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This paper simplifies several aspects of the practical implementation of the newly introduced model-free control and of the corresponding intelligent PID controllers (M. Fliess, C. Join, "Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control?," 15 th IFAC Symp. System Identif, Saint-Malo, 2009). Four examples with their computer simulations permit to test our techniques.

INTRODUCTION

Let us start with a brief review of the general principles of model-free control, introduced by Fliess & Join [2008[START_REF] Lévine | Analysis and Control of Nonlinear Systems[END_REF], and of the corresponding intelligent PID controllers (see d 'Andréa-Novel et al. [2010b] for the connections with "classic" PIDs), which already led to a number of exciting applications in various fields: d' Andréa-Novel et al. [2010a], [START_REF] Choi | Model-free control of automotive engine and brake for Stop-and-Go scenarios[END_REF], [START_REF] Formentin | Model-free control for active braking systems in sport motorcycles[END_REF], [START_REF] Gédouin | Experimental comparison of classical pid and model-free control: position control of a shape memory alloy active spring[END_REF], [START_REF] Join | Étude préliminaire d'une commande sans modèle pour papillon de moteur[END_REF][START_REF] Join | Vers une commande sans modèle pour aménagements hydroélectriques en cascade. 6 e[END_REF], [START_REF] Michel | Modelfree control of dc/dc converters[END_REF], [START_REF] Villagra | Robust stop-and-go control strategy: an algebraic approach for nonlinear estimation and control[END_REF][START_REF] Villagra | Control basado en PID inteligentes: aplicación al control de crucero de un vehículo a bajas velocidades[END_REF][START_REF] Villagra | A model-free approach for accurate joint motion control in humanoid locomotion[END_REF]. For simplicity's sake we are restricting ourselves to singleinput single-output systems. The input-output behavior of the plant is assumed to be well approximated within its operating range by an ordinary differential equation E(y, ẏ, • • • , y (a) , u, u, • • • , u (b) ) = 0, which is nonlinear in general and unknown, or at least poorly known. Replace it by the "ultra-local" model, which is continuously updated,

y (n) (t) = F (t) + αu(t) (1) 
where

• the order n, 1 ≤ n ≤ a, of derivation has always been chosen to be equal to 1 or 2, and 1 in all concrete situations, 1 • the constant coefficient α is chosen by the practitioner, such that αu and y (n) are of the same order of magnitude, • the time-varying function F (t), which is estimated thanks to the knowledge of u and y, subsumes the structural properties of the unknown system.

Close the loop, if n = 2 in Equation ( 1), with an intelligent PID controller, or i-PID,

1 See [START_REF] Fliess | Rien de plus pratique qu'une bonne théorie: la commande sans modèle[END_REF] for an explanation.

u = - F + ÿ + K P e + K I e + K D ė α (2)
where

• y is the output reference trajectory,

• e = y -y is the tracking error,

• K P , K I and K D are the usual tuning gains.

The above control strategy was put into practice until now via an estimate of the n th -order derivative y (n) in Equation (1), which yields an estimate of F in Equations ( 1) and (2).

In spite of recent significant advances on the numerical differentiation of noisy signals by [START_REF] Mboup | Numerical differentiation with annihiators in noisy environment[END_REF], this task remains quite complex and sometimes difficult to implement. We replace it by recent, but quite simple, algebraic and non-asymptotic techniques [START_REF] Fliess | An algebraic framework for linear identification[END_REF], 2008]) for online parameter identification of linear systems. They have been utilized in several concrete case-studies (see, e.g., [START_REF] Abouaïssa | Fast parametric estimation for macroscopic traffic flow model[END_REF], [START_REF] Becedas | Adaptive controller for single-link flexible manipulators based on algebraic identification and generalized proportional integral control[END_REF], [START_REF] Pereira | Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique[END_REF][START_REF] Sira-Ramírez | A fast on-line frequency estimator of lightly damped ibrations in flexible structures[END_REF]). Let us summarize this new viewpoint by considering the equation

L d dt z = φ + αu (3) 
where

• φ ∈ R is an unknown constant, • d ν z dt ν = y, for some ν ≥ 0, • L( d dt ) ∈ R[ d dt
] is a linear differential operator with constant coefficients.

φ is linearly identifiable according to [START_REF] Fliess | An algebraic framework for linear identification[END_REF], 2008]. We thus approximate an unknown function like F by a piecewise constant one. We show that this new setting, which is easier to grasp and to implement, possesses excellent robustness properties.

Another important modification with respect to Fliess & Join [2008[START_REF] Lévine | Analysis and Control of Nonlinear Systems[END_REF] is related to the case of a partially known model. If this partially known model happens to be flat [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], [START_REF] Lévine | Analysis and Control of Nonlinear Systems[END_REF], [START_REF] Sira-Ramírez | A fast on-line frequency estimator of lightly damped ibrations in flexible structures[END_REF]), it might facilitate the choice of a reference trajectory and of a corresponding nominal control. The stabilization around this reference is nevertheless achieved in Section 3.4 in a straightforward way, thanks to the model-free i-PID (2).

Section 2 explains our identification procedure. Four examples accompanied by several computer simulations are discussed in Section 3 in order to test our implementation, even with quite noisy measurements. Some concluding remarks are presented in Section 4

ONLINE PARAMETER IDENTIFICATION

Linear identifiability

Rewrite Equation (3) via the classic rules of operational calculus (see, e.g., [START_REF] Yosida | Operational Calculus[END_REF])

L(s)Z = φ s + αU + I(s) (4) 
where I ∈ R[s] is a polynomial associated to the initial conditions. For N ≥ 1 sufficiently large, d N I ds N ≡ 0. Multiplying both sides of Equation ( 4) by d N ds N permits to get rid of the initial conditions. It yields the linear identifiability [START_REF] Fliess | An algebraic framework for linear identification[END_REF], 2008]) of φ thanks to the formula

d N ds N L(s)Z = (-1) N N ! s N +1 φ + α d N U ds N (5) 
Multiplying both sides of Equation ( 5) by s -M , where M ≥ 0 is sufficiently large, permits to get rid of positive powers of s, i.e., of derivatives with respect to time. The corresponding formulae in the time domain are easily deduced thanks to the correspondence between d ds and the multiplication by -t in the time domain.

Identification scheme

Assume that n = 1 in Equation (1). Close the loop, like in d' Andréa-Novel et al. [2010a], via an i-P, i.e., an i-PID (2) where K I = K D = 0. Assume that F is approximatively constant during the short time window [T -δ, T ]. The above algebraic manipulations lead to the following estimate of F :

F ≈ 1 δ T T -δ ẏ - α δ T T -δ u - K P δ T T -δ e. (6) 
The robustness with respect to noises is ensured by the integrals which are the simplest low-pass filters. 2 Note moreover that the estimator (6) may be easily implemented in the form of a discrete linear filter.

FOUR COMPUTER SIMULATIONS

A perturbed pendulum

Bring and maintain an actuated simple pendulum around its upright unstable equilibrium position. Numerical simulations are performed via 2 See the explanations in [START_REF] Fliess | Analyse non standard du bruit[END_REF].

J θ = mgl sin θ + τ -ksign( θ) -c θ (7) where θ is the angular coordinate, and m = 0.2, g = 10, l = 0.7, k = 0.01, c = 0.4 and J = ml 2 are physical parameters. The control torque is τ . Take n = 1 in Equation ( 1) and estimate F by a procedure similar to the one in Section 2.2. Figures 1 and2 show a successful test where the pendulum starts near to its downward position and rejoin its upright position. Noises are added in Figures 3 and4. The control input, displayed in Figure 4, reflects the excellent filtering provided by the estimator of F especially when the pendulum is close to its upright (zero) position where the signal to noise ratio is very small (negative in dB). The control input is actualized each 10 -3 second and a Runge-Kutta method is used in order to simulate Equation ( 7) during each time increment of 10 -3 second. 1). The model-free controller provides very good tracking performances in the absence of noise (see Figures 5 and6), as well as in a noisy situation as displayed in Figures 7 and8. 

A comparison with a sliding mode controller

Control via sliding modes of perturbed nonlinear, systems where the classical matching condition of [START_REF] Drazenovic | The invariance conditions in variable structure systems[END_REF] is not satisfied, is a challenging problem. It has been the subject of many studies especially by [START_REF] Estrada | Quasi-continuous HOSM control for systems with unmatched perturbations Int. Workshop Variable Structure Systems[END_REF], 2010], where a particular class of nonlinear single-input systems of the form 

ẋ1 = f 1 (x 1 , t) + B 1 (x 1 , t)x 2 + ω 1 (x 1 , t) ẋi = f i (x i , t) + B i (x i , t)x i+1 + ω i (x i , t), i = 2, • • • , m -1 ẋm = f m (x, t) + B m (x, t)u + ω m (x, t)
= (x 1 , • • • , x i ).
The scalar functions f i and B i smooth. The unknown perturbations ω i are bounded and at least n -i differentiable. The controller is a cascaded structure where the state x i is controlled through the virtual input x i+1 . Since the states x 2 , • • • , x m , taken as virtual inputs, cannot be discontinuous, higher order sliding mode algorithms were used for each

x i , i = 2 • • • , m -1.
We consider the simulation examples treated in [START_REF] Estrada | Quasi-continuous HOSM control for systems with unmatched perturbations Int. Workshop Variable Structure Systems[END_REF], 2010] and test our model-free controller. We start first by the example treated in [START_REF] Estrada | Quasi-continuous HOSM Control for systems with unmatched perturbations[END_REF] which is given by ẋ1 = 2 sin(x 1 ) + 1.5x 2 + g 1 (x 1 , t)

ẋ2 = 0.8x 1 x 2 + x 3 + g 2 (x 1 , x 2 , t) (8) ẋ3 = -x 2 3 + 2u + g 3 (x 1 , x 2 , x 3 , t) g 1 (x 1 , t) = 0.2 sin(t) + 0.1x 1 + 0.12 g 2 (x 1 , x 2 , t) = 0.3 sin(2t) + 0.2x 1 + 0.2x 2 -0.4 g 3 (x 1 , x 2 , x 3 , t) = 0.2 sin(2t) + 0.2x 1 + 0.3x 2 + 0.2x 3 + 0.3
The goal is to track y (t) = 2 sin(0.15t) + 4 cos(0.1t) -4. The simulations of [START_REF] Estrada | Quasi-continuous HOSM Control for systems with unmatched perturbations[END_REF] are reproduced in Figures 9 and10. For the model-free controller, n = 2 is used in Equation ( 1) to design an i-PD. Estimation of F is computed by adapting the method described in Section 2. The initial conditions are (0.2, 0, 0) T . For the sake of comparisons with the simulations in [START_REF] Estrada | Quasi-continuous HOSM Control for systems with unmatched perturbations[END_REF], noise-free simulations are also displayed.

The output tracking, which is quite similar to the sliding mode one shown in Figure 9, is not shown again. Besides, the control input in Figure 11 is smoother than the one in 10. It seems that our controller provide two advantages with respect to the sliding mode based controller:

• There is only one parameter, α in Equation ( 1), to be tuned. The choice of K P and K D is trivial. • Smoothness of the control input, i.e., no chattering. Remark 1. The chattering in the controller of [START_REF] Estrada | Quasi-continuous HOSM Control for systems with unmatched perturbations[END_REF] could have been removed by considering a new input u = v. But this would have induced more complications in the controller synthesis. Remark 2. We point out that the local model utilized to synthesize the i-PD is of the second order while the relative degree of ( 8) with respect to e = y -y is three. In [START_REF] Estrada | Quasi-continuous HOSM control for systems with unmatched perturbations Int. Workshop Variable Structure Systems[END_REF], trajectory tracking of the system

ẋ1 = 2x 1 + 1.5x 2 + g 1 (x 1 , t) ẋ2 = x 2 + x 3 + g 2 (x 1 , x 2 , t) (9) 
ẋ3 = -1.5x 3 + 2u + g 3 (x 1 , x 2 , x 3 , t) was accomplished with the same sliding mode controller of [START_REF] Estrada | Quasi-continuous HOSM Control for systems with unmatched perturbations[END_REF] but with different parameters.

We tested our model-free controller based on the ultralocal model (1) with n = 2 and exactly the same parameters α, K P and K D previously used in (8). The control input can be seen in Figure 12. Note that the control input in [START_REF] Estrada | Quasi-continuous HOSM control for systems with unmatched perturbations Int. Workshop Variable Structure Systems[END_REF] is similar to the one in Figure 12 but with a chattering of amplitude 1. Lack of space prevents us from reproducing it here. Consider as in Fliess & Join [2008[START_REF] Lévine | Analysis and Control of Nonlinear Systems[END_REF] a nonlinear spring-mass system: 1). This is again achieved via an i-PI strategy. We impose a critically damped behavior by using the characteristic equation s 2 + 2ξω n s + ω 2 n = 0, and choosing ξ = 0.707 and a settling time of 1 second. Only 20 samples are needed to get a good estimate of F in (1). A Runge-Kutta algorithm is used to simulate Equation (10) for each time increment of 0.01 second. The control input is updated at a rate of 0.01 second. The simulation results in the noise-free case are shown in Figures 15 and16 

mÿ = -k 1 y -k 3 y 3 + F( ẏ) -d ẏ + u ( 

CONCLUSION

Our model-free control design, which

• permitted to bypass the difficult task of mathematical modeling, • leads to a straightforward gain tuning, has been improved by • replacing numerical differentiation of noisy signals by simple online parameter identification procedures, • using the model-free i-PID (2) even if a submodel is partially known.

See [START_REF] Fliess | Rien de plus pratique qu'une bonne théorie: la commande sans modèle[END_REF] for an up to date survey of model-free control, the valisity of which has already been confirmed by several concrete applications.
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