exists a classical (C1) solution of
the incompressible Euler equations, all dissipative solutions with the
same initial data must coincide with this classical solution on its maxi-
mal time interval of existence. Unfortunately, dissipative solutions are
not known to satisfy the incompressible Euler equations in the sense of
distributions.
Using the relative entropy method pioneered in [38] and adapted

to the case of the Boltzmann equation in [10, 25], L. Saint-Raymond
[28, 29] succeeded in deriving dissipative solutions of the Euler equa-
tions in arbitrary space dimension (or classical solutions whenever they
exist) from weak solutions of the BGK model [28] or from renormalized
solutions of the Boltzmann equation [29].
However, all the derivations of fluid dynamic equations from the

Boltzmann equation referred to above are carried out in either the
Euclidian space RN of the flat torus TN so as to avoid difficulties
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that may result from boundary conditions. The theory of renormalized
solutions of the Boltzmann equation in the presence of accommodation
boundary conditions was obtained only very recently, by S. Mischler
[27]; subsequently, N. Masmoudi and L. Saint-Raymond established the
Stokes-Fourier limit of such solutions [26].
In the present paper, we derive dissipative solutions (or classical

solutions whenever they exist) of the incompressible Euler equations
from renormalized solutions of the Boltzmann equation in some spatial
domain satisfying Maxwell’s accommodation boundary condition. In
particular, we identify a sufficient scaling condition on the accommo-
dation parameter under which the hydrodynamic limit of the family of
solutions of the Boltzmann equation is governed by the incompressible
Euler equation with its classical boundary condition — i.e. assuming
that the velocity field is tangent at the boundary.
The outline of the paper is as follows. Section 2 gives a sufficient

condition on the slip coefficient at the boundary under which the in-
compressible Euler equations are obtained as the inviscid limit of the
incompressible Navier-Stokes equations with slip-boundary condition.
The main result in this section is Theorem 2.2, based on an energy
method. Section 3 provides a formal derivation of the incompress-
ible Navier-Stokes equations with slip boundary condition from the
Boltzmann equation with Maxwell’s accommodation condition at the
boundary of the spatial domain: see Theorem 3.1 for a precise state-
ment of this result. Based on the intuition provided by sections 2 and
3, we identify a scaling limit of the Boltzmann equation with Maxwell
accommodation boundary condition leading to the incompressible Eu-
ler equations: see Theorem 4.2, whose proof occupies most of section
4.
It is a our great pleasure to offer this modest contribution to our

friend Dave Levermore, in recognition of his outstanding influence on
the analysis of nonlinear partial differential equations in the past 30
years, especially on the problem of hydrodynamic limits of the Boltz-
mann equation, directly inspired from Hilbert’s 6th problem on the
axiomatization of physics.

2. Inviscid Limit of the Navier-Stokes Equations

with Slip Boundary Conditions

A a warm-up, we begin with a simple observation bearing on the
inviscid limit of the incompressible Navier-Stokes equations set in some
smooth domain with slip boundary condition. In particular, we identify
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a sufficient scaling condition on the slip coefficient in order to obtain
the incompressible Euler equations in the inviscid limit.
Let Ω designate an open set in RN with C1 boundary ∂Ω, assuming

that N = 2 or 3; henceforth the outward unit normal vector at the
point x of ∂Ω is denoted by nx. Consider the initial-boundary value
problem with unknown uν = uν(t, x), set for x ∈ Ω and t ≥ 0:

(1)































divx uν = 0 ,

∂tuν + divx(uν ⊗ uν) +∇xpν = ν∆xuν ,

uν · n
∣

∣

∂Ω
= 0 ,

ν(Σ(uν) · n)τ + λuν
∣

∣

∂Ω
= 0 ,

uν
∣

∣

t=0
= uin ,

where ν > 0 is the kinematic viscosity, λ > 0 the slip coefficient,
Σ(u) := ∇xu+ (∇xu)

T , while

v(x)τ := (I − n(x)⊗2) · v(x) .
Henceforth, we denote

H(Ω) := {v ∈ L2(Ω;RN) | div v = 0 and v · n
∣

∣

∂Ω
= 0} .

For each ν > 0 and uin ∈ H(Ω), there exists a weak solution uν of (1)
in L∞(R+;H(Ω))∩L2(R+;H

1(Ω)), meaning that, for each test vector
field U ∈ C(R+;H(Ω)) ∩ C∞

c (R+ × Ω), one has
(2)

ν

∫ ∞

0

∫

Ω

1
2
Σ(uν) : Σ(U)dxdt + λ

∫ ∞

0

∫

∂Ω

uν · UdS(x)dt

=

∫ ∞

0

∫

Ω

(uν · ∂tU + uν ⊗ uν : ∇xU)dxdt +

∫

Ω

uin(x) · U(0, x)dx ,

and satisfying in addition uν ∈ C(R+;w − L2(Ω)), together with the
Leray-type energy dissipation inequality:

(3)

∫

Ω

1
2
|uν(t, x)|2dx+ ν

∫ t

0

∫

Ω

|Σ(uν)(t, x)|2dxdt

+ λ

∫ t

0

∫

∂Ω

|uν(t, x)|2dS(x)dt ≤
∫

Ω

1
2
|uin(x)|2dx

for each t ≥ 0. Such a weak solution of (1) will henceforth be referred
to as a “Leray solution of (1)”. The classical theory of Leray solutions
that is well known in the case where the velocity field satisfies the
Dirichlet boundary condition on ∂Ω can be adapted to the case of the
slip-boundary condition: see [34, 7], and Theorem 2 in [18].
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Since uν ∈ C(R+;w − L2(Ω)), by an elementary density argument,
one can choose a sequence of test vector fields Un of the special form
Un(t, x) = χn(T − t)w(t, x) where w ∈ C(R+;H(Ω))∩C1

c (R+×Ω) and

χn(z) =

∫ z

−∞
χn(s)ds

where χ′
n is a regularizing sequence on R, so that the weak formulation

(2) of the Navier-Stokes equations becomes

ν

∫ T

0

∫

Ω

1
2
Σ(uν) : Σ(w)dxdt+ λ

∫ T

0

∫

∂Ω

uν · wdS(x)dt

=

∫

Ω

uin(x) · w(0, x)dx−
∫

Ω

uν(T, x)w(T, x)dx

+

∫ T

0

∫

Ω

(uν · ∂tw + uν ⊗ uν : ∇xw)dxdt ,

for each T > 0. Furthermore, denoting

E(w) := ∂tw + w · ∇xw ,

one has
∫ T

0

∫

Ω

uν · ∂twdxdt =
∫ T

0

∫

Ω

(uν · E(w)− uν ⊗ w · ∇xw)dxdt

while

(4)

∫ T

0

1
2
|w(t, x)|2dx−

∫ T

0

1
2
|w(0, x)|2dx+

∫ T

0

∫

Ω

w ⊗ w : ∇xwdxdt

=

∫ T

0

∫

Ω

w · E(w)dxdt .

Therefore

(5)

ν

∫ T

0

∫

Ω

1
2
Σ(uν) : Σ(w)dxdt+ λ

∫ T

0

∫

∂Ω

uν · wdS(x)dt

=

∫ T

0

∫

Ω

(uν · E(w) + uν ⊗ (uν − w) : ∇xw − w ⊗ uν : ∇xw)dxdt

+

∫

Ω

uin(x) · U(0, x)dx−
∫

Ω

uν(T, x)w(T, x)dx ,

since
∫

Ω

w ⊗ uν : ∇xwdx =

∫

Ω

divx(uν
1
2
|w|2)dx = 0 ,
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because uν · n
∣

∣

∂Ω
= 0. Combining (5) and (4), we find that

(6)

ν

∫ T

0

∫

Ω

1
2
Σ(uν) : Σ(w)dxdt+ λ

∫ T

0

∫

∂Ω

uν · wdS(x)dt

=

∫ T

0

∫

Ω

((uν − w) · E(w) + (uν − w)⊗ (uν − w) : ∇xw)dxdt

+

∫

Ω

uin(x) · w(0, x)dx−
∫

Ω

1
2
|w(0, x)|2dx

−
∫

Ω

uν(T, x)w(T, x)dx+

∫

Ω

1
2
|w(T, x)|2dx

Finally, combining (3) and (6), we conclude that any Leray solution uν
of (1) satisfies the inequality

(7)

∫

Ω

1
2
|uν − w|2(t, x)dx+

∫ t

0

∫

Ω

(uν − w)⊗ (uν − w) : ∇xwdxds

+ν

∫ t

0

∫

Ω

1
2
|Σ(uν)(s, x)|2dxds+ λ

∫ t

0

∫

∂Ω

|uν(s, x)|2dS(x)ds

≤
∫

Ω

1
2
|uin(x)− w(0, x)|2dx+

∫ t

0

∫

Ω

E(w) · (uν − w)dxdt

+ν

∫ t

0

∫

Ω

1
2
Σ(uν) : Σ(w)dxds+ λ

∫ t

0

∫

∂Ω

uν · wdS(x)ds

for each w ∈ C(R+;H(Ω)) ∩ C1
c (R+ × Ω).

At this point we recall the definition of dissipative solutions of the
incompressible Euler equations set in a domain Ω with smooth bound-
ary:

(8)























divx u = 0 ,

∂tu+ divx(u⊗ u) +∇xp = 0 ,

u · n
∣

∣

∂Ω
= 0 ,

u
∣

∣

t=0
= uin .

Definition 2.1 (P.-L. Lions [23], p. 154, C. Bardos, E. Titi [6], p.
16). Given uin ∈ H(Ω), a dissipative solution of (8) is an element
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u ∈ C(R+;w −H(Ω)) satisfying u
∣

∣

t=0
= uin and the inequality

∫

Ω

1
2
|u− w|2(t, x)dx

≤ exp

(
∫ t

0

2‖σ(w)−‖L∞(Ω)(s)ds

)
∫

Ω

1
2
|uin(x)− w(0, x)|2dx

+

∫ t

0

exp

(
∫ t

s

2‖σ(w)−‖L∞(Ω)(τ)dτ

)
∫

Ω

E(w) · (u− w)(s, x)dxds

for each w ∈ C(R+;H(Ω)) ∩ C1(R+ × Ω), where

(9) σ(w)−(t, x) := sup
|ξ|=1

(−Σ(w)(t, x) : ξ ⊗ ξ) .

We recall that, if the Euler equations (8) have a classical solution
v ∈ C1([0, T ∗)× Ω) satisfying

σ(v)− ∈ L1([0, T ];L∞(Ω)) and p ∈ L1([0, T ];H1(Ω)) for each T < T ∗ ,

then all dissipative solutions of (8) must coincide with v on [0, T ∗)×Ω
a.e., since one can use w = v as the test vector field, so that

∫

Ω

E(v) · (u− v)(s, x)dx = −
∫

Ω

∇xp · (u− v)(s, x)dx = 0

because (u− v)(s, ·) ∈ H(Ω) for each s ∈ [0, T ).

Theorem 2.2. Let uin ∈ H(Ω), and assume that the slip coefficient
λ ≡ λ(ν) in (1) scales with the kinematic viscosity ν so that

(10) λ(ν) → 0 as ν → 0 .

Then any family (uν) of Leray solutions of (1) is relatively compact in
the weak-* topology of L∞(R+;H(Ω)) and in C(R+;w−H(Ω)) for the
topology of uniform convergence on bounded time intervals, and each
limit point of (uν) as ν → 0 is a dissipative solution of (8).

Proof. We deduce from (7) with w = 0, or equivalently from the Leray
energy inequality that

(11)

√
νΣ(uν) is bounded in L2(R+;L

2(Ω)) , and
√

λ(ν)uν
∣

∣

∂Ω
is bounded in L2(R+;L

2(∂Ω)) .
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By Gronwall’s inequality
(12)
∫

Ω

1
2
|uν − w|2(t, x)dx

≤ exp

(
∫ t

0

2‖σ(w)−‖L∞(Ω)(s)ds

)
∫

Ω

1
2
|uin(x)− w(0, x)|2dx

+

∫ t

0

exp

(
∫ t

s

2‖σ(w)−‖L∞(Ω)(τ)dτ

)
∫

Ω

E(w) · (uν − w)(s, x)dxds

+

∫ t

0

exp

(
∫ t

s

2‖σ(w)−‖L∞(Ω)(τ)dτ

)

Qν(s)ds

where, by the Cauchy-Schwarz inequality

Qν(s) = ν‖Σ(uν)‖L2(Ω)(s)‖Σ(w)‖L2(Ω)(s)

+ λ(ν)‖uν‖L2(∂Ω)(s)‖w‖L2(Ω)(s) .

In view of (11), one has

‖Qν‖L1([0,T ]) = O(
√
ν) +O(

√

λ(ν)) → 0

as ν → 0, and we conclude by passing to the limit in (12) following the
same argument as in [23]. �

Several remarks are in order after this result.
In some references, the slip boundary condition is written

(13) ν

(

∂uν
∂n

)

τ

+ λu
∣

∣

∂Ω
= 0 ,

instead of

(14) ν(Σ(uν) · n)τ + λu
∣

∣

∂Ω
= 0 .

Likewise, the boundary condition

curl uν × n
∣

∣

∂Ω
= 0

is also considered by some authors — and referred to as the Navier slip
condition — in the context of the inviscid limit of the Navier-Stokes
equations: see for instance [22, 2, 7, 9].
If ∂Ω is a straight line, or a plane, or a hyperplane in space dimension

N > 3, the normal vector field n is constant, so that

(Σ(uν) · n)τ
∣

∣

∂Ω
=

(

∂uν
∂n

)

τ

∣

∣

∂Ω
+∇τ (u · n

∣

∣

∂Ω
) =

(

∂uν
∂n

)

τ

∣

∣

∂Ω
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and

curl uν × n
∣

∣

∂Ω
= (∇xuν − (∇xu)

T ) · n
∣

∣

∂Ω

=

(

∂uν
∂n

)

τ

∣

∣

∂Ω
−∇t(u · n

∣

∣

∂Ω
) =

(

∂uν
∂n

)

τ

∣

∣

∂Ω

(with ∇τ denoting the tangential component of the ∇ operator), since
the velocity field uν is tangential on ∂Ω. Therefore, in the case of a flat
boundary, all these boundary conditions are equivalent.
If ∂Ω is a smooth curve, or a surface or a hypersurface in space

dimension N > 3, then

(Σ(uν) · n)τ
∣

∣

∂Ω
=

(

∂uν
∂n

)

τ

−∇tn · uτ
∣

∣

∂Ω

while

curl uν × n
∣

∣

∂Ω
=

(

∂uν
∂n

)

τ

+∇τn · uτ
∣

∣

∂Ω
,

so that all these boundary conditions differ by a 0-order operator given
by the Weingarten endomorphism of the boundary ∂Ω.
Here, we have chosen the second boundary condition above, as it is

the more natural one when looking at the Navier-Stokes equation as a
fluid dynamic limit of the kinetic theory of gases.
However, the same argument as in the proof of Theorem 2.2 can be

extended to treat the case of a slip coefficient λ which is not nonnega-
tive, provided that

λ(ν)+ = max(λ(ν), 0) → 0 and λ−(ν) = max(−λ(ν), 0) = O(ν)

as ν → 0. Indeed, the contribution of λ(ν)− in the estimate (7) can
be absorbed in the viscous dissipation term by means of the following
classical inequality: for each α > 0, there exists Cα > 0 such that, for
each v ∈ H1(Ω),

∫

∂Ω

|v(x)|2dS(x) ≤ α

∫

Ω

|∇xv(x)|2dx+
Cα

α

∫

Ω

|v(x)|2dx .

With this observation, the term

(Σ(uν) · n)τ
∣

∣

∂Ω

can be replaced indifferently with either
(

∂uν
∂n

)

τ

∣

∣

∂Ω
or curl uν × n

∣

∣

∂Ω

in the slip boundary condition.
More precise variants of Theorem 2.2 have been established by var-

ious authors, see for instance [37, 8]. The result given here holds for
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a very general class of nonnegative slip boundary coefficients λ and is
based upon the simplest imaginable energy estimate. The condition
λ ≥ 0 in (1) is somehow natural when this initial-boundary value prob-
lem is considered as some scaling limit of the Boltzmann equation of
the kinetic theory of gases.
Another question is whether the condition λ(ν) → 0 as ν → 0 is

optimal. Considers instead the Dirichlet boundary condition for uν,
i.e.

uν
∣

∣

∂Ω
= 0 .

Formally, this boundary condition corresponds with any one of the slip
boundary conditions above with

lim
ν→0

λ(ν) > 0 .

In that case, it well known that the Euler equations (8) may fail to
describe the inviscid limit of the Navier-Stokes equations, even in the
simpler 2 dimensional case. Because the Dirichlet boundary condi-
tion overdetermines the velocity field in the inviscid limit, the Euler
equations (8) are expected to govern the inviscid limit of the Navier-
Stokes equations only if the effect of viscosity remains confined on a
thin layer near the boundary. But it may happen — and does happen
under certain circumstances — that the viscous layer detaches from
the boundary, as for instance in the case of the so-called von Karman
vortex streets in the case of a Navier-Stokes flow past a cylinder, even
at moderate Reynolds numbers. While this situation seems beyond
the grasp of current mathematical analysis, there exists a least a very
interesting criterion due to T. Kato [19], formulated in terms of the
viscous energy dissipation only, identifying situations where the invis-
cid limit of the incompressible Navier-Stokes equations with Dirichlet
boundary condition is described by the Euler equations. This suggests
that, unless λ(ν) → 0, the Euler equations (8) might also fail to govern
the inviscid limit of the Navier-Stokes equations with slip boundary
conditions (1).

3. From the Boltzmann Equation with Accomodation

Boundary Condition to the Navier-Stokes Equations

with Slip Boundary Conditions

In this section, we revisit the incompressible Navier-Stokes limit for
the Boltzmann equation in the case of the initial-boundary value prob-
lem. Our main interest is to understand how the slip boundary condi-
tion arises from Maxwell’s accommodation boundary condition at the
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kinetic level in the fluid dynamic limit, and especially how the slip co-
efficient is related to the accommodation parameter. Strictly speaking,
this is not needed in the proof of the main result in the present paper.
Therefore, the discussion in this section will be only formal, along the
line of [4].
Consider the Boltzmann equation with the incompressible Navier-

Stokes scaling

(15) ǫ∂tFǫ + v · ∇xFǫ =
1

ǫ
B(Fǫ, Fǫ) .

Here the unknown is the distribution function F ≡ F (t, x, v) that is
the density at time t of molecules with velocity v ∈ RN at the position
x ∈ Ω with respect to the phase space Lebesgue measure dxdv.

3.1. Formal structure of the Boltzmann equation. The Boltz-
mann collision integral acts only on the v variable in Fǫ, keeping t, x
as parameters. Its expression for φ ∈ Cc(R

N) is
(16)

B(φ, φ)(v) =
∫∫

RN×SN−1

(φ(v′)φ(v′∗)− φ(v)φ(v∗))b(v − v∗, ω)dv∗dω

where v′, v′∗ ∈ RN are the velocities of 2 identical particles about to
undergo an elastic collision, assuming that their post-collision velocities
are v, v∗ ∈ RN . The set of all possible pre-collision velocities v′, v′∗ are
parametrized by the unit vector ω as follows:

(17)

{

v′ ≡ v′(v, v∗, ω) := v − (v − v∗) · ωω ,
v′∗ ≡ v′∗(v, v∗, ω) := v∗+(v − v∗) · ωω .

The collision kernel b(z, ω) > 0 is a locally integrable function that
satisfies the symmetries

(18) b(v − v∗, ω) = b(v∗ − v, ω) = b(v′ − v′∗, ω)

a.e. in (v, v∗, ω), assuming that v′ and v′∗ are given in terms of v, v∗, ω
by the relations (17). Depending on the growth of the collision kernel b
as |v− v∗| → +∞, the collision integral can be extended by continuity
to larger classes of functions than Cc(R

N). Finally, we denote

B(F, F )(t, x, v) := B(F (t, x, ·), F (t, x, ·))(v) .
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The collision integral satisfies the identities

(19)































∫

RN

B(φ, φ)(v)dv = 0 ,

∫

RN

B(φ, φ)(v)vdv = 0 ,

∫

RN

B(φ, φ)(v)|v|2dv = 0 ,

for each φ ∈ Cc(R
N) or in the larger class allowed by the growth at

infinity of the collision kernel b. As a result, whenever F is a classical
solution of the scaled Boltzmann equation (15) with appropriate decay
as |v| → ∞,

(20)































ǫ∂t

∫

RN

Fǫdv + divx

∫

RN

vFǫdv = 0 ,

ǫ∂t

∫

RN

vFǫdv + divx

∫

RN

v⊗2Fǫdv = 0 ,

ǫ∂t

∫

RN

1
2
|v|2Fǫdv + divx

∫

RN

v 1
2
|v|2Fǫdv = 0 ,

and these relations are the local conservation laws of mass, momentum
and energy respectively.
Whenever b(v − v∗, ω) has polynomial growth as |v − v∗| → ∞, for

each positive, rapidly decaying φ ∈ C(RN) such that lnφ has polyno-
mial growth as |v| → ∞, Boltzmann’s H Theorem states that

(21)

∫

RN

B(φ, φ)(v) lnφ(v)dv ≤ 0 ,

and

(22)

∫

RN

B(φ, φ)(v) lnφ(v)dv = 0 ⇔ B(φ, φ) = 0

⇔ φ is a Maxwellian distribution,

meaning that there exists ρ, θ > 0 and u ∈ RN such that

(23) φ(v) = Mρ,u,θ(v) :=
ρ

(2πθ)N/2
e−

|v−u|2

2θ

for all v ∈ RN . As a result, whenever F is a classical solution of the
scaled Boltzmann equation (15) with appropriate decay as |v| → ∞, it
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satisfies the differential entropy inequality

(24)

ǫ∂t

∫

RN

Fǫ lnFǫdv + divx

∫

RN

vFǫ lnFǫdv

= −1

ǫ

∫

RN

B(Fǫ, Fǫ) lnFǫdv ≤ 0 .

Throughout this paper, we denote

(25) M := M1,0,1 .

Since Maxwellians are equilibrium distributions for the collision in-
tegral, it is natural to investigate the linearization thereof about a
Maxwellian, sayM for simplicity — the case of an arbitrary Maxwellian
being similar. We therefore introduce the linearized collision operator
in the form

LMφ := −2M−1 δB(F, F )
δF

∣

∣

F=M
·Mφ ,

i.e.

LMφ(v) :=

∫∫

RN×SN−1

(φ(v)+φ(v∗)−φ(v′)−φ(v′∗))b(v−v∗, ω)Mdv∗dω .

Under certain assumptions on the collision kernel b, known as Grad’s
angular cutoff assumption, H. Grad proved in [17] that LM is an un-
bounded, self-adjoint Fredholm operator on L2(RN ;Mdv) with domain

D(LM) := {φ ∈ L2(RN ;Mdv) | φ(b ⋆v M) ∈ L2(RN ;Mdv)} ,
where

b(z) :=

∫

SN−1

b(z, ω)dω

and ⋆v designates the convolution product in the v variable. Moreover,
the nullspace of LM is

KerLM = span{1, v1, . . . , vn, |v|2} .
In particular, the tensor field A(v) = v⊗2 − 1

N
|v|2 satisfies A⊥KerLM ,

so that, by the Fredholm alternative, there exists a unique tensor field

Â ∈ D(LM) ∩ (KerL)⊥ such that LMÂ = A

componentwise.
Henceforth in this paper, we assume that the collision kernel b comes

from a hard cutoff potential in the sense of Grad, and more precisely
that it satisfies, for some constant Cb > 0 and all (z, ω) ∈ RN × SN−1,

(26) 0 < b(z, ω) ≤ Cb(1 + |z|) , and b(z) ≥ 1

Cb

.
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3.2. Boundary value problem and fluid dynamic limit. The in-
compressible Navier-Stokes limit of the Boltzmann equation bears on
solutions of the Boltzmann equation that are of the form

(27) Fǫ =M(1 + ǫgǫ) ,

where it is understood that the relative number density fluctuation gǫ
is O(1) in some sense to be made precise as ǫ→ 0: see [3, 4, 5] for more
details, together with physical justifications for this scaling assumption.
Here, the scaled Boltzmann equation (15) is set on the spatial domain

Ω, with Maxwell’s accommodation at the boundary, that is assumed to
be maintained at the constant temperature 1. This boundary condition
reads

(28)
Fǫ(t, x, v) = (1− α)RxFǫ(t, x, v) + αΛx

(

Fǫ

M

)

(t, x)M(v) ,

x ∈ ∂Ω , v · nx < 0 ,

where

(29) RxF (t, x, v) := F (t, x, v − 2v · nxnx)

is the specular reflection operator on the boundary, while

(30) Λxφ :=
√
2π

∫

RN

φ(v)(v · nx)+M(v)dv .

In (28), the parameter α satisfies 0 ≤ α ≤ 1, and is called the ac-
commodation coefficient. The case α = 0 corresponds with specular
reflection of the gas molecules on ∂Ω without thermal exchange, while
the case α = 1 corresponds with diffuse reflection, or total accommo-
dation, in which case gas molecules are instantaneously thermalized at
the boundary.
Henceforth, we denote, for each φ ∈ L1(RN ;Mdv),

〈φ〉 :=
∫

RN

ψ(v)M(v)dv .

Theorem 3.1. Let (Fǫ)ǫ>0 be a family of solutions of the scaled Boltz-
mann equation (15) set on the spatial domain Ω, satisfying the accom-
modation boundary condition (28) on ∂Ω. Assume that the relative
fluctuations

gǫ =
Fǫ −M

ǫM
→ g

a.e. and in weak-L1
loc(R+×Ω×RN ; dtdxMdv) (possibly up to extraction

of a subsequence), and that

〈|v|31|v|>R|gǫ|〉+ 〈|Â|1|v|>R|Q(gǫ, gǫ)|〉+ 〈|Â||v|1|v|>R|gǫ|〉 → 0
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in L1
loc(R+ × Ω) as R → +∞ uniformly in ǫ > 0. Then

g(t, x, v) = ρ(t, x) + u(t, x) · v + θ(t, x)1
2
(|v|2 −N) ,

where u is a solution of the incompressible Navier-Stokes equations
{

divx u = 0 ,

∂tu+ divx(u
⊗2) +∇xp = ν∆xu ,

and where
ν = 1

(N−1)(N+2)
〈Â : A〉 .

Assume further that
{

〈v · nxgǫ
∣

∣

∂Ω
〉 → 〈v · nxg

∣

∣

∂Ω
〉

〈vτ (v · nx)+gǫ
∣

∣

∂Ω
〉 → 〈vτ (v · nx)+g

∣

∣

∂Ω
〉

in weak-L1
loc(R+×∂Ω). Then, the velocity field u satisfies the boundary

condition
{

u · nx = 0 , x ∈ ∂Ω ,

ν(Σ(u) · nx)τ + λu = 0 , x ∈ ∂Ω ,

where the slip coefficient is given by the formula

λ = α0

N−1
〈|vτ |2(v · nx)+〉 =

α0√
2π

.

Proof. Observe that, under the substitution v 7→ w = v − 2v · nn, one
has, for each unit vector n,

∫

RN

φ(v − 2v · nn)(v · n)−Mdv =

∫

RN

φ(w)(w · n)+Mdw ,

so that, for each x ∈ ∂Ω, one has
∫

RN

Fǫ(t, x, v)v · nxdv = −α
∫

RN

Fǫ(t, x, v)(v · nx)+dv

+ αΛx

(

Fǫ

M

)

(t, x)

∫

RN

M(v)(v · nx)−dv = 0 ,

since
∫

RN

M(v)(v · nx)+dv =

∫

RN

M(v)(v · nx)−dv =
1√
2π

.

Hence, for each x ∈ ∂Ω and each ǫ > 0, one has

〈vgǫ〉(t, x) · nx =
1

ǫ

∫

RN

Fǫ(t, x, v)v · nxdv = 0 ,

so that, after passing to the limit as ǫ→ 0,

u(t, x) · nx = 〈vg〉(t, x) · nx = 0 , t > 0 , x ∈ ∂Ω .
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Next write the local conservation of momentum — the second local
conservation law in (20) in the form

∂t〈vgǫ〉+ divx
1

ǫ
〈Agǫ〉+∇x

1

ǫ
〈 1
N
|v|2gǫ〉 = 0 ,

where

A ≡ A(v) := v⊗2 − 1
N
|v|2 .

Let now w ≡ w(x) ∈ RN designate a compactly supported C1 vector
field on RN satisfying

divw = 0 , and w(x) · nx = 0 , x ∈ ∂Ω .

Taking the inner product of both sides of the local conservation of
momentum with w and integrating over Ω leads to

(31)

∂t

∫

Ω

w · 〈vgǫ〉dx+
∫

∂Ω

w ⊗ nx :
1

ǫ
〈Agǫ〉dS(x)

−
∫

Ω

∇w :
1

ǫ
〈Agǫ〉dx = 0 ,

since
∫

Ω

w · ∇x
1

ǫ
〈 1
N
|v|2gǫ〉dx =

∫

Ω

divx

(

1

ǫ
〈 1
N
|v|2gǫ〉 · w

)

dx

=

∫

∂Ω

1

ǫ
〈 1
N
|v|2gǫ〉w · nxdS(x) = 0 .

Next we pass to the limit in each term appearing in (31): following
the analysis in [3, 4], one finds that

∫

Ω

w · 〈vgǫ〉dx→
∫

Ω

w · 〈vg〉dx =

∫

Ω

w · udx

while
∫

Ω

∇w :
1

ǫ
〈Agǫ〉dx→

∫

Ω

∇w : (A(u)− νΣ(u))dx

=

∫

Ω

∇w : (u⊗2 − νΣ(u))dx .

(Indeed, since w is divergence-free, ∇w : 1
N
|u|2 = 1

N
|u|2 divx u = 0.)

It remains to analyze the boundary term
∫

∂Ω

w ⊗ nx :
1

ǫ
〈Agǫ〉dS(x) .

Since w · nx = 0 on ∂Ω,

w ⊗ nx : 〈Agǫ〉 = w ⊗ nx : 〈v⊗2gǫ〉 = 〈vτv · nxgǫ〉 · w .
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At this point, we decompose the boundary term into the contribution
of gas molecules about to collide and those having just collided with
the boundary

〈vτv · nxgǫ〉 = 〈vτv · nx1v·nx>0gǫ〉+ 〈vτv · nx1v·nx<0gǫ〉
and use the accommodation condition to write

〈vτv · nx1v·nx<0gǫ〉 = 〈vτv · nx1v·nx<0((1− α)Rxgǫ + αΛx(gǫ))〉 .
Observing that

〈vτv · nx1v·nx<0Rxgǫ〉 = 〈Rx(vτv · nx1v·nx>0)gǫ〉
= −〈vτv · nx1v·nx>0((1− α)gǫ + αΛx(gǫ))〉 ,

we conclude that

〈vτv · nx1v·nx<0gǫ〉 = −〈vτv · nx1v·nx>0((1− α)gǫ + αΛ(gǫ))〉
so that

〈vτv · nxgǫ〉 = α〈vτv · nx1v·nx>0(gǫ − Λx(gǫ))〉 = α〈vτv · nx1v·nx>0gǫ〉
— where the second equality follows from the fact that the function
v 7→ vτv · nx1v·nx>0(gǫ − Λx(gǫ) is odd in vτ .
Therefore the boundary term appearing in (31) becomes
∫

∂Ω

w ⊗ nx :
1

ǫ
〈Agǫ〉dS(x) =

α

ǫ

∫

∂Ω

w · 〈vτv · nx1v·nx>0gǫ〉dS(x) .

Assume that α ≡ α(ǫ) varies with ǫ so that α(ǫ)/ǫ → α0 as ǫ → 0.
Since

gǫ → g = ρ+ u · v + θ 1
2
(|v|2 −N)

and we already know that

u · nx = 0 on ∂Ω ,

one has

w · 〈vτv · nx1v·nx>0gǫ〉 → 〈v⊗2
τ (v · nx)+〉 : ut ⊗ w

= 1
N−1

〈|vτ |2(v · nx)+〉u · w .
Thus, passing to the limit in (31) leads to

(32)

∂t

∫

Ω

w · udx+ α0

N−1
〈|vτ |2(v · nx)+〉

∫

∂Ω

u · wdS(x)

−
∫

Ω

∇w : (u⊗2 − νΣ(u))dx = 0 .

(Notice that the term 〈|vτ |2(v ·nx)+〉 is independent of x and therefore
comes out of the boundary integral.)
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Whenever u(t, ·) ∈ C2(Ω), applying Green’s formula transforms the
last integral above into
∫

Ω

∇w : (u⊗2 − νΣ(u))dx =−
∫

Ω

w · (divx(u⊗2)− ν divx(Σ(u)))dx

+

∫

∂Ω

w · uu · nxdS(x)

− ν

∫

∂Ω

w · (Σ(u) · n)dS(x) .

Since u ·nx = 0 on ∂Ω, the second integral on the right-hand side above
vanishes, and since divx u = 0, one has divx(Σ(u)) = ∆xu, so that

∫

Ω

∇w : (u⊗2 − νΣ(u))dx =−
∫

Ω

w · (divx(u⊗2)− ν∆xu)dx

− ν

∫

∂Ω

w · (Σ(u) · n)dS(x) .

Thus, if u ∈ C2([0, T ]× Ω), the equality (32) becomes

∂t

∫

Ω

w · udx+
∫

Ω

w · (divx(u⊗2)− ν∆xu)dx

+ α0

N−1
〈|vτ |2(v · nx)+〉

∫

∂Ω

u·wdS(x)+ν
∫

∂Ω

w ·(Σ(u)·n)dS(x) = 0 .

This identity holds, say, for each w ∈ C∞
c (Ω;RN). In particular, it

holds for each w ∈ C∞
c (Ω;RN), which implies that

∂tu+ divx(u
⊗2)− ν∆xu = −∇xp

in the sense of distributions (for some p ∈ D′(R∗
+ × Ω)). Since the

velocity field u ∈ C2([0, T ] × Ω) we conclude that p ∈ C1([0, T ] × Ω).
Substituting this in the identity above with w ∈ C∞

c (Ω;RN) gives

−
∫

Ω

w · ∇xpdx+

∫

∂Ω

(νΣ(u) · nx +
α0

N−1
〈|vτ |2(v · nx)+〉u) · wdS(x) = 0

and since, by Green’s formula,

−
∫

Ω

w · ∇xpdx = −
∫

Ω

divx(pw)dx =

∫

∂Ω

pw · nxdS(x) = 0 ,

we conclude that

ν(Σ(u) · nx)τ +
α0

N−1
〈|vτ |2(v · nx)+〉u = 0 on ∂Ω .
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In other words, (32) is the weak formulation of










∂tu+ divx(u
⊗2)− ν∆xu = −∇xp , x ∈ Ω , t > 0 ,

ν(Σ(u) · nx)τ + λu = 0 , x ∈ ∂Ω , t > 0 ,

u · nx = 0 , x ∈ ∂Ω , t > 0 .

with

λ = α0

N−1
〈|vτ |2(v · nx)+〉 =

α0√
2π

.

�

The argument above is a proof of the (formal) Navier-Stokes limit
Theorem 3.1 by a moment method analogous to the one used in [4].
As far as we know, the first derivation of this slip boundary condition,
in the steady, linearized regime (i.e. leading to the Stokes equations
in the fluid limit), is due to K. Aoki, T. Inamuro and Y. Onishi [1]
(see especially formula (33) in that reference). That derivation uses
a Hilbert expansion method (formal series expansion of the solution
of the Boltzmann equation in powers of the Knudsen number ǫ). The
interested reader is referred to the recent book by Y. Sone [35] (in
particular to §3.7 there) for a systematic study of boundary conditions
in the context of the fluid dynamic limit of the Boltzmann equation.
For a complete proof of the derivation of the same slip boundary con-

dition as in Theorem 3.1 in the linearized regime — i.e. in a situation
where the limiting equation is the Stokes, instead of the Navier-Stokes
equations — the reader is referred to the work of N. Masmoudi and L.
Saint-Raymond [26].

4. From the Boltzmann Equation with Accomodation

Boundary Condition to the Incompressible Euler

Equations

In this section, we consider the Boltzmann equation in the scal-
ing leading to the incompressible Euler equations in the fluid dynamic
limit. We recall from [3, 4] that this scaling is

(33) ǫ∂tFǫ + v · ∇xFǫ =
1

ǫ1+q
B(Fǫ, Fǫ) , (x, v) ∈ Ω×RN ,

with q > 0, while the distribution function Fǫ is sought in the same form
(27) as in the Navier-Stokes limit. This scaled Boltzmann equation is
supplemented with Maxwell’s accommodation condition on ∂Ω, with
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accommodation coefficient α ≡ α(ǫ) driven by the small parameter ǫ:

(34)
Fǫ(t, x, v) = (1− α(ǫ))RxFǫ(t, x, v) + α(ǫ)Λ

(

Fǫ

M

)

(t, x)M(v) ,

x ∈ ∂Ω , v · nx < 0 ,

and with the initial condition

(35) Fǫ(0, x, v) = F in
ǫ (x, v) , (x, v) ∈ Ω×RN .

The formal result presented in Theorem 3.1 suggests that, in the
limit as ǫ→ 0, the velocity field

lim
ǫ→0

1

ǫ

∫

RN

vFǫdv

should behave like the solution of the incompressible Navier-Stokes
equations with kinematic viscosity of order ǫq and with slip bound-
ary condition with slip coefficient of the order of α(ǫ)/ǫ. Thus, if
α(ǫ) = o(ǫ), Theorem 2.2 suggests that this velocity field should satisfy
the incompressible Euler equations (8). In fact, the formal result in
Theorem 3.1 is only a guide for our intuition, and we shall give a direct
proof of the Euler limit starting from the Boltzmann equation with
accommodation boundary condition without using the Navier-Stokes
limit.

4.1. Renormalized solutions and a priori estimates. Global so-
lutions of the Cauchy problem for the Boltzmann equation for initial
data of arbitrary size have been constructed by R. DiPerna and P.-L.
Lions [12]. Their theory of renormalized solutions was extended to
the initial boundary value problem by S. Mischler [27]. His result is
summarized below — see also section 2 in [26] and section 2.3.2 of [31].

Theorem 4.1 (Mischler). Let F in
ǫ ≡ F in

ǫ (x, v) ≥ 0 a.e. on Ω×RN be
a measurable function satisfying

∫∫

Ω×RN

(1 + |v|2 + | lnF in
ǫ (x, v)|)F in

ǫ (x, v)dxdv < +∞ .

There exists Fǫ ∈ C(R+;L
1(Ω × RN)) satisfying the initial condi-

tion (35), and the Boltzmann equation (33) together with the bound-
ary condition (34) in the renormalized sense, meaning that, for each
Γ ∈ C1(R+) such that Z 7→

√
1 + ZΓ′(Z) is bounded on R+, the func-

tion

Γ′
(

Fǫ

M

)

B(Fǫ, Fǫ) ∈ L1
loc(R+ × Ω×RN)
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and
∫ ∞

0

∫∫

Ω×RN

Γ

(

Fǫ

M

)

(ǫ∂t + v · ∇x)φMdvdxdt

+
1

ǫ1+q

∫ ∞

0

∫∫

Ω×RN

Γ′
(

Fǫ

M

)

B(Fǫ, Fǫ)φdvdxdt

=

∫ ∞

0

∫∫

∂Ω×RN

Γ

(

Fǫ

M

)

φv · nxMdvdS(x)dt

−ǫ
∫∫

Ω×RN

Γ

(

F in
ǫ

M

)

φ
∣

∣

t=0
Mdvdx

for each φ ∈ C1
c (R+ × Ω×RN).

Moreover

a) the trace of Fǫ on ∂Ω satisfies the accommodation boundary condition

Fǫ

∣

∣

∂Ω
(t, x, v) = (1− α)Rx(Fǫ

∣

∣

∂Ω
)(t, x, v) + Λx

(

Fǫ

∣

∣

∂Ω

M

)

(t, x)M(v)

for a.e. (t, x, v) ∈ R+ × ∂Ω ×RN such that v · nx > 0;
b) the distribution function Fǫ satisfies the local conservation law of
mass

ǫ∂t

∫

RN

Fǫdv + divx

∫

RN

vFǫdv = 0

with boundary condition
∫

RN

Fǫ(t, x, v)v · nxdv = 0 , x ∈ ∂Ω , t > 0 ;

c) the distribution function Fǫ satisfies the relative entropy inequality

H(Fǫ|M)(t)−H(F in
ǫ |M)

≤− 1

ǫ2+q

∫ t

0

∫

Ω

Pǫ(s, x)dxds−
α

ǫ

∫ t

0

∫

∂Ω

DGǫ(s, x)dxds

for each t > 0, where the following notations have been used: for each
f, g measurable on Ω×RN such that f ≥ 0 and g > 0 a.e. , the relative
entropy is

H(f |g) :=
∫∫

Ω×RN

h

(

f

g
− 1

)

gdvdx

with
h(z) := (1 + z) ln(1 + z)− z ,

while the entropy production rate per unit volume is

Pǫ :=

∫∫∫

RN×RN×SN−1

r

(

F ′
ǫF

′
ǫ∗

FǫFǫ∗
− 1

)

FǫFǫ∗b(v − v∗, ω)dvdv∗dω
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with
r(z) := z ln(1 + z) ≥ 0 ,

and the Darrozes-Guiraud information is

DGǫ :=
1√
2π

(

Λx

(

h

(

Fǫ

M
− 1

))

− h

(

Λx

(

Fǫ

M
− 1

)))

.

In particular H(f |g) ≥ 0 since h ≥ 0 on [−1,+∞) and Pǫ ≥ 0 a.e. on
R+ × Ω since r ≥ 0 on (−1,+∞), while DGǫ ≥ 0 a.e. on R+ × ∂Ω
since h is convex and Λx is the average with respect to a probability
measure;
d) for each T > 0 and each compact K ⊂ ∂Ω, there exists CK,T > 0
such that, for each ǫ > 0, one has
∫ T

0

∫∫

K×RN

Fǫ(t, x, v)(v · nx)
2M(v)dvdS(x)dt ≤ CK,T , ǫ > 0 .

Statement d) appears in [26], without proof. We give a brief justifi-
cation for this estimate below.

Notice that in general, renormalized solutions of the initial-boundary
value problem (33)-(34)-(35) are not known to satisfy the local conser-
vation law of momentum — see equation (2.35) in [31] for a variant
involving a defect measure, following an earlier remark due to P.-L.
Lions and N. Masmoudi.
At variance, any classical solution Fǫ ∈ C(R+ × Ω×RN) is contin-

uously differentiable in (t, x) and such that

(36)

v 7→ sup
0≤t≤T

|x|≤R

(|Fǫ(t, x, v)|+ |∂tFǫ(t, x, v)|+ |∇xFǫ(t, x, v)|)

is rapidly decaying as |v| → +∞ ,

one has

ǫ∂t

∫

RN

vFǫdv + divx

∫

RN

v⊗2Fǫdv = 0 , x ∈ Ω , t > 0 .

Moreover, for each w ∈ C1
c (R+ × Ω), Green’s formula implies that

(37)

∫ t

0

∫∫

Ω×RN

(ǫv · ∂tw(s, x) + v⊗2 : ∇xw(s, x))Fǫ(s, x, v)dvdxds

=

∫ t

0

∫

∂Ω×RN

v⊗2 : w(s, x)⊗ nxFǫ(s, x, v)dvdS(x)ds

+ǫ

∫∫

Ω×RN

w(t, x) · vFǫ(t, x, v)dvdx

−ǫ
∫∫

Ω×RN

w(0, x) · vF in
ǫ (x, v)dvdx .
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Let us use the accommodation condition (34) to reduce the boundary
integral:

∫

RN

v⊗2 : w(t, x)⊗ nxFǫ(s, x, v)dv

=

∫

RN

(w(s, x)·v)(v ·nx)+Fǫ(s, x, v)dv

−
∫

RN

(w(s, x)·v)(v ·nx)−Fǫ(s, x, v)dv

and, whenever w is tangential on ∂Ω, one has

∫

RN

(w(s, x)··nx)−Fǫ(s, x, v)dv

=

∫

RN

(w(s, x)·v)(v ·nx)−

(

(1− α)RxFǫ + αΛx

(

Fǫ

M

)

M

)

(s, x, v)dv

=

∫

RN

(w(s, x)·v)(v ·nx)+

(

(1− α)Fǫ + αΛx

(

Fǫ

M

)

M

)

(s, x, v)dv .

Therefore

∫

RN

v⊗2 : w(s, x)⊗ nxFǫ(s, x, v)dv

= α

∫

RN

(w(s, x) · v)(v · nx)+Fǫ(s, x, v)dv

−αΛx

(

Fǫ

M

)
∫

RN

(w(s, x) · v)(v · nx)+Mdv

and the last integral vanishes since the integrand is odd in the tangen-
tial component of v.
Finally, whenever w ∈ C1

c (R+ × Ω) is tangential on ∂Ω, one has

∫

RN

v⊗2 : w(s, x)⊗ nxFǫ(s, x, v)dv

= α

∫

RN

(w(s, x) · v)(v · nx)+Fǫ(s, x, v)dv .
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Therefore, each classical solution Fǫ ∈ C(R+ ×Ω×RN) of the initial-
boundary value problem (33)-(34)-(35) that is continuously differen-
tiable in (t, x) and satisfies (36) also verifies

(38)

∫ t

0

∫∫

Ω×RN

(ǫv · ∂tw(s, x) + v⊗2 : ∇xw(s, x))Fǫ(s, x, v)dvdxds

= α

∫ t

0

∫

∂Ω×RN

(w(s, x) · v)(v · nx)+Fǫ(s, x, v)dvdS(x)ds

+ǫ

∫∫

Ω×RN

w(t, x) · vFǫ(t, x, v)dvdx

−ǫ
∫∫

Ω×RN

w(0, x) · vF in
ǫ (x, v)dvdx .

Henceforth, we shall consider exclusivey renormalized solutions of the
initial-boundary value problem (33)-(34)-(35) satisfying the identity
(38) for each vector field w ∈ C1

c (R+ × Ω) tangential on ∂Ω and such
that divx w = 0 on Ω.
Now for estimate d) in Theorem 4.1.

Proof of estimate d). A renormalized solution of the initial-boundary
value problem (33)-(34)-(35) can be constructed as the limit for ǫ > 0
fixed and m→ +∞, of solutions Fǫ,m of the approximating equation

(39) ǫ∂tFǫ,m+v·∇xFǫ,m =
1

ǫ1+q

Bm(Fǫ,m, Fǫ,m)

1 +
1

m

∫

RN

Fǫ,mdv
, (x, v) ∈ Ω×RN ,

with the same initial and boundary conditions (34)-(35) satisfied by
Fǫ,m, where the approximate collision integral is given by the same
expression as Boltzmann’s collision integral with collision kernel b re-
placed with its truncated variant bm defined as1

bm(v − v∗, ω) := m ∧ b(v − v∗, ω) .

Let ξ be a compactly supported C1 vector field satisfying

ξ(x) = a(x)nx for each x ∈ ∂Ω , with a ≥ 0 on ∂Ω and a = 1 on K .

Since the approximate collision integral in (39) is normalized with an
average of Fǫ,m with respect to v, all solutions of that equation satisfy
equality (37) for any w ∈ C1

c (R+ ×RN), i.e. the local conservation of

1For all x, y ∈ R, the notation x ∧ y designates min(x, y).
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momentum. In other words,

∫ t

0

∫∫

Ω×RN

(v⊗2 : ∇xξ(x))Fǫ,m(s, x, v)dvdxds

=

∫ t

0

∫∫

∂Ω×RN

(v · ξ(x))(v · nx)Fǫ,m(s, x, v)dvdS(x)ds

+ǫ

∫∫

Ω×RN

ξ(x) · vFǫ,m(t, x, v)dvdx

−ǫ
∫∫

Ω×RN

ξ(x) · vF in
ǫ,m(x, v)dvdx .

Therefore, since Fǫ,m ≥ 0 a.e. and (v · ξ(x))(v · nx) = a(x)(v · nx)
2 ≥ 0

for each x ∈ ∂Ω and v ∈ RN , one has

(40)

0 ≤
∫ t

0

∫∫

K×RN

(v · nx)
2Fǫ,m(s, x, v)dvdS(x)ds

≤
∫ t

0

∫∫

∂Ω×RN

(v · ξ(x))(v · nx)Fǫ,m(s, x, v)dvdS(x)ds

=

∫ t

0

∫∫

Ω×RN

(v⊗2 : ∇xξ(x))Fǫ,m(s, x, v)dvdxds

+ǫ

∫∫

Ω×RN

ξ(x) · vF in
ǫ,m(x, v)dvdx

−ǫ
∫∫

Ω×RN

ξ(x) · vFǫ,m(t, x, v)dvdx .

At this point, we recall that the function h : z 7→ (1+z) ln(1+z)−z
introduced in Theorem 4.1 has Legendre dual

h∗(ζ) = sup
z>−1

(ζz − h(z)) = eζ − ζ − 1 .

By Young’s inequality — or equivalently, by definition of h∗ (see for
instance [5]) — one has

1
4
(1 + |v|2)ǫ|gǫ,n| ≤ h(ǫ|gǫ,n|) + h∗(1

4
(1 + |v|2))
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so that, for each nonnegative χ ∈ Cc(R
N),

(41)

∫∫

Ω×RN

χ(x)(1 + |v|2)Fǫ,m(t, x, v)dvdx

=

∫∫

Ω×RN

χ(x)(1 + |v|2)(1 + ǫgǫ,m)(t, x, v)M(v)dvdx

≤
∫∫

Ω×RN

χ(x)(1 + h∗(1
4
(1 + |v|2))M(v)dvdx

+ ‖χ‖L∞H(Fǫ,m|M)(t)

≤
∫∫

Ω×RN

χ(x)(1 + h∗(1
4
(1 + |v|2))M(v)dvdx

+ ‖χ‖L∞H(F in
ǫ |M) .

since the relative entropy estimate c) in Theorem 4.1 is also satisfied
by the approximate solution Fǫ,m.
Since ξ is compactly supported, putting together (40), (41), and

letting m→ +∞ leads to estimate d). �

4.2. The Euler limit. Let uin ∈ H(Ω), and pick initial data F in
ǫ for

the Boltzmann equation satisfying

(42)
1

ǫ2
H(F in

ǫ |M1,ǫuin,1) → 0

Theorem 4.2. For each ǫ > 0, let Fǫ be a renormalized solution of
(33)-(34)-(35) satisfying the local momentum conservation law (38) for
each w ∈ C1

c (R+×Ω) satisfying divxw = 0 and w ·nx

∣

∣

∂Ω
= 0. Assume

that the accommodation parameter α in the accommodation condition
(34) at the boundary depends on the scaling parameter ǫ in such a way
that

α(ǫ) = o(ǫ) as ǫ→ 0 .

Then, for each compact K ⊂ Ω, the family

1

ǫ

∫

RN

vFǫdv

is relatively compact in L∞(R+;L
1(K)), and each of its limit points as

ǫ→ 0 is a dissipative solution of the Euler equations (8).

Assume that uin ∈ H(Ω) is smooth enough so that the initial-
boundary value problem for the Euler equations (8) has a classical
solution on some finite time interval [0, T ] — for instance uin ∈ Hs(Ω)
with s > N

2
+ 1, or uin ∈ C1,θ with 0 < θ < 1. In that case, the con-

vergence result above can be strengthened with the notion of entropic
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convergence, invented by Dave Levermore specifically to handle such
problems.

Definition 4.3 (C. Bardos, F. Golse, C.D. Levermore [5]). A family
gǫ ≡ gǫ(x, v) of L1

loc(Ω ×RN ;Mdxdv) is said to converge entropically
at order ǫ to g ≡ g(x, v) as ǫ→ 0 if the following conditions hold

(i) 1 + ǫgǫ ≥ 0 a.e. on Ω×RN for each ǫ,
(ii) gǫ → g weakly in L1

loc(Ω×RN ;Mdxdv) as ǫ→ 0,
(iii) and

1

ǫ2
H(M(1 + ǫgǫ)|M) → 1

2

∫∫

Ω×RN

g(x, v)2M(v)dxdv

as ǫ→ 0.

We recall that, if gǫ → g at order ǫ, then, for each compact K ⊂ Ω,
one has

∫

K

∫

RN

(1 + |v|2)|gǫ(x, v)− g(x, v)|M(v)dvdx→ 0 as ǫ→ 0 .

In other words, entropic convergence implies strong L1 convergence
with the weight (1 + |v|2)M(v) (see Proposition 4.11 in [5].)

Whenever the incompressible Euler equations (8) have a classical
solution u on [0, T ]×Ω, using the weak-strong uniqueness property of
dissipative solutions and the conservation of energy satisfied by classical
solutions of (8), we arrive at the following stronger convergence result,
which is a straightforward consequence of Theorem 4.2. The interested
reader is referred to the proof of Theorem 6.2 in [5] where the squeezing
argument leading from weak compactness to entropic convergence is
explained in detail.

Corollary 4.4. Consider a family F in
ǫ ≡ F in

ǫ (x, v) ≥ 0 a.e. of mea-
surable functions on Ω×RN such that

F in
ǫ (x, v)−M(v)

ǫM(v)
→ uin(x) · v

entropically of order ǫ as ǫ → 0, where uin ∈ H(Ω) is smooth enough
so that the initial-boundary value problem (8) has a classical solution
u defined on the time interval [0, T ] with T > 0.
For each ǫ > 0, let Fǫ be a renormalized solution of (33)-(34)-

(35) satisfying the local momentum conservation law (38) for each
w ∈ C1

c (R+ × Ω) that satisfies divxw = 0 and w · nx

∣

∣

∂Ω
= 0. Assume

that the accommodation parameter α in the accommodation condition
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(34) at the boundary depends on the scaling parameter ǫ in such a way
that

α(ǫ) = o(ǫ) as ǫ→ 0 .

Then

Fǫ(t, x, v)−M(v)

ǫM(v)
→ u(t, x) · v

entropically of order ǫ as ǫ→ 0, for a.e. t ∈ [0, T ].

The proof of Theorem 4.2 above occupies the remaining part of the
present section.

4.3. The relative entropy inequality. Statement c) in Theorem 4.1
bears on the evolution of the relative entropy of the distribution Fǫ

with respect to the uniform Maxwellian M = M1,0,1. In the next
proposition, we consider the evolution of the relative entropy of the
distribution Fǫ with respect to a local Maxwellian of the form M1,ǫw,1,
where w is a solenoidal velocity field on Ω that is tangential to ∂Ω.

Proposition 4.5. Let w ∈ C1
c (R+ × Ω) be such that

divxw = 0 and w · n
∣

∣

∂Ω
= 0 .

Then, for each ǫ > 0, renormalized solution Fǫ of the initial-boundary
value problem (33)-(34)-(35) satisfying the momentum conservation
identity (38), also satisy the relative entropy inequality
(43)

1

ǫ2
H(Fǫ|M1,ǫw,1)(t)−

1

ǫ2
H(F in

ǫ |M1,ǫw(0,·),1)

≤ − 1

ǫ4+q

∫ t

0

∫

Ω

Pǫ(s, x)dxds−
α

ǫ3

∫ t

0

∫

∂Ω

DGǫ(s, x)dxds

− 1

ǫ2

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x))⊗2 : ∇xw(s, x)Fǫ(s, x, v)dxdvds

− 1

ǫ

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x)) · E(w)(s, x)Fǫ(s, x, v)dvdxds

+
α

ǫ2

∫ t

0

∫

∂Ω×RN

(w(s, x) · v)(v · nx)+Fǫ(s, x, v)dvdS(x)ds

for each t > 0.
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Proof. We begin with the straightforward identity

H(Fǫ|M1,ǫw,1) = H(Fǫ|M) +

∫∫

Ω×RN

Fǫ ln

(

M

M1,ǫw,1

)

dxdv

= H(Fǫ|M) +

∫∫

Ω×RN

Fǫ(
1
2
|v − ǫw|2 − 1

2
|v|2)dxdv

= H(Fǫ|M) +

∫∫

Ω×RN

Fǫ(
1
2
ǫ2|w|2 − ǫv · w)dxdv .

Thus
(44)
H(Fǫ|M1,ǫw,1)(t)−H(Fǫ|M1,ǫw,1)(0) = H(Fǫ|M)(t)−H(Fǫ|M)(0)

+1
2
ǫ2
∫∫

Ω×RN

Fǫ(t, x, v)|w(t, x)|2dxdv

−1
2
ǫ2
∫∫

Ω×RN

F in
ǫ (x, v)|w(0, x)|2dxdv

−ǫ
∫∫

Ω×RN

Fǫ(t, x, v)v · w(t, x)dxdv

+ǫ

∫∫

Ω×RN

F in
ǫ (x, v)v · w(0, x)dxdv .

According to the continuity equation in statement a) in Theorem 4.1

(45)

+1
2
ǫ2
∫∫

Ω×RN

Fǫ(t, x, v)|w(t, x)|2dxdv

−1
2
ǫ2
∫∫

Ω×RN

F in
ǫ (x, v)|w(0, x)|2dxdv

=

∫ t

0

∫∫

Ω×RN

Fǫ(ǫ
2∂t + ǫv · ∇x)

1
2
|w|2dxdvds

=

∫ t

0

∫∫

Ω×RN

Fǫw · (ǫ2∂tw + ǫv · ∇xw)dxdvds .

In (44), we replace the term H(Fǫ|M)(t)−H(Fǫ|M)(0) with the right
hand side of the inequality of statement c) of Theorem 4.1, and use
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(45) together with (38) to arrive at
(46)
H(Fǫ|M1,ǫw,1)(t)−H(Fǫ|M1,ǫw,1)(0)

≤ − 1

ǫ2+q

∫ t

0

∫

Ω

Pǫ(s, x)dxds−
α

ǫ

∫ t

0

∫

∂Ω

DGǫ(s, x)dxds

+

∫ t

0

∫∫

Ω×RN

w · (ǫ2∂tw + ǫv · ∇xw)(s, x)Fǫ(s, x, v)dxdvds

−
∫ t

0

∫∫

Ω×RN

(ǫv · ∂tw(s, x) + v⊗2 : ∇xw(s, x))Fǫ(s, x, v)dvdxds

+ α

∫ t

0

∫

∂Ω×RN

(w(s, x) · v)(v · nx)+Fǫ(s, x, v)dvdS(x)ds .

Next we express ∂tw in terms of E(w) = ∂tw+w ·∇xw and ∇xw: thus

(ǫv · ∂tw(s, x) + v⊗2 : ∇xw(s, x))− w · (ǫ2∂tw + ǫv · ∇xw)

= (v − ǫw)⊗2 : ∇xw + ǫ(v − ǫw) · E(w) .

In the right hand side of (46), we substitute

∫ t

0

∫∫

Ω×RN

w · (ǫ2∂tw + ǫv · ∇xw)(s, x)Fǫ(s, x, v)dxdvds

−
∫ t

0

∫∫

Ω×RN

(ǫv · ∂tw(s, x) + v⊗2 : ∇xw(s, x))Fǫ(s, x, v)dvdxds

= −
∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x))⊗2 : ∇xw(s, x)Fǫ(s, x, v)dxdvds

ǫ

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x)) · E(w)(s, x)Fǫ(s, x, v)dvdxds

and arrive at the relative entropy inequality (43). �

4.4. Control of the boundary term. The relative entropy inequal-
ity (43) is the same as in the one considered in [10], [25] and [29],
except for the boundary term — i.e. the last term on the right hand
side, which is in general not nonpositive. Since the effect of the bound-
ary is our main interest in this paper, and the only difference with the
case of the Cauchy problem treated in [29], the core of our argument
is to obtain a control of that term.

Lemma 4.6. With the notations of Theorem 4.1, for each ǫ > 0 and
each w ∈ C1

c (R+ × Ω) that is tangential on the boundary ∂Ω, each
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renormalized solution Fǫ of the initial-boundary value problem (33)-
(34)-(35) satisfies the inequality

(47)

α

ǫ2

∫

RN

(w(s, x) · v)(v · nx)+Fǫ(s, x, v)dv

=
α

ǫ

∫

RN

(w(s, x) · v)(v · nx)+gǫ(s, x, v)M(v)dv

≤ α

2ǫ3
DGǫ(s, x) +

α

ǫ
C(w)1w(s,x)6=0Λx(Fǫ)(s, x)

a.e. in (s, x) ∈ R+ × ∂Ω, where

C(w) := 1
2

∫

RN

(e2‖w‖L∞ |v| − 2‖w‖L∞|v| − 1)(v1)+M(v)dv .

We use Young’s inequality for a translate of the function h defined
in Theorem 4.1, much in the same way as in the proof of Theorem 6.2
in [5] (see especially pp. 738–739 there).

Proof. Let z0 > −1; for each z > −1, set

l(z − z0) := h(z)− h(z0)− h′(z0)(z − z0) .

We recall that the Legendre dual of the function h defined in Theorem
4.1 is

h∗(p) := sup
z>−1

(pz − h(z)) = ep − p− 1 , p ∈ R .

A straightforward computation shows that

l∗(p) = sup
z>−1

(p(z − z0)− l(z − z0))

= sup
z>−1

(p(z − z0)− h(z) + h(z0) + h′(z0)(z − z0))

=h(z0)− (h′(z0) + p)z0 + sup
z>−1

((h′(z0) + p)z − h(z))

=h(z0)− (h′(z0) + p)z0 + h∗(h′(z0) + p)

=h(z0)− (h′(z0) + p)z0 + eh
′(z0)ep − h′(z0)− p− 1

=(1 + z0) ln(1 + z0)− z0 − (ln(1 + z0) + p)z0

+ (1 + z0)e
p − ln(1 + z0)− p− 1

=(1 + z0)(e
p − p− 1) = (1 + z0)h

∗(p) .

Writing Fǫ =M(1 + ǫgǫ) and observing that
∫

RN

(w(s, x) · v)(v · nx)+M(v)dv = 0 , (s, x) ∈ R+ × ∂Ω
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since w is tangential on ∂Ω, one has

(48)

∫

RN

(w(s, x) · v)(v · nx)+Fǫ(s, x, v)dv

= ǫ

∫

RN

(w(s, x) · v)(v · nx)+gǫ(s, x, v)M(v)dv .

Then
∫

RN

(w(s, x) · v)(v · nx)+gǫ(s, x, v)M(v)dv

=

∫

RN

(w(s, x) · v)(v · nx)+(gǫ(s, x, v)− Λx(gǫ))M(v)dv

by (48) since Λx(gǫ) is independent of v.
By definition Young’s inequality (or equivalently, by definition of the

Legendre dual of l),

2ǫ2(gǫ − Λx(gǫ))(w · v) ≤ l(ǫ(gǫ − Λx(gǫ))) + l∗(ǫ(2w · v)) ,

so that

2

∫

RN

(w · v)(v · nx)+gǫMdv ≤ 1

ǫ2

∫

RN

l(ǫ(gǫ − Λx(ǫ)))(v · nx)+Mdv

+
1

ǫ2

∫

RN

l∗(ǫ(2w · v))(v · nx)+Mdv .

First, since Λx is the average under a probability measure, one has
∫

RN

l(ǫ(gǫ − Λx(ǫ)))(v · nx)+Mdv

= 1√
2π
Λx(l(ǫ(gǫ − Λx(ǫ))))

= 1√
2π
Λx(h(ǫgǫ)− h(ǫΛx(gǫ))− h′(ǫΛx(gǫ))(ǫgǫ − ǫΛx(gǫ)))

= 1√
2π
Λx(h(ǫgǫ)− h(ǫΛx(gǫ))− h′(ǫΛx(gǫ))

1√
2π
Λx(ǫgǫ − ǫΛx(gǫ)))

= 1√
2π
(Λx(h(ǫgǫ)− h(ǫΛx(gǫ))) = DGǫ

On the other hand

1

ǫ2

∫

RN

l∗(ǫ(2w · v))(v · nx)+Mdv

= (1 + ǫΛ(gǫ))

∫

RN

e2ǫ|w||v| − 2ǫ|w||v| − 1

ǫ2
(v · nx)+Mdv

≤ Λ(Fǫ)

∫

RN

(e2|w||v| − 2|w||v| − 1)(v · nx)+Mdv
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— since, for each a > 0, the map

ǫ 7→ eaǫ − aǫ− 1

ǫ2
= a2

∑

n≥2

(aǫ)n−2

n!

is increasing.
Finally

α

ǫ2

∫

RN

(w(s, x) · v)(v · nx)+Fǫ(s, x, v)dv

≤ α

ǫ

∫

RN

(w(s, x) · v)(v · nx)+gǫ(s, x, v)M(v)dv

≤ α

2ǫ3
DGǫ(s, x) +

α

ǫ
C(w)1w(s,x)6=0Λ(Fǫ)(s, x)

where

C(w) := 1
2

∫

RN

(e2‖w‖L∞ |v| − 2‖w‖L∞|v| − 1)(v1)+M(v)dv .

�

After integrating in (s, x) both sides of (47), the first term on the
right hand side of (47) will be absorbed by the Darrozes-Guiraud in-
formation on the right hand side of (43), so that, with Lemma 4.6, the
inequality (43) is transformed into
(49)

1

ǫ2
H(Fǫ|M1,ǫw,1)(t)−

1

ǫ2
H(F in

ǫ |M1,ǫw(0,·),1)

≤ − 1

ǫ4+q

∫ t

0

∫

Ω

Pǫ(s, x)dxds−
α

2ǫ3

∫ t

0

∫

∂Ω

DGǫ(s, x)dxds

− 1

ǫ2

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x))⊗2 : ∇xw(s, x)Fǫ(s, x, v)dxdvds

− 1

ǫ

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x)) · E(w)(s, x)Fǫ(s, x, v)dvdxds

+
α

ǫ
C(w)

∫ t

0

∫

∂Ω∩supp(w)

Λx(Fǫ)(s, x)dS(x)ds ,

for all t ≥ 0.

4.5. Control of the outgoing mass flux. In the lemma below, we
shall prove that the outgoing mass flux Λx(Fǫ) is uniformly bounded
in L1

loc(R+ × ∂Ω), so that the last term on the right hand side of (49)
vanishes under the assumption α(ǫ) = o(ǫ) as ǫ→ 0.
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Lemma 4.7. With the notations of Theorem 4.1, for each ǫ > 0, each
renormalized solution Fǫ of the initial-boundary value problem (33)-
(34)-(35) satisfies the inequality

(50)

∫

RN

Fǫ(t, x, v)(v · nx)+dv ≤
1

h(η)
DGǫ(t, x)

+
1√

2π(1− η)

∫

RN

Fǫ(v · nx)
2dv

for all η ∈ (0, 1), a.e. in (t, x) ∈ R+ × ∂Ω.

Proof. First we recast the Darrozes-Guiraud information in the form

(51)

DGǫ =
1√
2π
Λx(h(ǫgǫ)− h(ǫΛx(gǫ)))

= 1√
2π
Λx(Gǫ lnGǫ −Gǫ − Λx(Gǫ) ln Λx(Gǫ) + Λx(Gǫ))

= 1√
2π
Λx

(

Gǫ ln

(

Gǫ

Λx(Gǫ)

)

−Gǫ + Λx(Gǫ)

)

,

since

Λx((Gǫ − Λx(Gǫ)) ln Λx(Gǫ)) = Λx((Gǫ − Λx(Gǫ))) lnΛx(Gǫ) = 0 .

Then we consider the integral

I : = ΛxGǫ

∫

RN

(v · nx)
2
+ ∧ 1Mdv

= ΛxGǫ

∫

RN

1|Gǫ/ΛxGǫ−1|>η(v · nx)
2
+ ∧ 1Mdv

+ ΛxGǫ

∫

RN

1|Gǫ/ΛxGǫ−1|≤η(v · nx)
2
+ ∧ 1Mdv =: I1 + I2

avec η ∈]0, 1[.
The first term is estimated in terms of the Darrozes-Guiraud infor-

mation on the boundary, in view of (51):

I1 ≤
1

h(η)
ΛxGǫ

∫

RN

1|Gǫ/ΛxGǫ−1|>ηh

(
∣

∣

∣

∣

Gǫ

ΛxGǫ
− 1

∣

∣

∣

∣

)

(v · nx)
2
+ ∧ 1Mdv

≤ 1

h(η)
ΛxGǫ

∫

RN

h

(

Gǫ

ΛxGǫ

− 1

)

(v · nx)
2
+ ∧ 1Mdv

≤ 1

h(η)

∫

RN

(

Gǫ ln

(

Gǫ

ΛxGǫ

)

−Gǫ + ΛxGǫ

)

(v · nx)+Mdv

≤
√
2π

h(η)
DGǫ(t, x) .
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As for the second term, one has

I2 = ΛxGǫ

∫

RN

1|Gǫ/ΛxGǫ−1|≤η(v · nx)
2
+ ∧ 1Mdv

≤ 1

1− η

∫

RN

Gǫ1|Gǫ/ΛxGǫ−1|≤η(v · nx)
2
+ ∧ 1Mdv

≤ 1

1− η

∫

RN

Gǫ(v · nx)
2Mdv .

Putting together both estimates gives

I = I1 + I2 ≤
√
2π

h(η)
DGǫ(t, x) +

1

1− η

∫

RN

Fǫ(v · nx)
2dv .

Since
∫

RN

(v · nx)
2
+ ∧ 1Mdv =

∫ 1

0

z2e−z2/2 dz√
2π

=: J > 0

is independent of x, we conclude that

∫

RN

Fǫ(t, x, v)(v · nx)+dv =
1√
2π
Λx(Gǫ)(t, x) =

1√
2π

I

J

which, together with the previous inequality, leads to the announced
estimate. �

4.6. Convergence to the incompressible Euler equations. At
this point bring together the relative entropy inequality (43) and the
boundary control (47), thereby arriving at the estimate

1

ǫ2
H(Fǫ|M1,ǫw,1)(t)−

1

ǫ2
H(F in

ǫ |M1,ǫw(0,·),1)

≤ − 1

ǫ4+q

∫ t

0

∫

Ω

Pǫ(s, x)dxds−
α

2ǫ3

∫ t

0

∫

∂Ω

DGǫ(s, x)dxds

− 1

ǫ2

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x))⊗2 : ∇xw(s, x)Fǫ(s, x, v)dxdvds

− 1

ǫ

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x)) · E(w)(s, x)Fǫ(s, x, v)dvdxds

+
α

ǫ
C(w)

∫ t

0

∫

∂Ω∩supp(w)

Λx(Fǫ)(s, x)dS(x)ds .
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Next, we use the pointwise inequality (50) with, say, η = 1
2
, to control

the last integral on the right-hand side above:
(52)

1

ǫ2
H(Fǫ|M1,ǫw,1)(t)−

1

ǫ2
H(F in

ǫ |M1,ǫw(0,·),1)

≤ − 1

ǫ4+q

∫ t

0

∫

Ω

Pǫ(s, x)dxds

− α

2ǫ3
(1− 2

√
2π

h(1/2)
C(w)ǫ)

∫ t

0

∫

∂Ω

DGǫ(s, x)dxds

− 1

ǫ2

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x))⊗2 : ∇xw(s, x)Fǫ(s, x, v)dxdvds

− 1

ǫ

∫ t

0

∫∫

Ω×RN

(v − ǫw(s, x)) · E(w)(s, x)Fǫ(s, x, v)dvdxds

+
2α

ǫ
C(w)

∫ t

0

∫

∂Ω∩supp(w)

∫

RN

Fǫ(v · nx)
2dvdS(x)ds .

Now, statement d) in Theorem 4.1 and the scaling assumption on the
accommodation parameter, i.e. α(ǫ) = o(ǫ), show that, for each T > 0

(53)
2α

ǫ
C(w)

∫ t

0

∫

∂Ω∩supp(w)

∫

RN

Fǫ(v · nx)
2dvdS(x)ds→ 0

uniformly in t ∈ [0, T ] as ǫ → 0.
With (53), the relative entropy inequality (52) is precisely of the

same form as the inequality stated as Theorem 5 in [29]. One then
concludes by the same argument as in [29].

5. Conclusion and final remarks

As recalled above, the convergence of solutions of the boundary value
problem for the Navier-Stokes equations in the large Reynolds num-
ber regime is an open problem, as well as the validity of the Prandlt
equation for the boundary layer. Convergence to solutions of the Eu-
ler Equation, for general boundary conditions (including the Dirichlet
boundary condition) are proven under only the most stringent regular-
ity assumptions.
On the other hand the onset of von Karman vortex streets and the

Kolmogorov hypothesis on turbulence based on a non zero energy dis-
sipation in the large Reynolds (see chapter 5 in [13]) suggests that, in
general, the limit is not a solution of the Euler equation. This is in
agreement with Kato’s criterion [19] relating the convergence of the
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solutions of the Navier-Stokes equations with Dirichlet boundary con-
dition to a solution of the Euler equations with the vanishing of the
viscous energy dissipation in a boundary layer with thickness O(Re−1).
For the Navier slip boundary condition (14) or (13), the inviscid limit

is established in the present paper is proven under the only assumption
λ→ 0 as ν → 0.
The following remarks are in order

• at variance with previous results [8, 37], no regularity assump-
tion is required for all the results in the present paper, as only
estimates are used in the proof;

• what is proved here is the convergence to a dissipative solution
(hence to the unique classical whenever it exists); therefore, this
convergence is also true even if no classical solution exists, or
even if the L2 initial data corresponds to a “wild” solution à
la C. DeLellis and L. Szkelyhidi (see [11]) for which there is no
uniqueness of the Euler solution;

• therefore the main goal of the present paper is to show the
strong similarity between the inviscid limit for the Navier-Stokes
equations and the fluid dynamic limit for the Boltzmann equa-
tion; the accommodation coefficient α, the Mach Ma and Strou-
hal Sh numbers, the Reynolds number Re (see [35], §1.9), and
the slip coefficient λ are related by

Ma = Sh = ǫ ,
1

Re
= o(1) ,

α

ǫ
= λ ,

as ǫ → 0, so that the conditions α = o(ǫ) as ǫ → 0 and λ → 0
as ν → 0 are consistent.

In all case the convergence of the solution of the Navier-Stokes equa-
tions to a classical solution of the Euler equations will imples that
the energy dissipation vanishes in the limit, as observed by Kato [19].
Likewise, the entropic convergence obtained in the present paper in
the case of renormalized solutions of the Boltzmann equation implies
that the sum of the entropy dissipation and of the Darrozes-Guiraud
information at the boundary vanishes with ǫ.
By analogy with the work of Kato [19], a possible conjecture is that,

whenever

lim
ǫ→0

α(ǫ)

ǫ
> 0 ,

the vanishing of both the Darrozes-Guiraud information at the bound-
ary and of the entropy production implies that the inviscid fluid dy-
namic limit of the Boltzmann equation is described by a solution of the
Euler equations.
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Other, perhaps less delicate problems could be analyzed by the meth-
ods used in the present paper. For instance, Maxwell’s accommodation
is but one example in a wide class of nonlocal boundary conditions for
the Boltzmann equation; the Navier-Stokes and Euler hydrodynamic
limits of the Boltzmann equation should be considered also for such
boundary conditions (see [35] §1.6). Likewise, the condition (38), which
may not be verified for all renormalized solutions of the initial bound-
ary value problem for the Boltzmann equation should be removed on
principle (as in [29]).
In other words, there remain many open problems related to the

issues discussed in the present paper, to which we shall return in future
publications.
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