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Abstract: This paper simplifies several aspects of the practical implementation of the newly
introduced model-free control and of the corresponding intelligent PID controllers (M. Fliess,
C. Join, “Model-free control and intelligent PID controllers: towards a possible trivialization of
nonlinear control?,” 15th IFAC Symp. System Identif, Saint-Malo, 2009). Four examples with
their computer simulations permit to test our techniques.
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1. INTRODUCTION

Let us start with a brief review of the general princi-
ples of model-free control, introduced by Fliess & Join
[2008, 2009], and of the corresponding intelligent PID
controllers (see d’Andréa-Novel et al. [2010b] for the con-
nections with “classic” PIDs), which already led to a
number of exciting applications in various fields: d’Andréa-
Novel et al. [2010a], Choi et al. [2009], Formentin et al.
[2010], Gédouin et al. [2011], Join et al. [2008, 2010],
Michel et al. [2010], Villagra et al. [2009, 2010, 2011].
For simplicity’s sake we are restricting ourselves to single-
input single-output systems. The input-output behavior
of the plant is assumed to be well approximated within
its operating range by an ordinary differential equation
E(y, ẏ, · · · , y(a), u, u̇, · · · , u(b)) = 0, which is nonlinear in
general and unknown, or at least poorly known. Replace it
by the “ultra-local” model, which is continuously updated,

y(n)(t) = F (t) + αu(t) (1)

where

• the order n, 1 ≤ n ≤ a, of derivation has always been
chosen to be equal to 1 or 2, and 1 in all concrete
situations, 1

• the constant coefficient α is chosen by the practi-
tioner, such that αu and y(n) are of the same order
of magnitude,
• the time-varying function F (t), which is estimated

thanks to the knowledge of u and y, subsumes the
structural properties of the unknown system.

Close the loop, if n = 2 in Equation (1), with an intelligent
PID controller, or i-PID,

1 See Fliess et al. [2011] for an explanation.

u = −
F + ÿ? +KP e+KI

∫
e+KD ė

α
(2)

where

• y? is the output reference trajectory,
• e = y − y? is the tracking error,
• KP , KI and KD are the usual tuning gains.

The above control strategy was put into practice until now
via an estimate of the nth-order derivative y(n) in Equation
(1), which yields an estimate of F in Equations (1) and (2).
In spite of recent significant advances on the numerical
differentiation of noisy signals by Mboup et al. [2009],
this task remains quite complex and sometimes difficult
to implement. We replace it by recent, but quite simple,
algebraic and non-asymptotic techniques (Fliess & Sira-
Ramı́rez [2003, 2008]) for online parameter identification of
linear systems. They have been utilized in several concrete
case-studies (see, e.g., Abouäıssa et al. [2008], Becedas
et al. [2009], Pereira et al. [2009], Trapero et al. [2007]).
Let us summarize this new viewpoint by considering the
equation

L

(
d

dt

)
z = φ+ αu (3)

where

• φ ∈ R is an unknown constant,
• dνz

dtν = y, for some ν ≥ 0,

• L( ddt ) ∈ R[ ddt ] is a linear differential operator with
constant coefficients.

φ is linearly identifiable according to Fliess & Sira-Ramı́rez
[2003, 2008]. We thus approximate an unknown function
like F by a piecewise constant one. We show that this
new setting, which is easier to grasp and to implement,
possesses excellent robustness properties.



Another important modification with respect to Fliess
& Join [2008, 2009] is related to the case of a partially
known model. If this partially known model happens to
be flat (Fliess et al. [1995], Lévine [2009], Sira-Ramı́rez &
Agrawal [2004]), it might facilitate the choice of a reference
trajectory and of a corresponding nominal control. The
stabilization around this reference is nevertheless achieved
in Section 3.4 in a straightforward way, thanks to the
model-free i-PID (2).

Section 2 explains our identification procedure. Four ex-
amples accompanied by several computer simulations are
discussed in Section 3 in order to test our implementation,
even with quite noisy measurements. Some concluding
remarks are presented in Section 4

2. ONLINE PARAMETER IDENTIFICATION

2.1 Linear identifiability

Rewrite Equation (3) via the classic rules of operational
calculus (see, e.g., Yosida [1984])

L(s)Z =
φ

s
+ αU + I(s) (4)

where I ∈ R[s] is a polynomial associated to the initial

conditions. For N ≥ 1 sufficiently large, dNI
dsN

≡ 0.

Multiplying both sides of Equation (4) by dN

dsN
permits

to get rid of the initial conditions. It yields the linear
identifiability (Fliess & Sira-Ramı́rez [2003, 2008]) of φ
thanks to the formula

dN

dsN
L(s)Z =

(−1)NN !

sN+1
φ+ α

dNU

dsN
(5)

Multiplying both sides of Equation (5) by s−M , where
M ≥ 0 is sufficiently large, permits to get rid of positive
powers of s, i.e., of derivatives with respect to time. The
corresponding formulae in the time domain are easily
deduced thanks to the correspondence between d

ds and the
multiplication by −t in the time domain.

2.2 Identification scheme

Assume that n = 1 in Equation (1). Close the loop,
like in d’Andréa-Novel et al. [2010a], via an i-P, i.e.,
an i-PID (2) where KI = KD = 0. Assume that F is
approximatively constant during the short time window
[T − δ, T ]. The above algebraic manipulations lead to the
following estimate of F :

F ≈ 1

δ

∫ T

T−δ
ẏ? − α

δ

∫ T

T−δ
u− KP

δ

∫ T

T−δ
e. (6)

The robustness with respect to noises is ensured by the
integrals which are the simplest low-pass filters. 2 Note
moreover that the estimator (6) may be easily imple-
mented in the form of a discrete linear filter.

3. FOUR COMPUTER SIMULATIONS

3.1 A perturbed pendulum

Bring and maintain an actuated simple pendulum around
its upright unstable equilibrium position. Numerical sim-
ulations are performed via
2 See the explanations in Fliess [2006].

Jθ̈ = mgl sin θ + τ − ksign(θ̇)− cθ̇ (7)

where θ is the angular coordinate, and m = 0.2, g = 10,
l = 0.7, k = 0.01, c = 0.4 and J = ml2 are physical
parameters. The control torque is τ . Take n = 1 in
Equation (1) and estimate F by a procedure similar to
the one in Section 2.2. Figures 1 and 2 show a successful
test where the pendulum starts near to its downward
position and rejoin its upright position. Noises are added
in Figures 3 and 4. The control input, displayed in Figure
4, reflects the excellent filtering provided by the estimator
of F especially when the pendulum is close to its upright
(zero) position where the signal to noise ratio is very small
(negative in dB). The control input is actualized each 10−3

second and a Runge-Kutta method is used in order to
simulate Equation (7) during each time increment of 10−3

second.

0 1 2 3 4 5 6 7 8
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

 

 

Reference

Output

Fig. 1. Pendulum angular position: θ
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Fig. 2. Control for the noise-free simulation: τ
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Fig. 3. Pendulum angular position in the presence of noise
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Fig. 4. Control action in the presence of noise

3.2 A DC motor

Consider a 800 watts DC motor, with a desired sinusoidal
angular velocity sin 2t + 2 in spite of perturbations. Nu-
merical simulations are performed via

ω̇ =
kI − Cr + p1(t)

J

İ =
u−RI − kω + p2(t)

L
where R = 1.8, L = 0.016, k = 0.3, J = 0.005, and

p1(t) = sin(t) + 0.1sign(ω)− 200

p2(t) = cos(2t) + 0.1sign(cos(4t))

are the perturbations. Take as before n = 1 in Equation
(1). The model-free controller provides very good tracking
performances in the absence of noise (see Figures 5 and
6), as well as in a noisy situation as displayed in Figures 7
and 8.
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Fig. 5. Output & reference angular velocities.

3.3 A comparison with a sliding mode controller

Control via sliding modes of perturbed nonlinear, sys-
tems where the classical matching condition of Drazenovic
[1969] is not satisfied, is a challenging problem. It has
been the subject of many studies especially by Estrada &
Fridman [2008, 2010], where a particular class of nonlinear
single-input systems of the form

ẋ1 = f1(x1, t) +B1(x1, t)x2 + ω1(x1, t)

ẋi = fi(x̄i, t) +Bi(x̄i, t)xi+1 + ωi(x̄i, t), i = 2, · · · ,m− 1

ẋm = fm(x, t) +Bm(x, t)u+ ωm(x, t)
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Fig. 6. Control input for the DC motor
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Fig. 7. Output & reference angular velocities in noisy case
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Fig. 8. Control input for DC motor in noisy case

has been considered where x̄i = (x1, · · · , xi). The scalar
functions fi and Bi are smooth. The unknown perturba-
tions ωi are bounded and at least n− i differentiable. The
controller is a cascaded structure where the state xi is
controlled through the virtual input xi+1. Since the states
x2, · · · , xm, taken as virtual inputs, cannot be discontin-
uous, higher order sliding mode algorithms were used for
each xi, i = 2 · · · ,m− 1.

We consider the simulation examples treated in Estrada
& Fridman [2008, 2010] and test our model-free controller.
We start first by the example treated in Estrada &
Fridman [2010] which is given by

ẋ1 = 2 sin(x1) + 1.5x2 + g1(x1, t)

ẋ2 = 0.8x1x2 + x3 + g2(x1, x2, t) (8)

ẋ3 =−x23 + 2u+ g3(x1, x2, x3, t)



g1(x1, t) = 0.2 sin(t) + 0.1x1 + 0.12

g2(x1, x2, t) = 0.3 sin(2t) + 0.2x1 + 0.2x2 − 0.4

g3(x1, x2, x3, t) = 0.2 sin(2t) + 0.2x1 + 0.3x2 + 0.2x3 + 0.3

The goal is to track y?(t) = 2 sin(0.15t) + 4 cos(0.1t) − 4.
The simulations of Estrada & Fridman [2010] are repro-
duced in Figures 9 and 10. For the model-free controller,
n = 2 is used in Equation (1) to design an i-PD. Estimation
of F is computed by adapting the method described in
Section 2. The initial conditions are (0.2, 0, 0)T . For the
sake of comparisons with the simulations in Estrada &
Fridman [2010], noise-free simulations are also displayed.

The output tracking, which is quite similar to the sliding
mode one shown in Figure 9, is not shown again. Besides,
the control input in Figure 11 is smoother than the one
in 10. It seems that our controller provide two advantages
with respect to the sliding mode based controller:

• There is only one parameter, α in Equation (1), to be
tuned. The choice of KP and KD is trivial.
• Smoothness of the control input, i.e., no chattering.

Remark 1. The chattering in the controller of Estrada &
Fridman [2010] could have been removed by considering
a new input u̇ = v. But this would have induced more
complications in the controller synthesis.

Remark 2. We point out that the local model utilized to
synthesize the i-PD is of the second order while the relative
degree of (8) with respect to e = y − y? is three.
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Fig. 9. output & reference
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Fig. 10. Control input for the sliding mode controller

In Estrada & Fridman [2008], trajectory tracking of the
system

ẋ1 = 2x1 + 1.5x2 + g1(x1, t)

ẋ2 = x2 + x3 + g2(x1, x2, t) (9)

ẋ3 =−1.5x3 + 2u+ g3(x1, x2, x3, t)

was accomplished with the same sliding mode controller of
Estrada & Fridman [2010] but with different parameters.

We tested our model-free controller based on the ultra-
local model (1) with n = 2 and exactly the same param-
eters α, KP and KD previously used in (8). The control
input can be seen in Figure 12. Note that the control input
in Estrada & Fridman [2008] is similar to the one in Figure
12 but with a chattering of amplitude 1. Lack of space
prevents us from reproducing it here.
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Fig. 11. Control input of the i-PD
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Fig. 12. Control input for the model free controller corre-
sponding to system 9

3.4 A nonlinear spring with frictions

Consider as in Fliess & Join [2008, 2009] a nonlinear
spring-mass system:

mÿ = −k1y − k3y3 + F(ẏ)− dẏ + u (10)

m is the mass, −k1y − k3y3 the stiffness and

F(ẏ) =

{
−0.3− 0.4(ẏ + .25)2 − dẏ if ẏ > 0
0.3 + 0.4(ẏ + .25)2 − dẏ if ẏ < 0.

the discontinuous friction. Utilize

mÿ = −k̂1y − k̂3y3 − d̂ẏ + u (11)

where k̂1 = 2, k̂3 = 7, and d̂ = 2.5 are estimates of k1 = 3,
k3 = 10 and d = 5 respectively. The mass m = 0.5 is
perfectly known. The flatness of System (11) permits via
the flat output y to design a nominal open-loop control
strategy:

u? = mÿ? + k̂1y
? + k̂3(y?)3 + d̂ẏ?. (12)



The simulation result of the nominal controller are shown
in Figures 13 and 14. In order to compensate the un-
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Fig. 13. Noisy output & reference trajectory for the spring-
mass system with the nominal control.
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Fig. 14. Control input for the spring-mass system with the
nominal control.

modeled part, set e = y − y? and u = u? + ∆u and
stabilize around e = 0 the system with input ∆u via our
model-free design. Choose again n = 1 in Equation (1).
This is again achieved via an i-PI strategy. We impose
a critically damped behavior by using the characteristic
equation s2 + 2ξωns+ω2

n = 0, and choosing ξ = 0.707 and
a settling time of 1 second. Only 20 samples are needed to
get a good estimate of F in (1). A Runge-Kutta algorithm
is used to simulate Equation (10) for each time increment
of 0.01 second. The control input is updated at a rate of
0.01 second. The simulation results in the noise-free case
are shown in Figures 15 and 16. Simulations with additive
noise are shown in the Figures 17, 18 and 19.
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Fig. 15. Noise-free output & referene trajectory for the
spring-mass system
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Fig. 16. Control input for the spring-mass system. Noise-
free case.
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Fig. 17. Noisy output & reference trajectory for the spring-
mass system.
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Fig. 18. Filtered noisy output & reference trajectory for
the spring-mass system.
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case.



4. CONCLUSION

Our model-free control design, which

• permitted to bypass the difficult task of mathematical
modeling,
• leads to a straightforward gain tuning,

has been improved by

• replacing numerical differentiation of noisy signals by
simple online parameter identification procedures,
• using the model-free i-PID (2) even if a submodel is

partially known.

See Fliess et al. [2011] for an up to date survey of
model-free control, the valisity of which has already been
confirmed by several concrete applications.
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B. d’Andréa-Novel, M. Fliess, C. Join, H. Mounier, B.
Steux. A mathematical explanation via “intelligent”
PID controllers of the strange ubiquity of PIDs. 18th

Medit. Conf. Control Automat., Marrakech, 2010b.
J. Becedas, J.R. Trapero, V. Feliu, H. Sira-Ramı́rez. Adap-

tive controller for single-link flexible manipulators based
on algebraic identification and generalized proportional
integral control. IEEE Trans. Systems Man Cyber B,
volume 39, pages 735–751, 2009.
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