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Abstract

The present paper completes an earlier result by S. Ukai,

T. Yang, and S.-H. Yu [Commun. Math. Phys. 236 (2003),

373−393] on weakly nonlinear half-space problems for the steady

Boltzmann equation with hard-sphere potential.

1. Statement of the Problem & Main Result

Boundary layers are an important class of flows in the kinetic theory of

gases. One of the most significant problems in this context is the study of

half-space problems for the Boltzmann equation matching the state of the

gas on a surface immersed in the flow to some thermodynamic equilibrium

far from that surface. A classical example of this situation is the case of

a phase transition, where the rarefied gas is the vapor above its condensed

phase. From the mathematical viewpoint, these boundary layers explain

how boundary conditions for the hydrodynamic equations can be obtained

from the boundary data at the mesoscopic level of description corresponding

to the kinetic theory of gases.

Henceforth, we consider the steady state of a rarefied gas in a half-space

R3
+ := {(x, y, z) ∈ R3 | x ≥ 0}.
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In kinetic theory, the state of the gas is described by its distribution function

F , and we shall assume this state to have slab-symmetry, meaning that

F depends on one space variable x ≥ 0 and three velocity variables v =

(v1, v2, v3) ∈ R3. Here, F (x, v) is the density of gas molecules with velocity

v ∈ R3 that are located in the plane

{(x, y, z) | y, z ∈ R}.

Assuming that the gas is monatomic and viewing the gas molecules as hard

spheres, the distribution function F satisfies the Boltzmann equation

v1∂xF = B(F,F ), x > 0, v ∈ R3. (1.1)

Here, the notation B(F,F ) designates the Boltzmann collision integral, which

acts only on the v-variable in F . In other words,

B(F,F )(x, v) = B(F (x, ·), F (x, ·))(v)

where, for each φ ≡ φ(v) that is continuous and rapidly decaying at infinity,

one has

B(φ, φ)(v) =

∫ ∫

R3×S2

(φ′φ′1 − φφ1)|(v − v1) · ω|dv1dω

with the notation

φ = φ(v), φ1 = φ(v1), φ′ = φ(v′), φ′1 = φ(v′1). (1.2)

Here

v′ = v′(v, v1, ω) = v − (v − v1) · ωω,
v′1 = v′1(v, v1, ω) = v1 + (v − v1) · ωω.

(1.3)

In order for the Boltzmann equation (1.1) to define a unique solution F ,

one must add boundary conditions at x = 0 and/or some limiting condition

at infinity.

Typically, the density F at infinity must be a thermodynamic equilib-

rium, i.e. a Maxwellian state defined by its temperature θ∞ > 0, its bulk

velocity u∞ ∈ R3 and its pressure p∞. In the sequel, this Maxwellian state

is denoted by

M(ρ∞,u∞,θ∞)(v) =
ρ∞

(2πθ∞)3/2
e−

|v−u∞|2

2θ∞ (1.4)



i

“BN03N18” — 2008/3/21 — 12:06 — page 213 — #3
i

i

i

i

i

2008] BOUNDARY LAYERS IN KINETIC THEORY 213

where ρ∞ = p∞/θ∞.

As for the boundary condition at x = 0, we shall restrict our attention

to the case where the density of molecules entering the half-space is given:

F (0, v) = Fb(v), v ∈ R3, v1 > 0, (1.5)

where Fb is given.

Of course the boundary condition (1.5) and the condition at infinity

F (x, v) →M(ρ∞,u∞,θ∞)(v) as x→ +∞ (1.6)

cannot in general be prescribed independently. In other words, one expects

that there should exist (finitely many) relations between the boundary data

Fb and the equilibrium state at infinity, i.e. the parameters ρ∞, u∞ and θ∞.

Another way of stating the same problem is as follows:

Given ρ∞ > 0, u∞ and θ∞ > 0, to find all boundary data Fb such

that the steady Boltzmann equation (1.1) with boundary condition (1.5) has

a unique solution F satisfying the condition (1.6) at infinity.

Henceforth, we denote S[M(ρ∞,u∞,θ∞)] this set of boundary data —

which we can think of as the stable manifold of M(ρ∞,u∞,θ∞), by analogy

with the case where (1.1) is an evolution system with time variable x.

The case where Fb is a Maxwellian state with zero bulk velocity, i.e.

Fb = M(ρb,0,θb) (1.7)

is of particular interest in the context of a phase transition, with the vapor

above (i.e. for x > 0) its condensed phase (located at x < 0.) This problem

has been investigated by Y. Sone, then with K. Aoki and their group in Ky-

oto, in a series of important papers. Their work gives a detailed description

of

{ρb > 0, θb > 0 |M(ρb,0,θb) ∈ S[M(ρ∞,u∞,θ∞)]}

based on numerical and asymptotic arguments. Specifically, their analysis

shows that the set of ρb/ρ∞, θb/θ∞ and Ma∞ := u1,∞/
√

5
3θ∞ such that

M(ρb,0,θb) ∈ S[M(ρ∞,u∞,θ∞)] has a codimension in R3 that depends upon the

position of the transverse Mach number at infinity Ma∞ with respect to the

singular values −1, 0 and 1. For a detailed presentation of this important

series of results, see sections 3.5.2, 4.5.2, 4.10.2 and chapter 7 in [18], chapters
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6 and 7 in [19] and the references therein to the original articles. For a more

concise survey of these works, see [2].

Finding a complete proof of these results is truly one of the most fas-

cinating — and challenging — mathematical problems on the Boltzmann

equation, as the problem is strongly nonlinear except in the particular case

where Ma∞ → 0.

More recently, S. Ukai, T. Yang and S.-H. Yu [21] have studied the

local structure of S[M(ρ∞,u∞,θ∞)] near M(ρ∞,u∞,θ∞). This set is found to

be a C1 manifold of finite codimension near the Maxwellian at infinity.

This finite codimension is the dimension of maximal positive subspaces of

ImDM(ρ∞,u∞,θ∞) — i.e. on the linear span of collision invariants 1, v1, v2,

v3, |v|2— for the Hessian of the entropy flux

F 7→
∫

R3

v1F lnFdv (1.8)

at the point M(ρ∞,u∞,θ∞).

The analogous statement for the linearization of the Boltzmann equa-

tion (1.1) about the Maxwellian state at infinity M(ρ∞,u∞,θ∞) has been con-

jectured by C. Cercignani [8], and subsequently proved by the author in

collaboration with F. Coron and C. Sulem [10].

The method used in [21] uses the ideas in [10] — especially the energy

method pioneered by C. Bardos, R. Caflisch, and B. Nicolaenko in [1] — in

a way that is both elegant and of striking efficiency.

Unfortunately, the result in [21] does not solve the phase transition

problem studied by Y. Sone, K. Aoki and their group. Indeed, the main

theorem in [21] bears on S[M(ρ∞,u∞,θ∞)] in the neighborhood ofM(ρ∞,u∞,θ∞),

whereas the phase transition problem corresponds with the stable manifold

S[M(ρ∞,u∞,θ∞)] near M(ρb,0,θb)— i.e. far from M(ρ∞,u∞,θ∞) in general. In

fact, the dimension of maximal positive subspaces of the Hessian of (1.8) at

M(ρ∞,u∞,θ∞) in the linear span of collision invariants does not contain enough

information to arrive at a qualitative picture of the phase transition problem.

For instance, the existence of a supersonic condensing solution implies that

the pressure ratio ρ∞θ∞/ρbθb must exceed some threshold depending on

Ma∞. Physically, this threshold corresponds with a subsonic condensing

solution confined to the boundary by a plane shock wave, a pattern that

cannot be completely explained by studying (1.8) as x → ∞. The presence

of this threshold, which has been computed numerically by Y. Sone and his
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collaborators, is confirmed rigorously by a priori inequalities on the phase

transition problem in [20] and [3].

However, the theorem of S. Ukai, T. Yang and S.-H. Yu [21] could be

of interest for the phase transition problem when the Maxwellian states

at infinity M(ρ∞,u∞,θ∞) and on the boundary M(ρb,0,θb) are close — which

implies in particular that Ma∞ → 0. Even in this case, there remains a

difficulty: the analysis in the paper by S. Ukai, T. Yang and S.-H. Yu excludes

the cases where the transverse Mach number at infinity Ma∞ ∈ {−1, 0, 1}
— see Remark 1.2 on p. 376 in [21].

In the present paper, we extend the analysis of S. Ukai, T. Yang and

S.-H. Yu to the case Ma∞ = 0. Specifically, we prove the following

Theorem 1.1. For each ρ∞, θ∞ > 0 and uj,∞ with j = 2, 3, denote

u∞ = (0, u2,∞, u3,∞). Then, there exists 0 < ǫ≪ 1 so that

S[M(ρ∞,u∞,θ∞)] ∩
{

Fb

∣

∣

∣ sup
v

(1 + |v|)3
∣

∣

∣

∣

Fb −M(ρ∞,u∞,θ∞)

M
1/2
(ρ∞,u∞,θ∞)

∣

∣

∣

∣

∣

≤ ǫ

}

is a set of codimension 4.

Without loss of generality, we shall restrict our attention to the case

ρ∞ = θ∞ = 1, and u2,∞ = u3,∞ = 0. (1.9)

Indeed, one can always reduce the general case to that one, by setting the

Boltzmann equation (1.1) and its boundary condition (1.5) in the new ve-

locity variables

ξ1 =
1√
θ∞

v1, ξ2 =
1√
θ∞

(v2 − u2,∞), ξ3 =
1√
θ∞

(v3 − u3,∞)

and by scaling the density and the space variable as

F → ρ∞F, x→ ρ∞x.

Our analysis follows very closely that in [21] — especially the idea of

using a penalized variant of the linearization of (1.1) about the Maxwellian

state at infinity, which we believe is by far the best way of handling half-

space problems in kinetic theory. There are minor differences with [21] here

and there — in particular, the bootstrap argument starting from the energy

estimate and leading to weighted L∞ bounds is based on our earlier analysis

using the integral formulation of the linearized half-space problem in [12],
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together with the full force of Caflisch’s estimates for the linearized collision

operator in [5], which is a slight improvement of the Grad’s classical estimates

in [13]

However, the main difficulty in the proof of Theorem 1.1 — and the

core of the present contribution — is the fact that the Hessian of the en-

tropy flux (1.8) becomes degenerate on the linear span of collision invariants.

Because of this degeneracy, the structure of the Ukai-Yang-Yu penalization

has to be modified. This is done with the help of a pair of projections, P

and p introduced in section 2.3, based on the extra invariants of the lin-

earized version of (1.1) presented in section 2.2. These extra-invariants are

analogues for the Boltzmann equation of the K-integral used in Radiative

Transfer: see chapter 1, §10 in [9]; Chandrasekhar attributes the K-integral

to A.S. Eddington. Perhaps the first occurence of these extra-invariants in

the case of the half-space problem for the linearized Boltzmann equation is in

Cercignani’s simplification of the Bardos-Caflisch-Nicolaenko energy method

presented in [8]. The key estimate in the present paper is Lemma 2.6 be-

low, establishing the coercivity of a suitable variant of the Ukai-Yang-Yu

penalization of the linearized Boltzmann collision integral.

Going back to the phase transition problem studied by Y. Sone and his

school, we recall that

S[M(ρ∞,0,θ∞)] ∩ {M(ρb,0,θb) | ρb, θb > 0} = {M(ρ∞,u∞,θ∞)}

whenever u∞ = (0, u2,∞, u3,∞) — see Theorem 5.1 in [2]. This result is

established by an estimate bearing on the entropy production and entropy

flux for equation (1.1)1.

The work of Y. Sone has had a considerable influence on the modern

understanding of rarefied gas dynamics. The theory of boundary layers for

kinetic models is just one example of a subject where Y. Sone’s far reaching

contributions are at the origin of many deep and fascinating problems in

mathematical analysis. I am most grateful to Y. Sone’s generosity in shar-

ing his ideas — and patience in teaching me, over the last twenty years, a

significant fraction of the little I know about the Boltzmann equation. With

great pleasure, I am offering him this small contribution to a question that

we have discussed so many times both in Kyoto and in Paris.

1This estimate is the nonlinear analogue of a clever argument for the uniqueness of the solution
of the linearization of (1.1) about a Maxwellian state, due to C. Bardos, R. Caflisch and B.
Nicolaenko [1].
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2. Formulation of the Penalized Problem

2.1. Linearization

The solution of the boundary layer equation is sought in the form

F (x, v) = M(1,0,1)(v)(1 + f(x, v)). (2.1)

From now on, the centered, reduced Maxwellian (Gaussian) state M(1,0,1) is

abbreviated as M . The linearized collision integral is defined by

(Lφ)(v) = −2M−1B(M,Mφ)(v)

=

∫ ∫

(φ+ φ1 − φ′ − φ′1)|(v − v1) · ω|Mdv1dω;
(2.2)

likewise, we introduce the quadratic operator Q — which is the Boltzmann

collision operator intertwined with the multiplication by M :

(Q(φ, φ))(v) = M−1B(Mφ,Mφ)(v)

=

∫ ∫

(φ′φ′1 − φφ1)|(v − v1) · ω|Mdv1dω.
(2.3)

With these notations, the original problem is recast in the form

v1∂xf + Lf = Q(f, f), x > 0, v ∈ R3,

f(x, v) → 0, as x→ +∞.
(2.4)

The Hilbert space L2(R3,Mdv) will be used systematically in the sequel; in

particular, we shall use the notation

〈φ〉 =

∫

R3

φ(v)M(v)dv.

The following properties of L and Q are summarized below:

Proposition 2.1.

• The linearized collision integral L defines an unbounded, self-adjoint

Fredholm operator on L2(Mdv), with domain

D(L) = {φ ∈ L2(Mdv)| |v|φ ∈ L2(Mdv)}.

Its null-space is

KerL = span{1, v1, v2, v3, |v|2}.
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• The quadratic operator Q is continuous on D(L) (endowed with the norm

φ 7→ 〈(1+ |v|)2|φ|2〉1/2) with values in L2(Mdv). It satisfies the relations

〈χQ(φ, φ)〉 = 0, χ ∈ KerL, φ ∈ D(L).

The problem (2.4) is solved by a fixed-point argument. Thus, the main

task in the present paper is the analysis of the linear problem

v1∂xf + Lf = S, x > 0, v ∈ R3,

f(x, v) → 0, as x→ +∞,
(2.5)

where S ≡ S(x, v) is a given source term that satisfies the orthogonality

relations

〈















1

v1
v2
v3
|v|2















S(x, ·)
〉

= 0, x > 0. (2.6)

2.2. Invariants of the linear problem

Multiplying each side of the equality in (2.5) successively by 1, v1, v2,

v3, |v|2, and averaging in v leads to the invariance of the fluxes of mass,

momentum and energy:

d

dx

〈

v1















1

v1
v2
v3
|v|2















f(x, ·)
〉

= 0, x > 0.

Since f(x, ·) → 0 in L2(Mdv) as x → +∞, the invariant quantities above

must satisfy

〈

v1















1

v1
v2
v3
|v|2















f(x, ·)
〉

= 0, x > 0. (2.7)

However, the invariants in (2.7) are not enough to analyze the problem (2.5).
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Before explaining why, we recall the following observation:

Lemma 2.2. (Coron-Golse-Sulem [10]) The five functions

χ±(v) = |v|2 ±
√

15v1,

χ0(v) = |v|2 − 5,

χj(v) = vj, j = 2, 3

(2.8)

span KerL. They are orthogonal for both the inner product of L2(Mdv) and

the bilinear form (φ,ψ) 7→ 〈v1φψ〉 defined on D(L). Finally, one has

〈χ2
±〉 = 30, 〈χ2

0〉 = 10, 〈χ2
j 〉 = 1, j = 2, 3,

while

〈v1χ2
±〉 = ±30

√

5
3 , 〈v1χ2

0〉 = 〈v1χ2
j〉 = 0, j = 2, 3.

In other words, the quadratic form φ 7→ 〈v1φ2〉 restricted to KerL has

signature (1, 1) and a 3-dimensional radical spanned by {χ0, χ2, χ3}.

The constant c =
√

5
3 above is the (dimensionless) speed of sound that

corresponds to the centered reduced Maxwellian state M in space dimension

3.

We also recall that each entry of the tensor field v⊗2 − 1
3 |v|2 and of the

vector field v(|v|2 − 5) belongs to (KerL)⊥; since L is a Fredholm operator,

there is a unique tensor field A ≡ A(v) and a unique vector field B ≡ B(v)

such that Aij and Bj ∈ D(L) for i, j = 1, 2, 3, and

LA = v⊗2 − 1
3 |v|

2, Aij ∈ (KerL)⊥, i, j = 1, 2, 3,

LB = v(|v|2 − 5), Bj ∈ (KerL)⊥, j = 1, 2, 3.
(2.9)

We recall (see [11]) that there exist two radial functions a ≡ a(|v|) and

b ≡ b(|v|) such that

A(v) = a(|v|)(v⊗2 − 1
3 |v|

2), B(v) = b(|v|)(|v|2 − 5)v. (2.10)

The components B1, A12 and A13 are of particular interest for the anal-

ysis of (2.5), since they provide additional invariants of the problem (2.5).

These invariants are analogues of Chandrasekhar’s K-invariant for the half-

space problem in radiative transfer (see [9], chapter I, §10) in the context of
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the kinetic theory of gases; their role in simplifying the analysis of Bardos-

Caflisch-Nicolaenko [1] was advocated in an elegant argument by C. Cercig-

nani [8] on linear half-space problems in the kinetic theory of gases.

Indeed, multiplying each side of the equality in (2.5) by B1, A12 and

A13, and averaging in v, one arrives at

d

dx

〈

v1





B1

A12

A13



 f

〉

=

〈





B1

A12

A13



S

〉

−
〈





B1

A12

A13



Lf
〉

=

〈





B1

A12

A13



S

〉

−
〈





LB1

LA12

LA13



 f

〉

=

〈





B1

A12

A13



S

〉

−
〈

v1





χ0

χ2

χ3



 f

〉

=

〈





B1

A12

A13



S

〉

.

Since f(x, ·) → 0 in L2(Mdv) as x→ +∞, the relation above leads to

〈

v1





B1

A12

A13



 f(x, ·)
〉

= −
∫ +∞

x

〈





B1

A12

A13



S(z, ·)
〉

dz, x ≥ 0. (2.11)

2.3. Two projections

Our aim in this section is to reduce the problem (2.5) to the particular

case where

〈

v1





B1

A12

A13



 f(x, ·)
〉

=

〈





B1

A12

A13



S(x, ·)
〉

= 0, x > 0. (2.12)

The most natural way of achieving this is through the introduction of the

following pair of projections:

Pφ =
〈B1φ〉

〈B1LB1〉
LB1 +

〈A12φ〉
〈A12LA12〉

LA12 +
〈A13φ〉

〈A13LA12〉
LA13 (2.13)
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and

pφ =
〈v1B1φ〉
〈B1LB1〉

χ0 +
〈v1A12φ〉
〈A12LA12〉

χ2 +
〈v1A13φ〉
〈A13LA12〉

χ3. (2.14)

The families {χ0, χ2, χ3} and {LB1,LA12,LA13} are both L2(Mdv)-ortho-

gonal, so that

P2 = P, p2 = p,

meaning that P and p are indeed projections — notice that neither P nor

p are self-adjoint (i.e. orthogonal) projections. The elementary properties

of the projections P and p are summarized in the next lemma.

Lemma 2.3. One has

ImP = span{v1χ0, v1χ2, v1χ3} ⊂ (KerL)⊥,

Imp = span{χ0, χ2, χ3} ⊂ KerL.

The projections P and p satisfy the relation

P(v1φ) = v1p(φ); P(Lφ) = 0 if v1f⊥KerL.

Finally 〈p(φ)φ〉 ≥ 0, and the map φ 7→ 〈p(φ)φ〉1/2 defines a norm on

span{χ0, χ2, χ3}.

Proof. Because of (2.10),

B1⊥LA12, B1⊥LA13, A12⊥LA13.

Hence, if φ ∈ span{χ0, χ2, χ3}, one has

〈p(φ)φ〉 =
〈v1B1φ〉
〈B1LB1〉

〈φχ0〉 +
〈v1A12φ〉
〈A12LA12〉

〈φχ2〉 +
〈v1A13φ〉
〈A13LA13〉

〈φχ3〉

=
〈φχ0〉2
〈χ2

0〉
+

〈φχ2〉2
〈χ2

2〉
+

〈φχ3〉2
〈χ2

3〉
= 1

10 〈φχ0〉2 + 〈φχ2〉2 + 〈φχ3〉2 �

Split f as f = pf + (I − p)f ; likewise, split S as S = PS + (I − P)S.

By applying successively P and p to each side of the equality in (2.5), on

account of the various properties of P and p recalled in Lemma 2.3, one

arrives at the relations

v1∂x(I − p)f + L(I − p)f = (I − P)S, x > 0, v ∈ R3,

(I − p)f(x, ·) → 0, as x→ +∞;
(2.15)
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and

v1∂x(pf) = PS, x > 0, v ∈ R3,

pf(x, ·) → 0, as x→ +∞.
(2.16)

Observe that

(I − P)S and v1(I − p)f⊥KerL ⊕ span{B1, A12, A13} (2.17)

which is equivalent to the orthogonality relations (2.12) leading to the intro-

duction of the projections P and p. On the other hand, the problem (2.16)

is equivalent to the relations before (2.11), which means that the solution to

this problem is given by (2.11).

2.4. The penalized problem

We first recall a fundamental property of the linearized collision integral.

In the sequel, we designate by Π the orthogonal projection of L2(Mdv) on

KerL. Hilbert [14] proved that L can be split as the multiplication by a

positive function ν ≡ ν(|v|) minus a compact operator K on L2(Mdv):

(Lφ)(v) = ν(|v|)φ(v) − (Kφ)(v), φ ∈ D(L). (2.18)

The function ν can be computed explicitly in terms of the Erf function; for

some constants 0 < ν− < ν+,

ν−(1 + |v|) ≤ ν(|v|) ≤ ν+(1 + |v|), v ∈ R3. (2.19)

Lemma 2.4. (Bardos-Caflisch-Nicolaenko [1]) There exists a constant

0 < λ < 1 such that

〈φLφ〉 ≥ λ〈ν|(I − Π)φ|2〉, for all φ ∈ D(L). (2.20)

Were it not for the weight ν on the right-hand side of the above in-

equality, this would be equivalent to the fact that L, being an unbounded,

self-adjoint, nonnegative Fredholm operator on L2(Mdv), has a spectral gap.

In order to simplify the analysis of (2.15), we shall replace L with an

operator that is coercive on the whole domain D(L), as follows. Proceeding

as in [1], and especially [21], we consider the penalized operator

Lpφ = Lφ+ αΠ+(v1φ) + βp(φ) − γv1φ, (2.21)
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where Π+ is the orthogonal projection on Rχ+ and α, β and γ are positive

constants to be adjusted later.

The reason for replacing the operator L with Lp is explained by the next

two lemmas.

Lemma 2.5. Assume that f is such that eγxf ∈ L∞(R+;L2(Mdv)) for

some γ > 0 and satisfies (2.5). Set g = eγx(I − p)f , and let Lp be defined

as in (2.21) with the same parameter γ as in the definition of g, and with

arbitrary positive constants α and β. Then g satisfies

v1∂xg(x, v) + Lpg(x, v) = eγx(I −P)S(x, v), x > 0,

g(x, v) ∈ L∞(R+;L2(Mdv)).
(2.22)

Proof. Observe first that f satisfies (2.7). Hence

Π+(v1g) = eγxΠ+(v1f) = 0.

On the other hand, p(g) = eγxp(I − p)f = 0 since p2 = p — see Lemma

2.3. Therefore

v1∂xg + Lpg = v1∂xg − γv1g + Lg + αΠ+(v1g) + βp(g)

= eγx
(

v1∂x(e−γxg) + L(e−γxg)
)

= eγx(I −P)S,

because of (2.15). �

The second reason for replacing L with Lp is the following observation.

Lemma 2.6. For appropriately chosen positive constants α, β and γ,

the operator Lp is coercive on D(L), i.e. there exists λ′ = λ′(α, β, γ, ν±) > 0

such that

〈φLpφ〉 ≥ λ′〈ν|φ|2〉, φ ∈ D(L). (2.23)

The conditions that the parameters α, β and γ must satisfy for (2.23) to hold

are collected in (2.29), (2.30), and (2.31).

Proof. Set w = (I − Π)φ and q = Πφ. We further decompose q into

q = q+ + q− + q0, following the L2(Mdv)-orthogonal decomposition

KerL = Rχ+ ⊕ Rχ− ⊕ span{χ0, χ2, χ3}.
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Then

〈φLpφ〉 ≥ λ〈νw2〉 + α〈v1(w + q)q+〉 + β〈p(φ)q0〉

−γ〈v1w2〉 − γ〈v1q2+〉 − γ〈v1q2−〉 − 2γ|〈v1w(q+ + q− + q0)〉|

≥ (λ− γ/ν−)〈νw2〉 + (α− γ)〈v1q2+〉 + γ|〈v1q2−〉| + β〈p(q0)q0〉

−α|〈v1wq+〉| − 2γ|〈v1wq+〉| − 2γ|〈v1wq−〉| − 2γ|〈v1wq0〉|

−β|〈p(w)q0〉| − β|〈p(q+)q0〉| − β|〈p(q−)q0〉|. (2.24)

Observe that

(λ− γ
ν−

)〈νw2〉 + (α− γ)〈v1q2+〉 + γ|〈v1q2−〉| + β〈p(q0)q0〉

≥ (λ− γ
ν−

)〈νw2〉 + (α− γ)
〈v1χ2

+〉
〈νχ2

+〉
〈νq2+〉 + γ

|〈v1χ2
−〉|

〈νχ2
−〉

〈νq2−〉 +C1β〈νq20〉

≥ (λ− γ
ν−

)〈νw2〉 + α−γ
ν+

〈νq2+〉 + γ
ν+

〈νq2−〉 + C1β〈νq20〉 (2.25)

where C1 ∈ (0, 1) is such that

C1〈νφ2〉 ≤ 〈p(q0)q0〉 ≤
1

C1
〈νφ2〉 for each φ ∈ span{χ0, χ2, χ3}.

(We recall from Lemma 2.3 that φ 7→ 〈p(φ)φ〉 defines a norm on the 3-

dimensional space span{χ0, χ2, χ3}, and that all norms on a finite dimen-

sional space are equivalent).

On the other hand, applying repeatedly the elementary inequality

xy ≤ ǫx2 +
1

ǫ
y2, for each x, y ∈ R and ǫ > 0,

we see that

α|〈v1wq+〉| + 2γ|〈v1wq+〉| + 2γ|〈v1wq−〉| + 2γ|〈v1wq0〉|

+β|〈p(w)q0〉| + β|〈p(q+)q0〉| + β|〈p(q−)q0〉|

≤ ( α
ǫ1ν−

+ 2γ
ǫ2ν−

+ 2γ
ǫ3ν−

+ 2γ
ǫ4ν−

+ β‖p‖
ǫ5ν−

)〈νw2〉 + (αǫ1
ν−

+ 2γǫ2
ν−

+ β‖p‖
ǫ5ν−

)〈νq2+〉

+(2γǫ3
ν−

+ β‖p‖
ǫ5ν−

)〈νq2−〉 + (2γǫ4
ν−

+ 3βǫ5
ν−

)〈νq20〉 (2.26)
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Choose then the constants α, β, γ, ǫ1, ǫ2, ǫ3, ǫ4, and ǫ5 such that

( α
ǫ1ν−

+ 2γ
ǫ2ν−

+ 2γ
ǫ3ν−

+ 2γ
ǫ4ν−

+ β‖p‖
ǫ5ν−

) < 1
2(λ− γ

ν−
)

(αǫ1
ν−

+ 2γǫ2
ν−

+ β‖p‖
ǫ5ν−

) < 1
2

α−γ
ν+

(2γǫ3
ν−

+ β‖p‖
ǫ5ν−

) < 1
2

γ
ν+

(2γǫ4
ν−

+ 3βǫ5
ν−

) < 1
2C1β.

(2.27)

To realize these constraints, assume first that γ < min(α
2 ,

ν−λ
2 ), and pick

ǫ5 > 0 so small that 12ǫ5 < C1ν−. Then set β = θγ with θ > 0 small enough

so that θ‖p‖
ǫ5ν−

< 1
4ν+

< 1
4ν−

. With the above assumptions, β‖p‖
ǫ5ν−

< γ
4ν+

< α−γ
4ν+

as well as β‖p‖
ǫ5ν−

< γ
4ν−

< 1
4(λ− γ

ν−
). Hence, (2.27) holds provided that

( α
ǫ1ν−

+ 2γ
ǫ2ν−

+ 2γ
ǫ3ν−

+ 2γ
ǫ4ν−

) < 1
4(λ− γ

ν−
)

αǫ1
ν−

+ 2γǫ2
ν−

< γ
8ν+

2γǫ3
ν−

< 1
4

γ
ν+

2γǫ4
ν−

< 1
4C1β.

(2.28)

Pick ǫ4 small enough so that ǫ4 <
C1ν−θ

8 and ǫ2 = ǫ3 <
ν+

32ν−
: the last two

inequalities in (2.28) are then automatically satisfied. Set γ = θ′α with

0 < θ′ < 1
2 and pick ǫ1 small enough so that ǫ1 < θ′ν−

32ν+
, which implies

the second inequality in (2.28). Finally, pick α < ν−λ( 4
ǫ1

+ 2
ǫ2

+ 1
ǫ4

+ 1
8 )−1.

Observe that ν−λ
α > 1 since 4

ǫ5
> 256, and hence the condition θ′ < 1

2

implies that γ ≤ min(α
2 ,

ν−λ
2 ). With the choice of α as above, on account

of the condition θ′ ∈ (0, 1
2), the first inequality in (2.28) holds. With the

same choice of parameters, (2.27) also holds. To summarize, the positive

constants ǫj, j = 1, . . . , 5 are given by

ǫ5 <
C1ν−

12 , ǫ4 <
C1ν−θ

12 , ǫ2 = ǫ3 <
ν+

32ν−
, ǫ1 <

θ′ν−
32ν+

(2.29)

with

0 < θ < ǫ5ν−
4‖p‖ν+

, 0 < θ′ < 1
2 . (2.30)

Finally

β = θγ, γ = θ′α, 0 < α < ν−λ( 4
ǫ1

+ 2
ǫ2

+ 1
ǫ4

+ 1
8 )−1 (2.31)

For such a choice of the parameters α, β and γ, the inequalities (2.27) hold.
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The coercivity of Lp follows from the estimates (2.24), (2.25), (2.26),

and from the choice of parameters α, β and γ satisfying the three conditions

(2.29), (2.30), and (2.31). In particular, (2.31) implies that γ < 1
2ν−. �

We conclude this section with the detailed formulation of the penal-

ized, linear boundary layer equation. Let α, β and γ be three positive

constants satisfying (2.29), (2.30), (2.31). Let S ≡ S(x, v) be such that

eγ
∗xS ∈ L∞(R+;L2(Mdv)) for some γ∗ > γ, and let gb ∈ L2(|v1|Mdv). The

penalized, linear boundary layer problem is:

To find g ∈ L2(R+;L2(Mdv)) satisfying

v1∂xg(x, v) + Lpg(x, v) = eγx(I − P)S, x > 0, v ∈ R3,

g(0, v) = gb(v), v1 > 0.
(2.32)

3. Existence and Uniqueness for the Penalized Linear Problem

3.1. The L
2 theory

On the Hilbert space H = L2(R+;L2(Mdv)) we define an unbounded

operator T by

D(T ) = {φ ∈ H|νφ ∈ H, v1∂xφ ∈ H, φ(0, v) = 0 for each v1 > 0},
T φ = v1∂xφ+ Lpφ.

(3.1)

Clearly, D(T ) is dense in H, T is closed and its adjoint is the unbounded

operator defined on H by

D(T ∗) = {ψ ∈ H|νψ ∈ H, v1∂xψ ∈ H, ψ(0, v) = 0 for each v1 < 0},
T ∗ψ = −v1∂xψ + Lψ + αv1Π+ψ + βp∗ψ − γv1ψ,

(3.2)

where p∗ is given by

p∗ψ =
〈χ0ψ〉

〈B1LB1〉
v1B1 +

〈χ2φ〉
〈A12LA12〉

v1A12 +
〈χ3φ〉

〈A13LA12〉
v1A13. (3.3)

Lemma 3.1. Let α, β and γ be positive constants satisfying (2.29),

(2.30) and (2.31). Then, there exists λ′′ ≡ λ′′(α, β, γ, ν±) > 0 such that

• for each φ ∈ D(T ∗), one has λ′′‖νφ‖H ≤ ‖T φ‖H,

• for each ψ ∈ D(T ∗), one has λ′′‖νψ‖H ≤ ‖T ∗ψ‖H.
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In particular

Ker T = {0}, ImT = H.

Proof. Let φ ∈ D(T ). In particular νφ ∈ L2(Mdvdx). Hence there

exists Ln → +∞ such that νφ(Ln, ·) → 0 in L2(Mdv) as n→ +∞. Thus

‖T φ‖H‖φ‖H ≥
∫ Ln

0
〈φT φ〉dx

= 〈v1φ(Ln, ·)2〉 −
∫

v1<0
v1φ(0, v)2Mdv +

∫ Ln

0
〈φLpφ〉dx

≥ λ′
∫ Ln

0
〈νφ2〉dx.

Letting Ln → +∞, one arrives at the inequality

λ′‖
√
νφ‖2

H ≤ ‖T φ‖H‖φ‖H,

which implies that

λ′
√
ν−‖

√
νφ‖H ≤ ‖T φ‖H.

Hence

‖T φ‖H ≥ ‖v1∂xφ+ νφ‖H − ‖Kφ‖H

−α‖Π+(v1φ)‖H − β‖p(φ)‖H − γ‖v1φ‖H

≥ ‖v1∂xφ+ (ν− − γ)(1 + |v|)φ‖H − C‖φ‖H

≥ ‖v1∂xφ+ (ν− − γ)(1 + |v|)φ‖H − C
λ′ν−

‖T φ‖H.

It remains to prove that, for some constant C ′ > 0, one has

‖v1∂xφ+ (ν− − γ)(1 + |v|)φ‖H ≥ C ′‖νφ‖H (3.4)

whenever φ ∈ D(T ). Given S ∈ H, one solves for φ the equation

v1∂xφ+ (ν− − γ)(1 + |v|)φ = S, φ ∈ D(T )

and finds

φ(x, v) =

∫ x

0
e−(ν−−γ)(1+|v|)(x−y)/v1

1

v1
S(y, v)dy, v1 > 0

φ(x, v) =

∫ ∞

x
e−(ν−−γ)(1+|v|)(y−x)/|v1 | 1

|v1|
S(y, v)dy, v1 < 0.
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In other words,

φ(·, v) = G(·, v) ⋆
(

S(·, v)1y>0

)

with

G(z, v) =
1

|v1|
e−(ν−−γ)(1+|v|)|z|/|v1|(1z>01v1>0 + 1z<01v1<0).

Since
∫ ∞

−∞
G(z, v)dz =

1v1>0 + 1v1<0

(ν− − γ)(1 + |v|)

we conclude by the Hausdorff-Young inequality that

‖(ν− − γ)(1 + |v|)g(·, v)‖L2
x
≤ ‖S(·, v)‖L2

x
.

Integrating each side of this inequality for the measure Mdv leads to the

inequality (3.4) with C ′ = ν−−γ
ν+

which entails in turn the inequality

λ′′‖νφ‖H ≤ ‖T φ‖H

with λ′′ = ν−−γ
ν+

(1 + C
λ′ν−

)−1.

The analogous statement on T ∗ is proved in the same way.

The first inequality clearly implies that Ker T = {0}. The second in-

equality implies that Im T = H (see [4], Theorem II.19). �

As a consequence, we have the following

Proposition 3.2. Let α > 0, β > 0, and γ > 0 be constants sat-

isfying (2.29), (2.30), and (2.31). Let S ≡ S(x, v) be such that eγxS ∈
L2(R+;L2(Mdv)) and let gb ∈ L2(ν21v1>0Mdv). Then, there exists a unique

solution g ∈ L2(R+;L2(ν2Mdv)) to the penalized problem (2.32). This solu-

tion satisfies the estimate

λ′′‖νg‖H ≤ ‖eγxS‖H + 1√
2γ
‖Lp(gb1v1>0)‖L2(Mdv)

+ 1
ν−

(
√

γ
2 + λ′′√

2γ

)

‖νgb1v1>0‖L2(Mdv).

Proof. Let h(x, v) = g(x, v) − gb(v)1v1>0e
−γx; one easily checks that
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h ∈ D(T ) if and only if g ∈ D(T ), and that

T h = eγx(I − P)S + γe−γx1v1>0v1gb(v) − e−γxLp(gb1v1>0),

∈ L2(R+;L2(Mdv))

if and only if g is a solution to (2.32). By Lemma 3.1, this problem has a

unique solution in L2(R;L2(Mdv)). Hence there exists a unique solution

g ∈ L2(R+;L2(ν2Mdv)) to the penalized problem (2.32). �

3.2. The L
∞ theory

The material in this section is essentially adapted from [12]. For v1 6= 0,

let a(v) = ν(|v|)
v1

− γ; denote by vR the “reflected” velocity vector vR =

(−v1, v2, v3). The decomposition (2.18) for L gives the analogous decompo-

sition (Lpφ)(v) = v1a(v)φ(v) − (Kpφ)(v); in other words

Kpφ = Kφ− αΠ+(v1φ) − βP(φ), φ ∈ D(L). (3.5)

Finally, the notation S̃ designates S̃(x, v) = eγx(I − P)S(x, v).

With these notations, let g be the solution of the penalized problem

(2.32) in L2(R+;L2(Mdv)). Then, for a.e. x > 0, one has

g(x, v) = e−a(v)xgb(v) +

∫ x

0
e−a(v)(x−z) 1

v1
(Kpg + S̃)(z, v)dz, v1 > 0,

g(x, v) =

∫ +∞

x
e−a(vR)(z−x) 1

|v1|
(Kpg + S̃)(z, v)dz, v1 < 0.

(3.6)

(In the case of v1 > 0, the formula above is obvious; the formula for the case

v1 < 0 is proved in [10] — see flas (3.47) and (3.48) on p. 90 there).

The main estimates needed in this section are summarized below. We

define two operators by the formulas

(A+h)(x, v) =

∫ x

0
e−a(v)(x−z) 1

v1
h(z, v)dz, v1 > 0,

(A−h)(x, v) =

∫ +∞

x
e−a(vR)(z−x) 1

|v1|
h(z, v)dz, v1 < 0.

(3.7)

Lemma 3.3. The following estimates hold:
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• if h(·, v) ∈ L∞(R+) for a.e. v ∈ R3, then

‖A+h(·, v)‖L∞ ≤ 1

ν(|v|) − γ|v1|
‖h(·, v)‖L∞ ,

‖A−h(·, v)‖L∞ ≤ 1

ν(|v|) − γ|v1|
‖h(·, v)‖L∞ ;

(3.8)

• if h(·, v) ∈ L2(R+) for a.e. v ∈ R3, then

‖1v1>1A+h(·, v)‖L∞ ≤ 1
√

2(ν(|v|) − γ|v1|)
‖h(·, v)‖L2 ,

‖1v1<1A−h(·, v)‖L∞ ≤ 1
√

2(ν(|v|) − γ|v1|)
‖h(·, v)‖L2 ,

(3.9)

• if h(·, v) ∈ L2 ∩ L∞(R+) for a.e. v ∈ R3 and each ǫ > 0, one has

‖10<v1<1A+h(·, v)‖L∞ ≤ ‖h(·, v)‖L2

2
√
ǫe(ν(|v|) − γ|v1|)

+
ǫ1/4‖h(·, v)‖L∞

(ν(|v|) − γ|v1|)3/4|v1|1/4
,

‖1−1<v1<0A−h(·, v)‖L∞ ≤ ‖h(·, v)‖L2

2
√
ǫe(ν(|v|) − γ|v1|)

+
ǫ1/4‖h(·, v)‖L∞

(ν(|v|) − γ|v1|)3/4|v1|1/4
.

(3.10)

The proof of these estimates is given in [12] (see the proof of Proposition

3.4 there, on pp. 90–93).

Here is how these estimates are used on the problem (2.32). First, the

integral equations (3.6) are recast as

1v1>0g = e−axgb + A+(Kpg + S̃), 1v1<0g = A−(Kpg + S̃).

Then

‖g‖L2(Mdv;L∞
x ) ≤ ‖gb‖L2(Mdv) + 1

ν−−γ ‖(1 + |v|)−1S̃‖L2(Mdv;L∞
x )

+ 1√
2(ν−−γ)

‖Kpg‖L2(Mdvdx) + 1
2
√

ǫe(ν−−γ)
‖Kpg‖L2(Mdvdx)

+ 1
(ν−−γ)3/4 ǫ

1/4

∥

∥

∥

∥

1|v1|≤1

‖Kpg(·, v)‖L∞
x

|v1|1/4(1 + |v|)3/4

∥

∥

∥

∥

L2(Mdv)

. (3.11)

Next we recall a fundamental decay property verified by K.
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Lemma 3.4. If φ ∈ L2(Mdv), then2
√
MKφ ∈ L

∞,1/2
v . More precisely,

there exists a positive constant denoted ‖K‖L2,L∞,1/2 such that, for each φ ∈
L2(Mdv)

‖(1 + |v|)1/2
√
MKφ‖L∞

v
≤ ‖K‖L2,L∞,1/2‖φ‖L2(Mdv).

See Proposition 6.1 (especially formula (6.1)) in [5] for a proof of this

classical result. Obviously, Kp shares the same property.

Corollary 3.5. For each α > 0 and β > 0, there exists ‖Kp‖L2,L∞,1/2 >

0 such that the operator Kp defined in (3.5) satisfies

‖(1 + |v|)2
√
MKpφ‖L∞

v
≤ ‖Kp‖L2,L∞,1/2‖φ‖L2(Mdv).

Proof. One has

|
√
MΠ+(v1φ)| = |

√
Mχ+|

|〈v1φχ+〉|
|〈χ2

+〉|
≤ 〈|v1χ+|2〉1/2

|〈χ2
+
〉| ‖φ‖L2(Mdv)|

√
Mχ+|

and
√
M (1+ |v|)sχ+(v) ∈ L∞

v for all s > 0. Since there is a similar estimate

for p(φ), the announced inequality follows from Lemma 3.4. �

The last term in the right hand side of (3.11) is estimated as follows:

∥

∥

∥

∥

∥

1|v1|≤1

√
M‖Kpg(·, v)‖L∞

x

|v1|1/4(1 + |v|)3/4

∥

∥

∥

∥

∥

L2
v

≤
∥

∥

∥

∥

1|v1|≤1

‖Kp‖L2,L∞,1/2‖g‖L∞
x (L2(Mdv))

|v1|1/4(1 + |v|)3/41/2

∥

∥

∥

∥

L2
v

≤ ‖Kp‖L2,L∞,1/2‖|u|−1/4‖L2(−1,1)

×‖(1 + |w|)−5/4‖L2(R2)‖g‖L2(Mdv;L∞
x ).

Set C0 = ‖Kp‖L2,L∞,1/2‖|u|−1/4‖L2(−1,1)‖(1 + |w|)−5/4‖L2(R2); the estimate

(3.11) becomes

‖g‖L2(Mdv;L∞
x ) ≤ ‖gb‖L2(Mdv) + 1

ν−−γ ‖(1 + |v|)−1S̃‖L2(Mdv;L∞
x )

+
(

1√
2(ν−−γ)

+ 1
2
√

ǫe(ν−−γ)

)

‖Kp‖L2,L2‖g‖L2(Mdvdx)

+ C0

(ν−−γ)3/4 ǫ
1/4‖g‖L2(Mdv;L∞

x ) (3.12)

2The notation Lp,s
v designates the class of functions {f ∈ Lp

v ||v|sf ∈ Lp
v}.
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By choosing ǫ > 0 small enough so that C0

(ν−−γ)3/4 ǫ
1/4 = 1

2 in the in-

equality above, we have proved the following

Proposition 3.6. Assume that α > 0, β > 0 and γ > 0 satisfy (2.29),

(2.30), and (2.31). Let gb ∈ L2(ν21v1>0Mdv) and S ≡ S(x, v) be such that

eγ
∗xS ∈ L2(Mdv;L∞

x ) for some γ∗ > γ. Then the solution g of the penalized

problem (2.32) belongs to L2(Mdv;L∞
x ) and one has

‖g‖L2(Mdv;L∞
x ) ≤ 2‖gb‖L2(Mdv) + 2

ν−−γ ‖(1 + |v|)−1S̃‖L2(Mdv;L∞
x )

+
( √

2√
ν−−γ

+
4C2

0√
e(ν−−γ)5/2

)

‖Kp‖L2,L2‖g‖L2(Mdvdx).

Applying Corollary 3.5 once again, together with the bounds (3.8), one

finds that

‖
√
Mg‖L∞

x,v
≤ ‖

√
Mgb1v1>0‖L∞

v
+ 1

ν−−γ ‖(1 + |v|)−1
√
MS̃‖L∞

x,v

+ 1
ν−−γ ‖K

p‖L2,L∞,1/2‖g‖L2(Mdv,L∞
x )

Next, we improve the decay in v of the solution, by iterating on the

following classical estimate:

Lemma 3.7. For s ≥ 0, if
√
Mφ ∈ L∞,s(Mdv), then

√
MKφ ∈ L∞,s+1

v .

Moreover, there exists a positive constant denoted ‖K‖L∞,s ,L∞,s+1 such that

‖(1 + |v|)s+1
√
MKφ‖L∞

v
≤ ‖K‖L∞,s ,L∞,s+1‖(1 + |v|)s

√
Mφ‖L∞

v

whenever
√
Mφ ∈ L∞,s(Mdv)

See formula (6.2) in Proposition 6.1 of [5]. Obviously, the same is true

of Kp:

Corollary 3.8. For α > 0 and β > 0, there exists ‖Kp‖L∞,s,L∞,s+1 > 0

such that the operator Kp defined in (3.5) satisfies

‖(1 + |v|)s+1
√
MKpφ‖L∞

v
≤ ‖Kp‖L∞,s,L∞,s+1‖(1 + |v|)s

√
Mφ‖L∞

v

whenever
√
Mφ ∈ L∞,s(Mdv).

The proof is the same as that of Corollary 3.5.

Applying Corollary 3.8 together with the bounds (3.8) leads to

‖(1 + |v|)s+1
√
Mg‖L∞

x,v
≤ ‖(1 + |v|)s+1

√
Mgb1v1>0‖L∞

v
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+ 1
ν−−γ ‖(1 + |v|)s

√
MS̃‖L∞

x,v

+ 1
ν−−γ ‖K

p‖L∞,s,L∞,s+1‖(1+|v|)s
√
Mg‖L∞

x,v
. (3.13)

By induction, applying successively Proposition 3.2, Proposition 3.6 and

the estimate (3.13) we arrive at the

Proposition 3.9. Assume that α > 0, β > 0 and γ > 0 satisfy (2.29),

(2.30), and (2.31). Assume that

√
Mgb1v1>0 ∈ L∞,3

v and that eδx(1 + |v|)2
√
MS̃ ∈ L∞

x,v

for some δ > 0. Then, the solution g of the penalized problem (2.32) satisfies

an estimate of the form

‖(1 + |v|)3
√
Mg‖L∞

x,v
≤ C‖

√
Mgb1v1>0‖L∞,3

v
+ C‖eδx(1 + |v|)2

√
MS̃‖L∞

x,v

for some constant

C ≡ C(ν+, ν−, α, β, γ, δ, ‖Kp‖L2,L∞,1/2, max
s=0,1,2

‖Kp‖L∞,s,L∞,s+1).

4. The Nonlinear Problem

4.1. The penalized, nonlinear problem

Given fb ≡ fb(v) such that
√
Mfb1v1>0 ∈ L∞,3

v , we consider the follow-

ing problem: to find (g, h) such that

v1∂xg + Lpg = e−γx(I − P)Q(g + h, g + h) , x > 0 , v ∈ R3,

h(x, v) = −eγx

∫ +∞

x
e−2γzPQ(g+h, g+h)(z, v)dz, x>0, v∈R3, (4.1)

g(0, v) = fb(v) − h(0, v) , v1>0, v∈R3

where the operator P is defined by the formula

Pφ = v−1
1 Pφ =

〈B1φ〉
〈B1LB1〉

χ0 +
〈A12φ〉

〈A12LA12〉
χ2 +

〈A13φ〉
〈A13LA12〉

χ3 .

This is the nonlinear penalized problem.
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By Proposition 3.9, a solution (g, h) of the nonlinear penalized problem

satisfies the bound

‖(1 + |v|)3
√
Mg‖L∞

x,v

≤ C‖
√
Mfb1v1>0‖L∞,3

v
+ C‖(1 + |v|)2

√
MQ(g + h, g + h)‖L∞

x,v

+C

∥

∥

∥

∥

(1 + |v|)3
√
M

∫ +∞

0
e−2γzPQ(g + h, g + h)(z, v)dz

∥

∥

∥

∥

L∞
v

by choosing δ = γ in the estimate of Proposition 3.9. Besides, observe that

one has the trivial continuity bound

‖(1 + |v|)3
√
MPφ‖L∞

v
≤ C ′‖

√
Mφ‖L∞

v

for some positive constant C ′, so that the estimate above becomes

‖(1 + |v|)3
√
Mg‖L∞

x,v

≤ C‖
√
Mfb1v1>0‖L∞,3

v

+(C + 1
2γCC

′)‖(1 + |v|)2
√
MQ(g + h, g + h)‖L∞

x,v
. (4.2)

By the same token, we find that

‖(1 + |v|)3
√
Mh‖L∞

x,v

=

∥

∥

∥

∥

(1 + |v|)3
√
M

∫ +∞

x
e−γ(2z−x)PQ(g + h, g + h)(z, v)dz

∥

∥

∥

∥

L∞
x,v

≤ 1
2γC

′‖(1 + |v|)2
√
MQ(g + h, g + h)‖L∞

x,v
. (4.3)

Let us recall the following classical bound on the Boltzmann collision inte-

gral:

Lemma 4.1. For each s > 0, there exists Cs > 0 such that

‖(1 + |v|)s−1
√
MQ(φ, φ)‖L∞

v
≤ Cs‖(1 + |v|)s

√
Mφ‖2

L∞
v
.

See Proposition 5.1 in [6] for a proof of this result.

Proposition 4.2. Assume that α > 0, β > 0 and γ > 0 satisfy (2.29),

(2.30), and (2.31). There exists ǫ > 0 such that, for each fb ≡ fb(v) satisfying

‖
√
Mfb1v1>0‖L∞,3

v
≤ ǫ (4.4)
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the nonlinear penalized problem (4.1) has a unique solution such that

‖(1 + |v|)3
√
Mg‖L∞

x,v
+ ‖(1 + |v|)3

√
Mh‖L∞

x,v
<∞ . (4.5)

Proof. Consider the map (g, h) 7→ (g1, h1), where (g1, h1) is the solution

of

v1∂xg1 + Lpg1 = e−γx(I − P)Q(g + h, g + h) , x > 0 , v ∈ R3 ,

h1(x, v) = −eγx

∫ +∞

x
e−2γzPQ(g+h, g+h)(z, v)dz, x>0, v∈R3, (4.6)

g1(0, v) = fb(v) − h1(0, v) , v1 > 0 , v ∈ R3 .

Similarly to the bounds (4.2) and (4.3) above, one has, in view of Lemma

4.1

‖(1 + |v|)3
√
Mg1‖L∞

x,v
+ ‖(1 + |v|)3

√
Mh1‖L∞

x,v

≤C‖
√
Mfb1v1>0‖L∞,3

v
+(C+ 1

2γC
′+ 1

2γCC
′)‖(1+|v|)2

√
MQ(g+h, g+h)‖L∞

x,v

≤C‖
√
Mfb1v1>0‖L∞,3

v

+(C + 1
2γC

′ + 1
2γCC

′)C3‖(1 + |v|)3
√
M(g + h)‖2

L∞
x,v
.

Hence, setting

ǫ =
(

4C(C + 1
2γC

′ + 1
2γCC

′)
)−1

one sees that the condition

‖(1 + |v|)3
√
Mg‖L∞

x,v
+ ‖(1 + |v|)3

√
Mh‖L∞

x,v
≤ Cǫ

implies that

‖(1 + |v|)3
√
Mg1‖L∞

x,v
+ ‖(1 + |v|)3

√
Mh1‖L∞

x,v
≤ Cǫ .

The existence and uniqueness of the solution of the nonlinear penalized prob-

lem (4.1) follows from the fixed point theorem in the complete space

{(g, h) | ‖(1 + |v|)3
√
Mg‖L∞

x,v
+ ‖(1 + |v|)3

√
Mh‖L∞

x,v
≤ Cǫ} . �

4.2. The nonlinear Knudsen layer

Assume that α > 0, β > 0 and γ > 0 satisfy (2.29), (2.30), and (2.31),
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and let ǫ > 0 be as in Proposition 4.2. For fb ≡ fb(v) satisfying (4.4),

the nonlinear penalized problem (4.1) has a unique solution (g, h) satisfying

(4.5). Set

f(x, v) = e−γxg(x, v) + e−γxh(x, v) .

This function f satisfies

v1∂xf + Lf = Q(f, f) − αe−γxΠ+(v1g) − βe−γxp(g)

f(0, v) = fb(v) for v1 > 0
√
M |f(x, v)| ≤ c(1 + |v|)−3e−γx , x > 0 , v ∈ R3 .

for some constant c > 0.

Therefore, f is a solution of the nonlinear Knudsen layer problem (2.4)

if

Π+(v1g) = 0 and p(g) = 0 . (4.7)

Conversely, if f is a solution of (2.4) such that

√
M |f(x, v)| ≤ c(1 + |v|)−3e−γx , x > 0 , v ∈ R3 ,

we set

g = eγx(I − p)f and h = eγxpf .

By Lemma 2.5 — see also the proof of (2.16) — (g, h) is then a solution of

the nonlinear penalized problem (4.1) that satisfies (4.7).

Hence the proof of Theorem 1.1 the conditions (4.7) define a subset of

boundary data fb of codimension 4 in the ball B(0, ǫ) of L∞,3
v .

For fb ≡ fb(v) satisfying (4.4), let (g, h) be the solution of the nonlinear

penalized problem (4.5), and let

g̃(x, v) = e−γxg(x, v) and h̃(x, v) := e−γxh(x, v) .

Then

v1∂xg̃ + Lg̃ = (I − P)Q(g̃ + h̃, g̃ + h̃) − αΠ+(v1g̃) − βp(g̃) . (4.8)
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Multiplying both side of this equality by χ+(v) as in (2.8) and integrat-

ing for the measure Mdv leads to the identity

d

dx
〈v1χ+g̃〉 = −α〈v1χ+g̃〉 , x > 0 ,

so that

〈v1χ+g̃〉(x) = 〈v1χ+g̃〉(0)e−αx , x > 0 .

Hence the first condition in (4.7) is equivalent to

〈v1χ+g̃〉(0) = 0 . (4.9)

Multiplying both side of (4.8) by χj(v) for j = 0, 2, 3 (see (2.8) for the

definition of these functions) and integrating for the measure Mdv leads to

the identity

d

dx

〈

v1





χ0

χ2

χ3



 g̃

〉

= −β





λ0〈v1B1g̃〉
λ2〈v1A12g̃〉
λ3〈v1A13g̃〉



 , x > 0 , (4.10)

where

λ0 =
〈χ2

0〉
〈B1LB1〉

> 0 , λj =
〈χ2

j〉
〈A1jLA1j〉

> 0 , j = 2, 3 .

Moreover, multiplying both side of (4.8) by B1, A12 and A13 and integrating

for the measure Mdv leads to

d

dx

〈

v1





B1

A12

A13



 g̃

〉

+

〈





B1

A12

A13



Lg̃
〉

=

〈





B1

A12

A13



 (I − P)Q(g̃ + h̃, g̃ + h̃)

〉

.

Since

〈





B1

A12

A13



Lg̃
〉

=

〈

v1





χ0

χ2

χ3



 g̃

〉

and

〈





B1

A12

A13



Pφ

〉

=

〈





B1

A12

A13



φ

〉
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which implies that

〈





B1

A12

A13



 (I − P)Q(g̃ + h̃, g̃ + h̃)

〉

= 0

we conclude that

d

dx

〈

v1





B1

A12

A13



 g̃

〉

+

〈

v1





χ0

χ2

χ3



 g̃

〉

= 0 . (4.11)

Putting together (4.10) and (4.11), we finally obtain

d2

dx2

〈

v1





B1

A12

A13



 g̃

〉

= −β





λ0 0 0

0 λ2 0

0 0 λ3





〈

v1





B1

A12

A13



 g̃

〉

.

Since β > 0, and λj > 0 for j = 0, 2, 3, and
√
Mg̃ is bounded on Rx × R3

v,

we conclude that

〈

v1





B1

A12

A13



 g̃

〉

(x) =







e−
√

βλ0x 0 0

0 e−
√

βλ2x 0

0 0 e−
√

βλ3x







〈

v1





B1

A12

A13



 g̃

〉

(0)

Hence the second condition in (4.7), which is

〈

v1





B1

A12

A13



 g̃

〉

(x) = 0 for each x ≥ 0 ,

is in turn equivalent to

〈

v1





B1

A12

A13



 g̃

〉

(0) = 0 . (4.12)

Setting f = g̃+ h̃, we see that the conditions (4.9) and (4.12) are equiv-

alent to

〈









χ+

B1

A12

A13









(

v1f(0, ·) +

∫ ∞

0
Q(f, f)(z, ·)dz

) 〉

= 0 .
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As the functions χ+, B1, A12, A13 are linearly independent, this condition

defines indeed a codimension 4 subset of boundary data fb in the ball B(0, ǫ)

of L∞,3
v . This completes the proof of Theorem 1.1.

5. Conclusion

Thus we have extended the Ukai-Yang-Yu theorem in [21] to the case

where the Mach number at infinity Ma∞ = 0. The proof of this extension

uses

(a) the variant of the Bardos-Caflisch-Nicolaenko energy method based on a

suitable penalization of the linearized collision integral proposed by [21],

and

(b) the analogue in the case of the Boltzmann equation of the K-integral for

the half-space problem in radiative transfer — i.e. the projections p and

P in Section 2.3.

The same method can be also applied in the cases Ma∞ = ±1 which is not

covered by the method in [21].

Again without loss of generality, we can restrict our attention to the

cases where

ρ∞ = θ∞ = 1 , u1,∞ = ±
√

5
3 , u2,∞ = u3,∞ = 0 . (5.1)

and set the problem (1.1)-(1.5) in the variables

ξ1 = v1 ±
√

5
3 , ξ2 = v2 , ξ3 = v3 .

Setting c =
√

5/3, we observe that

〈(ξ1 + c)χ2
−〉 = 0 , 〈(ξ1 − c)χ2

+〉 = 0 .

Hence

(ξ1 + c)χ−⊥KerL , and (ξ1 − c)χ+⊥KerL ,

and the Fredholm alternative for the linearized collision operator implies the

existence and uniqueness of

X+ ∈ KerL such that LX+ = (ξ1 + c)χ− ,

X− ∈ KerL such that LX− = (ξ1 − c)χ+ .
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This suggests introducing the projections

P±φ =
〈X±φ〉

〈X±LX±〉
LX± , p±φ =

〈(ξ1 ± c)X±φ〉
〈X±LX±〉

LX±
ξ1 ± c

together with the following penalized versions of the linearized collision in-

tegral:

Lp,+φ = Lφ+ αΠ+
+((ξ1 + c)φ) + βp+(φ) − γ(ξ1 + c)φ

Lp,−φ = Lφ+ βp−(φ) − γ(ξ1 − c)φ

where Π+
+ is the L2(Mdv)-orthogonal projectionon the linear span of {χ+, χ0,

χ2, χ3}.
Following the method presented above, we consider the penalized non-

linear problems

(ξ1 ± c)∂xg + Lp,±g = e−γx(I − P±)Q(g + h, g + h) ,

h(x, ξ) = −eγx

∫ +∞

x
e−2γz 1

ξ1 ± c
P±Q(g + h, g + h)(z, v)dz ,

g(0, ξ) = fb(ξ) − h(0, ξ) , ξ1 ± c > 0 ,

and one sees that S[M(1,(+c,0,0),1)] is the set of fbs satisfying

〈













χ+

χ0

χ2

χ3

X+













(

(ξ1 + c)f(0, ·) +

∫ ∞

0
Q(f, f)(z, ·)dz

) 〉

= 0 ,

while S[M(1,(−c,0,0),1)] is the set of fbs satisfying

〈

X−

(

(ξ1 + c)f(0, ·) +

∫ ∞

0
Q(f, f)(z, ·)dz

) 〉

= 0 .

In other words, S[M(1,(+c,0,0),1)] and S[M(1,(−c,0,0),1)] are respectively of codi-

mension 5 near M(1,(+c,0,0),1) and 1 near M(1,(−c,0,0),1).

Finally, observe that Theorem 1.1 does not guarantee that the solution

F of (1.1) with boundary condition (1.5) defined by

Fb = M(1,0,1)(1 + fb) with fb ∈ S[M(1,0,1)]

is nonnegative. This is a major shortcoming of all near-equilibrium existence
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and uniqueness results for the steady Boltzmann equation proved by a fixed-

point argument. Such was the case, for instance, of the weakly nonlinear

shock profiles for the Boltzmann equation constructed by B. Nicolaenko

[16, 17] in the case of a hard-sphere gas and by Caflisch-Nicolaenko [7] for

softer cut-off potentials. Fortunately, the positivity issue was recently settled

(by a stability argument) by T.-P. Liu and S.-H. Yu in [15] in the case of

the shock profile problem. One could hope that a similar method would

eventually establish the positivity also in the case of boundary layers. As a

matter of fact, the work of Y. Sone and his collaborators on the condensation-

evaporation half-space problem is indeed based on a time-marching method,

which guarantees that the solution so obtained is nonnegative. In the case

of a supersonic condensation flow (Ma∞ = −1) S. Ukai, T. Yang and S.-H.

Yu [22] have indeed proved the stability — and therefore the positivity —

of the solution of the boundary layer problem (1.1)-(1.5) with asymptotic

behavior at infinity given by (1.6).
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