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Algebraic nonlinear estimation and flatness-based
lateral/longitudinal control for automotive vehicles

Lghani Menhour, Brigitte d’Andréa-Novel, Clément Boussard, Michel Fliess and Hugues Mounier

Abstract— A combined longitudinal and lateral vehicle con-
trol is presented. It employs flatness-based control and new
algebraic estimation techniques for the numerical differen-
tiation of noisy signals. This nonlinear control is designed
for automatic path-tracking via vehicle steering angle and
driving/braking wheel torque. It combines the control of the
lateral and longitudinal movements in order to ensure an
accurate tracking of straight or curved trajectories. It can
also be used to perform a combined lane-keeping and steering
control during critical driving situations such as obstacle
avoidance, stop-and-go control, lane-change maneuvers or any
other maneuvers. Promising results have been obtained using
the noisy experimental data acquired by a laboratory vehicle
under high dynamic loads and characterized by high lateral
accelerations.

I. INTRODUCTION

The research on intelligent transportation systems, the aim
of which is to improve road safety, is getting more and
more active. Some assistance systems have been developed in
order to help the driver in critical situations, and to improve
the vehicle stability and steerability. Among those, we can
find for example Anti-Lock Braking System, Electronic
Stability program, Adaptive Cruise Control and recently four
wheel steering systems.

To develop autonomous vehicles, the design of combined
lateral and longitudinal control is required to perform some
coupled maneuvers as stop-and-go control with obstacle
avoidance, lane-change maneuvers, and the appropriate steer-
ing angle to ensure lane keeping. A majority of the strategies
proposed in the previous published works deal with longitu-
dinal or lateral control separately, and rarely with a combined
implementation, for example to perform a braking action in
curve. In [22], a survey of driver models and their application
in automotive dynamics is presented, and papers referred in
this large inventory deal only with steering vehicle control.
In [25] an integration of longitudinal and lateral control for
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platooning in highways is presented in a decoupled way. The
steering control strategy for the autonomous lane change in
highway or for urban steering driving are also presented in
several works, like [2], [4], [12], [13], [16].

Longitudinal control is considered in some papers, for ex-
ample in [17], [20], [27], [28] with some stop-and-go control
strategies to keep a safety distance and avoid collisions.

On the other hand, some works have dealt with the
problem of comfort and improvements of a ground vehicle
handling through the joint braking and suspension control,
see for example [23]. In [24] this approach is extended by the
introduction of the steering control in order to improve the
vehicle stability, the longitudinal motion is not considered as
a state component but as a variable parameter.1

In [19], [14], the authors propose an inventory concerning
longitudinal and lateral control, and point out that in the
literature the longitudinal control and the steering control
are treated separately in most of the cases. However, in [3],
[5], a nonlinear global chassis control law is proposed to
follow desired trajectories in yaw rate and in longitudinal
acceleration via braking torques only without active steering
control.

The present paper deals with the problem of a nonlinear
coupled longitudinal and lateral control based on algebraic
nonlinear estimation techniques [7], [18] and differential
flatness [8], [9] (see also [10] for a related approach). To
deal with this method, a three degrees-of-freedom two wheels
vehicle model is considered. The estimation approach allows
to obtain a very good estimation of the derivatives of noisy
signals. Indeed the sensors used in a real automotive applica-
tion are generally low cost and their measurements are very
noisy. Hence it is not easy to use these measurements directly
to obtain the reference signals for the control applications.
For this reason, algebraic estimation is useful.

The remainder of this paper is organized as follows.
Section II presents the 3DoF two wheels vehicle model used
for the control law design. Section III describes the design
steps of a flatness-based robust combined longitudinal and
lateral non linear control and algebraic nonlinear estimation.
Section IV presents detailed experimental results using the
noisy measurements acquired on real roads with high dy-
namic loads. Some concluding remarks and future work are
presented in Section V.

1See also [30].



II. VEHICLE MODELS AND COUPLED DYNAMIC ANALYSIS

Two nonlinear vehicle models are used: the first one
is a 3DoF two wheels nonlinear model (3DoF-NLTWVM)
which will be used to design a combined nonlinear control
law. The second is a 10DoF four wheels nonlinear model
(10DoF-NLFWVM) which will be used as a complete vehicle
simulator to test the proposed control law under high loads
with curved trajectories. In the following subsections we
present the reasons for which the coupled nonlinear vehicle
models are used.

A. Coupled dynamics

The aim of designing a combined lateral and longitudinal
controller is to enhance and ensure a certain level of control
performance, and realize some combined maneuvers. There-
fore, to ensure a combined robust control, coupled vehicle
dynamics must be taken into account. Clearly, to satisfy these
requirements, the identification of some coupling effects is
an important step to design a combined control law:

• The first coupling that can be cited is the one related to
the kinetics vehicle. The longitudinal motion is affected
by the steering angle; in fact when the vehicle wheels
are steered, the longitudinal forces are functions of the
wheel forces and steering angle. The lateral deviation is
also a function of the longitudinal speed and yaw angle.
The same reasoning is done for the lateral forces and
the longitudinal displacement.

• The load transfer is an important coupling of the
vehicle dynamics. This coupling is the consequence
of the braking/traction (change the weight distribution
between the front and rear tires), lateral acceleration
(change the weight distribution between the right and
left tires), road bank angle, road slope angle, roll and
suspension motions. All these coupling are considered
in the computation of the tire vertical forces.

• Another coupling effect comes from the behavior of the
tires; this coupling is expressed by the longitudinal and
lateral forces. In fact, to obtain a realistic representation
of the vehicle behaviors in extreme driving situations,
the coupling of longitudinal and lateral forces is re-
quired. To achieve this goal, the coupled formula of
Pacejka [21] model is used. In this model the coupling
of longitudinal slip, lateral slip, vertical forces and
camber angle is taken into account.

B. 3DoF Nonlinear Two Wheels Vehicle Control Model

The 3DoF-NLTWVM shown in Figure 1 used to design
the combined control law provides a sufficient approximation
of the longitudinal and lateral dynamics of the vehicle in
normal driving situations. This model is composed from the
longitudinal Vx, lateral Vy and yaw ψ̇ motions (see table I
for notations).

The coupled equations of this model are: max = m(V̇x− ψ̇Vy) = (Fx1 +Fx2)
may = m(V̇y + ψ̇Vx) = (Fy1 +Fy2)
Izψ̈ = Mz1 +Mz2

(1)

TABLE I
SOME NOTATIONS

Symbol Variable name
Vx longitudinal speed [km.h]
Vy lateral speed [km.h]
ax longitudinal acceleration [m/s2]
ay lateral acceleration [m/s2]
ψ̇ yaw rate [rad/s]
ψ yaw angle [rad]
β sideslip angle [rad]
ωi wheel angular speed of the wheel i [rad/s]
Tω wheel torque [Nm]
Tm wheel traction torque [Nm]
Tb wheel braking torque [Nm]
Tb f front wheel braking torque [Nm]
Tbr rear wheel braking torques [Nm]
δ wheel steer angle [deg]
C f , Cr front and rear cornering stiffnesses [N.rad−1]
Fxi longitudinal force in the vehicle coordinate [N]
Fyi lateral force in the vehicle coordinate [N]
Fx f front longitudinal force in the wheel coordinate [N]
Fy f front lateral force in the wheel coordinate [N]
R tire radius [m]
Rr road radius [m]
L f , Lr distances from the CoG to the front and rear axles [m]
Iz yaw moment of inertia [Kg.m−2]
Ir wheel moment of inertia [kgm2]
αi tire slip angle [rad]
g acceleration due to gravity [m/s2]
m vehicle mass [kgm2]
Mz yaw moment [Nm]

The forces and moments of Eq. (1) in the vehicle coordi-
nates taking into account the kinetics coupling are:

Fx1 = Fx f cos(δ )−Fy f sin(δ )
Fx2 = Fxr
Fy1 = Fx f sin(δ )+Fy f cos(δ )
Fy2 = Fyr
Mz1 = L f (Fy f cos(δ )+Fx f sin(δ ))
Mz2 =−LrFyr

(2)

Considering the small angles assumption, the forces and
moments, in Eq. (2) become as follows:

Fx1 = Fx f −Fy f δ

Fx2 = Fxr
Fy1 = Fx f δ +Fy f
Fy2 = Fyr
Mz1 = L f (Fy f +Fx f δ )
Mz2 =−LrFyr

(3)
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Fig. 1. Nonlinear two wheeled vehicle model



In Eq. (1) the longitudinal forces are calculated using the
dynamical model of the wheels. For the front wheel:

Fx f = (1/R)(−Irω̇ f +Tm−Tb f ) (4)

Considering that the vehicle is only propelled by the front
wheel, the dynamical model of the rear wheel is as follows:

Fxr =−(1/R)(Tbr + Irω̇r) (5)

The wheels rotations ω f and ωr are supposed to be
measured through odometers. They are introduced as external
inputs in the equations of the 3DoF-NLTWVM. We assume
that the rear braking torque Tbr is equal to the front one Tb f .
The wheels rotation accelerations will be estimated using
the algebraic nonlinear estimation and the measured rotation
speeds which are available on the vehicle’s CAN bus. Note
that the lateral tire forces, we have, modeled as proportional
to the slip angles of each axle. The front and rear forces
(Fy f = C f α f , Fyr = Crαr) are defined as follows: Fy f = C f

(
δ − Vy+ψ̇L f

Vx

)
Fyr =−Cr

(
Vy−ψ̇Lr

Vx

) (6)

where C f and Cr are the cornering stiffness for the front and
rear tires respectively. The longitudinal speed is considered
different from zero (Vx > ε). Replacing Eq. (3), (4), (5) and
(6) in Eq. (1) yields:



mV̇x = mψ̇Vy− Ir
R (ω̇r + ω̇ f )+ 1

R (Tm−Tb f −Tbr)

+C f

(
Vy+L f ψ̇

Vx

)
δ −C f δ 2

mV̇y =−mψ̇Vx−C f

(
Vy+L f ψ̇

Vx

)
−Cr

(
Vy−ψ̇Lr

Vx

)
+(1/R)(Tm−Tb f )δ +

(
C f − Ir

R ω̇ f
)

δ

Izψ̈ =−L fC f

(
Vy+L f ψ̇

Vx

)
+LrCr

(
Vy−Lrψ̇

Vx

)
+(L f /R)(Tm−Tb f )δ +L f (Tm− Ir

R ω̇ f )δ

(7)

The longitudinal movement is controlled via the trac-
tion/braking wheel torque Tω = Tm−Tb with Tb = Tb f +Tbr,
and the lateral movement via the steering angle δ . Define
the two control variables:{

u1 = Tω

u2 = δ

The model given by Eq. (7) may now be written as follows:

ẋ = f (x, t)+g(x)u+g1u1u2 +g2u2
2 (8)

where

f (x, t) =


ψ̇Vy− Ir

mR (ω̇r + ω̇ f )

−ψ̇Vx + 1
m

(
−C f

(
Vy+L f ψ̇

Vx

)
−Cr

(
Vy−Lrψ̇

Vx

))
1
Iz

(
−L fC f

(
Vy+L f ψ̇

Vx

)
+LrCr

(
Vy−Lrψ̇

Vx

))
 ,

g(x, t) =


1

mR
C f
m

(
Vy+L f ψ̇

Vx

)
0 (C f R− Irω̇ f )/mR

0 (L fC f R−L f Irω̇ f )/IzR

 ,g1 =

 0
1

mR
L f
IzR

 ,

g2 =

 −C f
m
0
0

T

, x =

 Vx
Vy
ψ̇

T

, u =
[

u1
u2

]T

III. FLATNESS-BASED CONTROL

In order to reduce the complexity of the nonlinear model in
Eq. (8), nonlinear terms such as u1u2 and u2

2 are neglected.2

Despite these simplifications some coupled behaviors are
kept as shown by the functions f (x, t) and g(x, t). Eq. (8)
becomes:

ẋ = f (x, t)+g(x, t)u (9)

A. Flatness property

Consider the system

ẋ = f (x,u)

where x = (x, · · · ,xn) ∈ Rn and u = (u, · · · ,um) ∈ Rm. It is
said to be differentially flat (see [8], [9] and [15], [26]) if,
and only if,

• there exists a vector-valued function h such that

y = h(x,u, u̇, · · · ,u(r)) (10)

where y = (y, · · · ,ym) ∈ Rm, r ∈ N;
• the components of x = (x, · · · ,xn) and u = (u, · · · ,um)

may be expressed as

x = A(y, ẏ, · · · ,y(rx)), rx ∈ N

u = B(y, ẏ, · · · ,y(ru)), ru ∈ N

Remember that y in Eq. (10) is called a flat output.

B. Flatness-based longitudinal and lateral control

1) A proof of flatness: We want to show that y1 and y2
given by {

y1 = Vx

y2 = L f mVy− Izψ̇

define a flat output. Some algebraic manipulations yield

x =
[

Vx Vy ψ̇
]T = A(y1,y2, ẏ2) =
y1

y2
L f m −

(
Iz

L f m

)(
L f my1 ẏ2+Cr(L f +Lr)y2

Cr(L f +Lr)(Iz−LrL f m)+(L f my1)2

)
−

(
L f my1 ẏ2+Cr(L f +Lr)y2

Cr(L f +Lr)(Iz−LrL f m)+(L f my1)2

)
 (11)

2The results of Section IV fully justify those approximations.



and [
ẏ1
ÿ2

]
= ∆(y1,y2, ẏ2)

(
u1
u2

)
+Φ(y1,y2, ẏ2)

⇒
[

u1
u2

]
= ∆−1(y1,y2, ẏ2)

([
ẏ1
ÿ2

]
−Φ(y1,y2, ẏ2)

)
(12)

where

∆11(y1,y2, ẏ2) =
1

mR

∆12(y1,y2, ẏ2) =
C f

m

(
Vy +L f ψ̇

y1

)
,

∆22(y1,y2, ẏ2) = +
(
−L f my1 + LrCr(L f +Lr)

y1

)
(L f C f R−L f Iω ω̇ f )

IzR

+ (Cr(L f +Lr)(Vy−Lrψ̇)−L f mψ̇y2
1)

y2
1

C f (Vy+L f ψ̇)
my1

− Cr(L f +Lr)
y1

RC f−Iω ω̇ f
mR

∆21(y1,y2, ẏ2) =
(Cr(L f +Lr)(Vy−Lrψ̇)−L f mψ̇y2

1)
mRy2

1

Φ1(y1,y2, ẏ2) = ψ̇Vy−
Iω

mR
(ω̇r + ω̇ f )

Φ2(y1,y2, ẏ2) =−L f my1 f3(x, t)−
Cr(L f +Lr)

y1
f2(x, t)

+Cr(L f +Lr)(Vy−Lrψ̇)−L f mψ̇y2
1

y2
1

f1(x, t)+ LrCr(L f +Lr)
y1

f3(x, t)

The flatness property holds therefore if the matrix
∆(y1,y2, ẏ2) is invertible. It reads

det(∆(y1,y2, ẏ2)) = ∆11∆22−∆21∆12 =

(Iω ω̇ f−C f R)
(

L2
f y2

1m2−Cr(L f +Lr)LrL f m+CrIzL
)

IzR2y1m2 6= 0

This determinant, which depends only on the longitudinal
speed y1 = Vx, is indeed nonzero:

• The wheel rotation acceleration is less than RC f /Iω :
RC f /Iω is around 104, then Iω ω̇ f −C f R 6= 0.

• Notice that Iz > L f m, then: Cr(Lr + L f )(Iz − L f m) +
L2

f m2y2
1 6= 0.

Thus

u =
[

Tω

δ

]
= B(y1, ẏ1,y2, ẏ2, ÿ2) =

∆−1(y1,y2, ẏ2)
([

ẏ1
ÿ2

]
−Φ(y1,y2, ẏ2)

) (13)

with rx = 1 and ru = 2.
2) A tracking feedback control: In order to track the

desired output trajectories yre f
1 and yre f

2 , set

[
ẏ1
ÿ2

]
=

[
ẏre f

1 +K1
1 ey1 +K2

1
∫

ey1dt

ÿre f
2 +K1

2 ėy2 +K2
2 ey2 +K3

2
∫

ey2dt

]
(14)

where, ey1 = yre f
1 − y1 = V re f

x −Vx and ey2 = yre f
2 − y2. The

choice of the gain parameters K1
1 , K2

1 , K1
2 , K2

2 and K3
2 is

straightforward.

C. Algebraic nonlinear estimation

It should be pointed out that the control law contains
derivatives of reference signals which are estimated from
measurements such as V re f

x , V re f
y , ψ̇re f and the derivatives

of the measured front and rear rotation speed wheels ω f and
ωr. In order to perform this task and avoid the effects of
the noisy measurements we propose to use the numerical
differentiation based on an algebraic nonlinear estimation.3

This estimation is performed using the recent advances in
[7], [18], which yield efficient real-time filters. The following
formulae (see, e.g., [11]) may be used:

• Denoising:

ŷ(t) =
2!
T 2

∫ t

t−T
(3(t− τ)−T )y(τ)dτ (15)

• Numerical differentiation of a noisy signal:

˙̂y(t) =− 3!
T 3

∫ t

t−T
(2T (t− τ)−T )y(τ)dτ (16)

Note that the sliding time window [t−T, t] may be quite
short.

Remark 3.1: The above estimation methods are not of
asymptotic type and do not require any statistical knowledge
of the corrupting noises (see [6] for details).

IV. COMPARISON WITH EXPERIMENTAL TESTS

Several trials in presence of coupled traction/braking and
steering maneuvers have been realized under high dynamic
loads using the laboratory vehicle. During these tests a
large set of dynamic parameters has been acquired such
as longitudinal and lateral speeds, lateral and longitudinal
accelerations, yaw rate, wheel rotation speeds, all forces and
moments on four wheels, steering angle, etc. For these tests
the acquisition device operates at frequency 400 Hz.

These data have been used in our simulation process as
reference trajectories, and compared to the obtained sim-
ulation results in closed loop with the experimental ones.
More precisely, the combined control approach presented
here is tested using several trials data performed on real
race track as shown by curvature of Figure 4. This section
presents a test conducted on a race track which is performed
under high dynamic loads as shown in Figures 2, 3, 4 and 5
which summarize some dynamic parameters of longitudinal
and lateral motions. This test presents a coupled steering,
accelerating, a sudden and sharp braking maneuver.

Figures 2 and 3 show the dynamic parameters of the two
controlled vehicle models (3DoF-NLTWVM and 10DoF-
NLFWVM) which are close to those measured such as yaw
rate, longitudinal speed, longitudinal and lateral accelera-
tions. Notice also that the steering angle and braking/traction
wheel torque provided by the combined control law are
similar to the measured ones, this, for any given vehicle
model (3DoF or 10DoF) and the performed maneuvers as
illustrated in Figures 2 and 3 between the positions from
600m to 750m and from 1000m to 1080m.

3See [1], [28], [29] for previous successful applications to intelligent
transportation systems.



During these two phases as mentioned on Figures 2 and 3,
the combined steering and braking maneuvers are performed
simultaneously in the most dangerous bends as illustrated in
Figure 4. The performances of the control law in terms of
tracking trajectories errors are depicted in Figure 5. Let us
emphasize that these errors are quite small and satisfactory
whatever the vehicle model used, the nature of the trajectory
and the dynamic loads (lateral acceleration −5 m/s2 6 ay 6
5 m/s2).

During this test, the control law is efficient in simulation
which is emphasized by the behavior of the controlled
models being close to the measured one. This remark is
verified especially when the 10DoF vehicle model is coupled
with the nonlinear flat control law, indeed, as shown by
Figure 4, the curvature of 3DoF-NLTWVM + nonlinear flat
control is slightly different from the reference road curvature.
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Fig. 2. Results of longitudinal behaviors: longitudinal acceleration,
longitudinal speed and traction/braking torque control

From the results obtained with the two tests, the control
law provided more realistic behaviors in terms of the tracking
trajectories, when coupling the braking/traction torque and
steering angle on a realistic simulator 10DoF-NLFWVM.
This shows the effectiveness and the ability of the combined
control law to operate under extreme and coupled nonlin-
ear vehicle behaviors (for lateral acceleration −5 m/s2 6
ay 6 5 m/s2 and longitudinal acceleration −5 m/s2 6 ax 6
3.5 m/s2) in curved trajectories (20 m < R < 35 m). It should
be pointed out that the emergency situations, such as col-
lisions and obstacle avoidance, lane-change maneuvers, can
easily cause critical dynamical driving situations. For this
reason the performance of the control law must be tested
under high dynamics loads.
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Fig. 3. Results of lateral behaviors: lateral acceleration, yaw rate and
steering angle control
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Fig. 4. Curvatures: reference and controlled vehicle model curvatures

Remark 4.1: Let us emphasize that our first results show
that the performance of the control law is not affected by the
model simplifications (nonlinear terms in the control inputs).
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V. CONCLUSIONS AND FUTURE WORK

The comparison with experimental results shows that the
proposed control law is able to track a coupled longitudinal
and lateral desired dynamics even under high dynamics loads
and sudden and sharp maneuvers.

Future works will be devoted to the study of some
combined tasks, like obstacle avoidance or lane change
maneuvers during stop-and-go control to maintain a constant
spacing between the cars using the inter-distance model [17].
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[8] M. Fliess, J. Lévine, P. Martin, P. Rouchon, “Flatness and defect of
nonlinear systems: introductory theory and examples”, Int. J. Control,
vol. 61, 1995, pp. 1327-1361.
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