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The fluid dynamic limit of the Boltzmann equation leading to the Euler equations for an incompressible fluid with constant density in the presence of material boundaries shares some important features with the better known inviscid limit of the Navier-Stokes equations. The present paper slightly extends recent results from [C. Bardos, F. Golse, L. Paillard, Comm. Math. Sci., 10 (2012), 159-190] to the case of boundary conditions for the Boltzmann equation more general than Maxwell's accomodation condition.

The Inviscid Limit of the Navier-Stokes Equations with Dirichlet Condition

Consider the flow of an incompressible fluid with constant density confined in a domain Ω ⊂ R N (in practice, N = 2 or 3), with smooth boundary ∂Ω. The dimensionless form of the Navier-Stokes equations governing the velocity field of the fluid

u ǫ ≡ u ǫ (t, x) ∈ R N is (1)            div x u ǫ = 0 , ∂ t u ǫ + div x (u ǫ ⊗ u ǫ ) + ∇ x p ǫ = ǫ∆ x u ǫ ,
x ∈ Ω , t > 0 , u ǫ ∂Ω = 0 ,

u ǫ t=0 = u in ,
where ǫ = Re -1 is the reciprocal Reynolds number of the flow. The Dirichlet boundary condition u ǫ ∂Ω = 0 means that the fluid does not slip on the boundary ∂Ω of the domain.

An outstanding problem in fluid dynamics is to understand the behavior of u ǫ in the vanishing ǫ limit, and especially to decide whether, in that limit, u ǫ converges to the solution of the Euler equations ( 2)

           div x u = 0 , ∂ t u + div x (u ⊗ u) + ∇ x p = 0 , x ∈ Ω , t > 0 , u • n ∂Ω = 0 , u t=0 = u in ,
where n is the unit outward normal field on ∂Ω.

In the case of the Cauchy problem set in either the whole Euclidian space R N or the periodic box T N , i.e. in the absence of material boundaries, the Navier-Stokes solutions converge to the solution of the Euler equations as long as the latter remains smooth -see for instance Propositions 4.1 and 4.2 in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF]. We recall that, if N = 2 and u in ∈ C k,α (i.e. either C k,α (R N ) or C k,α (T N )) for some k ≥ 1 and α ∈ (0, 1), there exists a unique global solution u ∈ C(R + ; C k,α ) of the Euler equationssee for instance Theorem 4.1 in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] -while, if N = 3 and if u in ∈ C 1,α , there exists a unique local solution u ∈ C([0, T ); C 1,α ) for some T ∈ (0, +∞], and it is unknown at the time of this writing whether T = +∞. Thus in the absence of material boundaries, the inviscid limit of the Navier-Stokes equations is described by the Euler equations, globally in time if N = 2, and maybe only locally in time if N = 3.

The situation is completely different in a domain with material boundaries. Even when (2) has a smooth solution, this solution might fail to attract u ǫ in the limit as ǫ → 0. The reason for such a behavior is of course that the Dirichlet condition satisfied by the Navier-Stokes solutions u ǫ for each ǫ > 0 is overdetermined for the Euler equations. Indeed, in general, the tangential component of the solution u of the Euler equations does not vanish on ∂Ω.

Thus one may seek to match the Euler solution to the Dirichlet condition on the boundary with a viscous boundary layer of thickness √ ǫ as proposed by Prandtl -see for instance [START_REF] Schlichting | Boundary layer theory[END_REF]. However it may not always be possible to do so. Consider for instance the flow of a viscous fluid past a cylinder or a sphere. In other words, assume that Ω is the complement in R 2 of a circular cylinder -or the complement in R 3 of a ball, and that the velocity field is constant at infinity on one side of the immersed body. Although there is no mathematical proof of this fact to this date, it is expected, on the basis of experiments and numerical simulations that, already at moderate Reynolds numbers, the viscous boundary layer detaches from the boundary and that vortices form in the wake past the immersed body (a phenomenon known as a "von Karman street"). Yet there exist perfectly smooth solutions of the Euler equations corresponding to the potential flow of an incompressible fluid past a sphere in space dimension 3 -see for instance §10, Problem 2 in [START_REF] Landau | Fluid Mechanics[END_REF].

Not much is known on Prandtl's boundary layer analysis for this problem from the mathematical viewpoint, apart from some positive results based on the Cauchy-Kovalevski theorem [START_REF] Caflisch | Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equations on a Half-Space I: Existence for Euler and Prandtl Equations[END_REF][START_REF] Caflisch | Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equations on a Half-Space II: Construction of the Navier-Stokes Solution[END_REF], as well as negative results concerning the Prandtl boundary layer equations [START_REF] Engquist | Blowup of solutions of the unsteady Prandtl equation[END_REF][START_REF] Grenier | On the Nonlinear Instability of Euler and Prandtl Equations[END_REF]. There is however the following very interesting criterion due to Kato [START_REF] Kato | Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary[END_REF].

Theorem 1.1 (Kato). Assume that Ω |u in (x)| 2 dx < ∞ and denote ∂Ω ǫ := {x ∈ Ω | dist(x, ∂Ω) < ǫ} . Then T 0 Ω |u ǫ -u| 2 dxdt → 0 ⇔ ǫ T 0 ∂Ωǫ |∇ x u ǫ | 2 dxdt → 0 as ǫ → 0.
In other words, the convergence of the Navier-Stokes solutions u ǫ to u as ǫ → 0 in quadratic mean everywhere in Ω is equivalent to the vanishing of the viscous energy dissipation in a thin layer near the boundary. The convergence of the Navier-Stokes solutions to a solution of the Euler equations is therefore a strongly nonlocal phenomenon. Notice that, while the Prandtl viscous boundary layer has thickness √ ǫ, Kato's criterion involves the vanishing of viscous dissipation in a much thinner sublayer, of thickness ǫ. On the other hand, while Prandtl's theory is based on the construction of a multiscale asymptotic expansion for u ǫ , Kato's result is based on an energy estimate -so that, in theory, it might happen that Prandtl's construction breaks down while u ǫ converges to u in quadratic mean. (We are however unaware of examples of such flows.)

The Inviscid Limit of the Navier-Stokes Equations with Slip Boundary Condition

To confirm the role of the Dirichlet boundary condition as a source of difficulties in the inviscid limit, we supplement the Navier-Stokes equations with a more general class of boundary conditions, known as "slip boundary conditions", which take the form

(3) u ǫ • n ∂Ω = 0 , ǫ(Σ(u ǫ ) • n) τ + λu ǫ ∂Ω = 0 ,
where λ is a scalar (the slip coefficient), and where Σ(u ǫ ) denotes the deformation tensor. In other words, for each vector field v defined on a neighborhood of Ω,

Σ(v) := ∇ x v + (∇ x v) T , (4) 
while the subscript τ denotes the tangential component on the boundary:

(5)

v τ := v -(v • n)n . Since u ǫ • n ∂Ω = 0, one has (Σ(u ǫ ) • n) τ ∂Ω = ∂u ǫ ∂n τ ∂Ω -(∇n) • u ǫ ∂Ω so that (Σ(u ǫ ) • n) τ ∂Ω and ∂uǫ ∂n τ ∂Ω
differ by a lower order term -of order 0, in the sense of differential operators -involving the Weingarten endomorphism ∇n acting on the tangent space of ∂Ω. Henceforth we assume that the slip coefficient λ depends on the Reynolds number ǫ -1 , and denote it by λ ≡ λ ǫ . Thus a) if λ ǫ ≥ λ 0 > 0 for all ǫ > 0, one expects that the slip boundary condition (3) should be asymptotically equivalent to the Dirichlet condition, thereby leading to the same difficulties as regards the inviscid limit; b) if λ ǫ = 0, the slip boundary condition (3) reduces to the Navier full slip condition [START_REF] Bardos | Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation[END_REF] 

u ǫ • n ∂Ω = 0 , (Σ(u ǫ ) • n) τ ∂Ω = 0 .
As is well known, the Navier full slip condition prevents the detachment of viscous boundary layers, so that the inviscid limit of the Navier-Stokes equations supplemented with that condition is indeed governed by the Euler equations, whenever there exists a smooth solution of these equations -see for instance [START_REF] Bardos | Existence et unicité de l'équation d'Euler en dimension 2[END_REF] or step 2 in the proof of Theorem 4.1 in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF].

In fact, a more general result is true. Consider the Navier-Stokes equations supplemented with the slip boundary condition ( 7)

           div x u ǫ = 0 , ∂ t u ǫ + div x (u ǫ ⊗ u ǫ ) + ∇ x p ǫ = ǫ∆ x u ǫ , x ∈ Ω , t > 0 , u ǫ •n ∂Ω = 0 , ǫ(Σ(u ǫ )•n) τ +λ ǫ u ǫ ∂Ω = 0 , u ǫ t=0 = u in .
The existence of global weak solutions "à la Leray" of ( 7) is classical: see for instance Theorem 2 in [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF].

Henceforth we use the classical notation H(Ω) to designate the set of solenoidal vector fields on Ω that are tangent to ∂Ω and have finite square mean in Ω, i.e.

H(Ω)

:= {v ∈ L 2 (Ω) | div v = 0 and v • n ∂Ω = 0} .
Theorem 2.1 (Bardos-Golse-Paillard [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF]). Let u in ∈ C 1 c (Ω) and for each ǫ > 0 let u ǫ be a Leray solution of [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF]. Assume that the Euler equations ( 2) have a local classical solution u ∈ C 1 b ([0, T ] × Ω) defined for some T > 0 and satisfying

(8) T 0 ∂Ω |u(t, x)| 2 dS(x)dt + T 0 Ω |Σ(u)(t, x)| 2 dxdt < ∞ ,
where dS(x) is the surface element on ∂Ω if N = 3 (resp. the length element if N = 2). Then

λ ǫ → 0 ⇒ sup 0≤t≤T Ω |u ǫ -u| 2 (t, x)dx → 0 .
The proof will serve as a model in the case of the Boltzmann equation; it is given in detail below.

Proof. Leray solutions of (7) satisfy the energy inequality (9)

1 2 Ω |u ǫ (t, x)| 2 dx + ǫ t 0 Ω 1 2 |Σ(u ǫ )(s, x)| 2 dxds + λ ǫ t 0 ∂Ω |u ǫ (s, x)| 2 dS(x)ds ≤ 1 2 Ω |u in (x)| 2 dx .
On the other hand, for each test vector field

w ∈ C ∞ c (R + × Ω) ∩ C(R + ; H(Ω)) Ω u ǫ •w(t, x)dx - Ω u in (x) • w(0, x)dx + ǫ t 0 Ω 1 2 Σ(u ǫ ) : Σ(w)(s, x)dxds + λ ǫ t 0 ∂Ω u ǫ • w(s, x)dS(x)ds = t 0 Ω u ǫ • E(w)(s, x)dxds + t 0 Ω ∇ x w : (u ǫ -w) ⊗2 (s, x)dxds where (10) E(w) := ∂ t w + w • ∇ x w .
Therefore, with the identity

d dt Ω 1 2 |w(t, x)| 2 dx = Ω w • E(w)(t, x)dx ,
we conclude that (11)

1 2 Ω |u ǫ -w| 2 (t, x)dx -1 2 Ω |u in (x) -w(0, x)| 2 dx +ǫ t 0 Ω 1 2 |Σ(u ǫ )(s, x)| 2 dxds + λ ǫ t 0 ∂Ω |u ǫ (s, x)| 2 dS(x)ds ≤ ǫ t 0 Ω 1 2 Σ(u ǫ ) : Σ(w)(s, x)dxds + λ ǫ t 0 ∂Ω u ǫ • w(s, x)dS(x)ds - t 0 Ω u ǫ • E(w)(s, x)dxds - t 0 Ω ∇ x w : (u ǫ -w) ⊗2 (s, x)dxds .
By a straightforward density argument, we may replace w with the solution u of (2): thus

t 0 Ω u ǫ • E(u)(s, x)dxds = - t 0 Ω u ǫ • ∇ x p(s, x)dxds = - t 0 ∂Ω pu ǫ (s, x) • n x dS(x)ds = 0 , so that (12) 
1 2 Ω |u ǫ -u| 2 (t, x)dx+ǫ t 0 Ω 1 2 |Σ(u ǫ )(s, x)| 2 dxds+λ ǫ t 0 ∂Ω |u ǫ (s, x)| 2 dS(x)ds ≤ ǫ t 0 Ω 1 2 Σ(u ǫ ) : Σ(u)(s, x)dxds + λ ǫ t 0 ∂Ω u ǫ • u(s, x)dS(x)ds +σ(u) t 0 Ω |u ǫ -u| 2 (s, x)dxds ,
where σ(u) := sup

0≤t≤T x∈Ω |∇ x u(t, x)| . Define Q ǫ (t) := ǫ Ω 1 2 |Σ(u ǫ )(t, x)||Σ(u)(t, x)|dx + λ ǫ ∂Ω |u ǫ (t, x)||u(t, x)|dS(x) .
By the Leray energy inequality

ǫ T 0 Ω 1 2 |Σ(u ǫ )(s, x)| 2 dxds + λ ǫ T 0 ∂Ω |u ǫ (s, x)| 2 dS(x)ds = O(1)
so that, by [START_REF] Bardos | Euler equations for incompressible ideal fluids[END_REF] and the Cauchy-Schwarz inequality,

T 0 Q ǫ (t)dt = O( √ ǫ) + O( λ ǫ ).
Applying Gronwall's lemma shows that

Ω 1 2 |u ǫ -u| 2 (t, x)dx ≤ e T σ(u) T 0 Q ǫ (s)ds → 0 as ǫ → 0.
3. The Incompressible Euler Limit of the Boltzmann Equation 3.1. Background on the Boltzmann Equation. The Boltzmann equation governs the distribution function of molecules in a monatomic gas, denoted here by F ≡ F (t, x, v). We recall that F (t, x, v) is the density with respect to the phase space measure dxdv of gas molecules located at the position x ∈ R 3 with velocity v ∈ R 3 at time t. It takes the form

(∂ t + v • ∇ x )F = B(F, F )
where B(F, F ) denotes the Boltzmann collision integral. In the case where gas molecules behave like hard spheres subject to elastic, binary collisions, the collision integral takes the (dimensionless) form

B(F, F ) := R 3 ×S 2 (F ′ F ′ * -F F * )|(v -v * ) • ω|dv * dω .
Here we have used the notation

F ≡ F (t, x, v) , F * ≡ F (t, x, v * ) , F ′ ≡ F (t, x, v ′ ) , F ′ * ≡ F (t, x, v ′ * ) ,
where v ′ and v ′ * are defined in terms of v, v * ∈ R 3 and ω ∈ S 2 by the formulas

v ′ ≡ v ′ (v, v * , ω) := v -(v -v * ) • ωω , v ′ * ≡ v ′ * (v, v * , ω) := v * + (v -v * ) • ωω .
The Boltzmann collision integral enjoys the following well known properties. First it satisfies the local conservation laws of mass, momentum and energy, in the following form: if F is rapidly decaying as |v| → ∞, then (13)

R 3 B(F, F )   1 v k 1 2 |v| 2   dv = 0 , k = 1, 2, 3.
Another fundamental property of the collision integral is Boltzmann's H Theorem, which can be stated as follows: if

F > 0 is rapidly decaying in v while ln F = O(|v| n ) for some n ≥ 0, then (14) R 3 B(F, F ) ln F dv ≤ 0 , while R 3 B(F, F ) ln F dv = 0 ⇔ B(F, F ) = 0 ⇔ F = M (ρ,u,θ) ,
where the notation M (ρ,u,θ) designates the Maxwellian distribution with density ρ ≥ 0, bulk velocity u ∈ R 3 and temperature θ > 0, i.e.

M (ρ,u,θ) (v) := ρ (2πθ) 3/2 e -|v-u| 2 2θ .
We shall formulate below the corresponding differential relations for solutions of the Boltzmann equation.

Boundary Conditions for the Boltzmann Equation.

A general class of boundary conditions for the Boltzmann equation is of the form ( 15)

F (t, x, v)|v•n x | = v ′ •nx>0 F (t, x, v ′ )v ′ •n x K(x, R x v, dv ′ ) , (x, v) ∈ Γ -,
where we recall that the notation n x designates the unit outward normal at the point x ∈ ∂Ω while R x designates the specular reflection:

R x v := v -2v • n x n x ,
and where we have used the notation

Γ + := {(x, v) ∈ ∂Ω × R 3 | v • n x > 0} , Γ -:= {(x, v) ∈ ∂Ω × R 3 | v • n x < 0} .
The measure-valued, scattering kernel K(x, v, dv ′ ) ≥ 0 satisfies the assumptions (see §8.2 in [START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF], especially on pp. 230-231):

(i) for each x ∈ ∂Ω, one has v•nx>0 K(x, v, dv ′ )dv = dv ′ ; (ii) for each x ∈ ∂Ω and each Φ ∈ C c (R 3 × R 3 ) one has R 3 ×R 3 Φ(v, v ′ )(v • n x ) + (v ′ • n x ) + M (1,0,θ) (v)M (1,0,θ) (v ′ )dvK(x, R x v, dv ′ ) = R 3 ×R 3 Φ(-v ′ , -v)(v • n x ) + (v ′ • n x ) + M (1,0,θ) (v)M (1,0,θ) (v ′ )dvK(x, R x v, dv ′ ) (If K(x, v, dv ′ ) is of the form K(x, v, v ′ ) = K(x, v, v ′ )dv ′ , property (ii) is equivalent to the identity K(x, v, v ′ ) = K(x, v ′ , v) for a.e. v, v ′ s.t. v • n x > 0 and v ′ • n x > 0 for each x ∈ ∂Ω.) (iii) for each x ∈ ∂Ω, one has M (1,0,θ) (v)v•n x = v ′ •nx>0 M (1,0,θ) (v ′ )v ′ •n x K(x, v, dv ′ ) , v•n x > 0 ,
if and only if θ = θ w (x), where θ w (x) is the temperature of the boundary ∂Ω at the point x.

With these notations, the case of diffuse reflection corresponds to

K(x, v, dv ′ ) := M (1,0,θw) (v)|v • n x |dv ′ u•nx<0 M (1,0,θw) (u)|u • n x |du .
The case of an accommodation boundary condition (i.e. the so-called Maxwell-type condition considered in [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF]) corresponds to

K(x, v, dv ′ ) := (1 -α(x))δ(v ′ -v) + α(x) M (1,0,θw) (v)|v • n x |dv ′ u•nx<0 M (1,0,θw) (u)|u • n x |du , with 0 < α(x) < 1.
The case α ≡ 1 corresponds to diffuse reflection, while the case α ≡ 0 corresponds to specular reflection -notice that specular reflection does not satisfy assumption (ii).

The class of reflection kernels described here also includes the Cercignani-Lampis model, as well as all Nocilla models. We refer the interested reader to section 8.4 in [START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF] (on pp. 235-239) for more information on this issue.

However, this is by no means the most general class of admissible boundary conditions for the Boltzmann equation. Indeed, the boundary condition ( 15) is local in the position variable x. There are also models of gas-surface interaction involving boundary conditions satisfied by the distribution function of the gas that are nonlocal is both the position and velocity variables: see for instance [START_REF] Lombardo | Non-local scattering kernel and the hydrodynamic limit[END_REF][START_REF] Lombardo | Asymptotic analysis of a slightly rarefied gas with nonlocal boundary conditions[END_REF]. This new class of boundary condition is not covered in the present study.

3.3. The Incompressible Euler Scaling for the Boltzmann Equation. The incompressible Euler limit of the Boltzmann equation is based on three different scaling prescriptions (see for instance [START_REF] Bardos | Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles[END_REF][START_REF] Bardos | Fluid Dynamic Limits of the Boltzmann Equation I[END_REF]). A careful description of the dimensionless form of the Boltzmann equation can be found in section 1 of [START_REF] Bardos | Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation[END_REF], as well as in sections 1.9 and 1.10 of [START_REF] Sone | Molecular Gas Dynamics: Theory, Techniques and Applications[END_REF].

First, as in all fluid dynamic limits of kinetic models, one assumes a strongly collisional regime. In other words, the collision integral is scaled as

B(F, F ) = 1 ǫ 1+q B(F, F ) ,
with ǫ ≪ 1 and q > 0 .

(See [START_REF] Bardos | Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation[END_REF] or [START_REF] Sone | Molecular Gas Dynamics: Theory, Techniques and Applications[END_REF] for the physical meaning of ǫ and q.) Next, the incompressible Euler limit holds on a long time scale, leading to the introduction of a new time variable t = t/ǫ; in other words, we set

F (t, x, v) = Fǫ ( t, x, v) = Fǫ (ǫt, x, v) .
With these assumptions, the scaled Boltzmann equation becomes

(ǫ∂ t + v • ∇ x ) Fǫ = 1 ǫ 1+q B( Fǫ , Fǫ ) .
A third and last scaling assumption used in the incompressible Euler limit of the Boltzmann equation is that the corresponding gas flow is kept in a low Mach number regime. Specifically, we assume that the Mach number is of order Ma = ǫ, and this is done by seeking the distribution function Fǫ in the form Fǫ = M (1,0,θw) Ĝǫ with Ĝǫ = 1 + ǫĝ ǫ (where it is implicitly assumed that g ǫ = O(1)).

We draw the reader's attention to the fact that the parameter ǫ considered here has a different meaning than in the inviscid limit of the Navier-Stokes equations. Indeed, in the situation considered here, we shall see that the reciprocal Reynolds number is Re -1 = ǫ q -instead of ǫ as in the previous section.

For simplicity, we henceforth drop all hats in the scaled Boltzmann equation and consider the initial boundary value problem ( 16)

                 (ǫ∂ t + v • ∇ x )F ǫ = 1 ǫ 1+q B(F ǫ , F ǫ ) , (x, v) ∈ Ω × R 3 , F ǫ (t, x, v)|v•n x | = v ′ •nx>0 F ǫ (t, x, v ′ )v ′ •n x K ǫ (x, R x v, dv ′ ) , (x, v) ∈ Γ -, F ǫ t=0 = M (1,ǫu in ,1) ,
assuming that the boundary temperature θ w = 1. The reflection kernel K ǫ satisfies the properties (i)-(ii) above and possibly depends on the scaling parameter ǫ.

Henceforth we denote M := M (1,0,1) .

Let us return to the conservation laws of mass, momentum and energy satisfied by the Boltzmann collision integral. If F ǫ is a smooth solution of ( 16) rapidly decaying as |v| → +∞, then it satisfies the system of differential identities ( 17)

               ǫ∂ t R 3 F ǫ dv + div x R 3 vF ǫ dv = 0 , ǫ∂ t R 3 vF ǫ dv + div x R 3 v ⊗ vF ǫ dv = 0 , ǫ∂ t R 3 1 2 |v| 2 F ǫ dv + div x R 3 v 1 2 |v| 2 F ǫ dv = 0 .
These identities can be viewed again as the differential form of the local conservation laws of mass momentum and energy that are classical in continuum mechanics.

3.4. Main result. Our main result in this paper is an analogue of Theorem 2.1 for the incompressible Euler limit of the Boltzmann equation.

Theorem 3.1. Let u in ∈ C 1 c (Ω; R 3
) satisfy div x u in = 0 and u • n ∂Ω = 0, and assume that the Euler equations ( 2) have a local classical solution u ∈ C 1 b ([0, T ]×Ω) defined for some T > 0 and satisfying [START_REF] Bardos | Euler equations for incompressible ideal fluids[END_REF]. For each ǫ > 0, let F ǫ be a solution of [START_REF] Golse | Stokes-Fourier and Acoustic Limits for the Boltzmann Equation: Convergence Proofs[END_REF]. Assume that the reflection kernel K ǫ satisfies, in addition to the properties (i)-(iii) listed above,

(18) v ′ τ dv ′ - v•nx>0 v τ K ǫ (x, v, dv ′ )dv ≤ α ǫ (x)|v ′ |dv ′ and (19) K ǫ (x, v, dv ′ ) ≥ α ǫ (x)β ǫ (x) √ 2πM (v)(v • n x ) + dv ′ for each x ∈ ∂Ω and a.e. v, v ′ ∈ R 3 such that v • n x > 0 and v ′ • n x > 0, where (20) 
0 ≤ α ǫ (x) ≤ 1 and 1 ǫ sup x∈∂Ω |x|≤R α ǫ (x) → 0 as ǫ → 0 and (21) 0 < inf ǫ>0 inf x∈∂Ω |x|≤R β ǫ (x) ≤ β ǫ (x) ≤ 1
for each R > 0. Then, for each T > 0 and R > 0

T 0 x∈Ω |x|≤R 1 ǫ R 3 vF ǫ (t, x, v)dv -u(t, x) dxdt → 0 as ǫ → 0 .
This result was stated and proved in [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF] in the particular case where the reflection kernel K ǫ corresponds with Maxwell's accomodation condition at the boundary with accomodation parameter α ǫ .

In the case where the Boltzmann equation is set on a domain without boundary -i.e. if x runs through the Euclidian space R 3 or the periodic box T 3 -the first rigorous derivation of the incompressible Euler equations from the Boltzmann equation was obtained by L. Saint-Raymond [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler limit[END_REF] following the relative entropy method sketched in [START_REF] Bouchut | Kinetic Equations and Asymptotic Theory[END_REF][START_REF] Lions | From Boltzmann Equation to the Navier-Stokes and Euler Equations II[END_REF]. (For the simpler case of the BGK model, see also [START_REF] Saint-Raymond | Du modèle BGK de l'équation de Boltzmann aux équations d'Euler des fluides incompressibles[END_REF].)

The proof of Theorem 3.1 is a slight generalization of the one in [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF] and is based on the same relative entropy method as in the work of L. Saint-Raymond [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler limit[END_REF]. It can also be viewed as the analogue for the Boltzmann equation of the proof of the inviscid limit Theorem 2.1.

A final word of caution is in order. The statement of the theorem is left deliberately vague about the notion of solution of the Boltzmann equation ( 16) to be considered. This is a rather technical matter, to be discussed later.

3.5.

The relative entropy inequality. The first important property of the Boltzmann equation used in the proof is the following variant of Boltzmann's H theorem that can be viewed as an analogue of the Leray energy inequality ( 9):

(22) 1 ǫ 2 H(F ǫ |M )(t) + 1 ǫ 4+q t 0 Ω P ǫ (s, x)dxds + 1 ǫ 3 t 0 Γ DG ǫ (s, x)dxds ≤ 1 ǫ 2 H(F ǫ |M )(0)
where the notation H(F 1 |F 2 ) designates the relative entropy defined as follows.

Let F 1 ≥ 0 and F 2 > 0 a.e. on Ω × R 3 designate two measurable functions, then

H(F 1 |F 2 ) : = Ω×R 3 F 1 ln F 1 F 2 -F 1 + F 2 (x, v)dxdv = Ω×R 3 h F 1 F 2 -1 F 2 (x, v)dxdv ,
where h is the function defined as follows:

h : [-1, ∞) ∋ z → h(z) := (1 + z) ln(1 + z) -z ∈ R + .
(Notice that, since the integrand h F1 F2 -1 F 2 is a nonnegative measurable function, the relative entropy H(F 1 |F 2 ) is always a well-defined element of [0, +∞].)

The two other quantities in [START_REF] Lions | From Boltzmann Equation to the Navier-Stokes and Euler Equations II[END_REF] are the entropy production rate per unit volume P ǫ and the Darrozes-Guiraud information at the boundary DG ǫ , whose definition is recalled below.

The entropy production rate per unit volume for the Boltzmann equation is

P ǫ := - R 3 B(F ǫ , F ǫ ) ln F ǫ dv
and can be put in the form

P ǫ = R 3 ×R 3 ×S 2 r F ′ ǫ F ′ ǫ * F ǫ F ǫ * -1 F ǫ F ǫ * |(v -v * ) • ω|dvdv * dω ,
where r is the following function:

r : (-1, ∞) ∋ z → r(z) := z ln(1 + z) ∈ R + .
As for the Darrozes-Guiraud information, it is defined as

DG ǫ (t, x) := R 3 h F ǫ M -1 (t, x, v)v • n x M dv , x ∈ ∂Ω , t > 0 .
Observe that, for each x ∈ ∂Ω and each v ∈ R 3 such that v • n x > 0,

µ ǫ x,v (dv ′ ) := (v ′ • n x ) + M (v ′ )K ǫ (x, v, dv ′ ) (v • n x ) + M (v)
is a probability measure on R 3 (by property (iii) of K ǫ ), and that

F ǫ M (t, x, R x v) = µ ǫ x,v , F ǫ M (t, x, v) , for each (x, v) ∈ Γ + and t ≥ 0 .
Since h is convex, it follows from Jensen's inequality that

µ ǫ x,v , h F ǫ M -1 ≥ h µ ǫ x,v , F ǫ M -1 .
On the other hand, by property (i) of the reflection kernel K ǫ , one has

µ ǫ x,v , h F ǫ M -1 M (v • n x ) + dv = h F ǫ M -1 M (v • n x ) + dv .
Hence the Darrozes-Guiraud information satisfies

DG ǫ (t, x) = R 3 h F ǫ M -1 -h µ ǫ x,v , F ǫ M -1 M (v • n x ) + dv ≥ 0 .
(See for instance Theorem 8.5.1 on p. 240 in [START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF].) As a consequence of the local conservation of mass, i.e the first equality in (17) one finds that, for each scalar test function φ ∈ C 1 c (R + × Ω) and each t > 0,

ǫ Ω×R 3 F ǫ (t, x, v)φ(t, x)dxdv -ǫ Ω×R 3 F ǫ (0, x, v)φ(0, x)dxdv + t 0 ∂Ω×R 3 F ǫ (s, x, v)φ(s, x)v • n x dS(x)dvds = t 0 Ω×R 3 F ǫ (s, x, v)(ǫ∂ t + v • ∇ x )φ(s, x)dsdxdv . (23) 
Let now w ∈ C 1 c ([0, T ] × Ω; R 3 ) satisfy [START_REF] Lombardo | Asymptotic analysis of a slightly rarefied gas with nonlocal boundary conditions[END_REF] div x w = 0 , and w • n ∂Ω .

As a consequence of the local conservation of momentum, i.e. the second identity in [START_REF] Grenier | On the Nonlinear Instability of Euler and Prandtl Equations[END_REF], one finds that, for each t > 0,

ǫ Ω×R 3 F ǫ (t, x, v)v • w(t, x)dxdv -ǫ Ω×R 3 F ǫ (0, x, v)v • w(0, x)dxdv + t 0 ∂Ω×R 3 F ǫ (s, x, v)(v τ • w τ )v • n x dS(x)dvds = t 0 Ω×R 3 F ǫ (s, x, v)(ǫ∂ t + v • ∇ x )(v • w)(s, x)dsdxdv . (25) 
Finally, observe that ( 26)

H(F ǫ |M (1,ǫw,1) ) = H(F ǫ |M ) + Ω×R 3 F ǫ ln M M (1,ǫw,1) dxdv = H(F ǫ |M ) + Ω×R 3 F ǫ 1 2 ǫ 2 |w| 2 -ǫw • v dxdv .
Putting together ( 26), ( 22), ( 23) and ( 25), we find that, for each test velocity field w ∈ C 1 c ([0, T ] × Ω; R 3 ) satisfying ( 24) and each t > 0 (27)

1 ǫ 2 H(F ǫ |M (1,ǫw,1) )(t) ≤ 1 ǫ 2 H(F in ǫ |M (1,ǫw(0,•),1) ) - 1 ǫ 4+q t 0 Ω P ǫ (s, x)dxds - 1 ǫ 3 t 0 ∂Ω DG ǫ (s, x)dS(x)ds - 1 ǫ 2 t 0 Ω×R N (v -ǫw(s, x)) ⊗2 : ∇ x w(s, x)F ǫ (s, x, v)dxdvds - 1 ǫ t 0 Ω×R N (v -ǫw(s, x)) • E(w)(s, x)F ǫ (s, x, v)dvdxds + 1 ǫ 2 t 0 ∂Ω×R N F ǫ (s, x, v)(v τ • w τ )(s, x)(v • n x )dS(x)dvds ,
where E(w) has been defined in [START_REF] Caflisch | Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equations on a Half-Space I: Existence for Euler and Prandtl Equations[END_REF]. This inequality is the analogue for the scaled Boltzmann equation of the inequality [START_REF] Caflisch | Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equations on a Half-Space II: Construction of the Navier-Stokes Solution[END_REF] used in the proof of Theorem 2.1. Indeed, for each pair u 1 , u 2 of (measurable) vector fields in Ω such that

Ω |u 1 (x)| 2 dx + Ω |u 2 (x)| 2 dx < +∞ , one has 1 ǫ 2 H(M (1,ǫu2,1) |M (1,ǫu1,1) ) → 1 2 Ω |u 1 -u 2 | 2 (x)dx .
Therefore, the scaled relative entropy 1 ǫ 2 H(F ǫ |M (1,ǫw,1) ) is the analogue of ) in order to conclude with Gronwall's inequality. This is precisely what is done in [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler limit[END_REF], and we shall not repeat this (difficult) analysis here.

What remains to be done is to control the boundary term

1 ǫ 2 t 0 ∂Ω×R N F ǫ (s, x, v)(v τ • w τ )(s, x)(v • n x )dS(x)dvds
of indefinite sign by the Darrozes-Guiraud inequality, possibly up to some asymptotically negligible quantity. This step can be viewed as the analogue for the Boltzmann equation of the Cauchy-Schwarz inequality used to control the boundary term

λ ǫ t 0 ∂Ω u ǫ • u(s, x)dS(x)ds
by the boundary friction

λ ǫ t 0 ∂Ω |u ǫ | 2 (s, x)dS(x)ds .
3.6. Proof of Theorem 3.1. The key argument in the proof of Theorem 3.1 is given by the following proposition.

Proposition 3.2. Under the same assumptions as in Theorem 3.1, for each vector field w ∈ C 1 c (R + × Ω; R 3 ) such that div x w = 0 and w • n ∂Ω = 0, satisfying supp(w) ⊂ R + × K, where K is a compact subset of R 3 , one has

t 0 ∂Ω×R 3 F ǫ (s, x, v)(v τ • w τ )(s, x)(v • n x )dS(x)dvds ≤ 1 N ǫ + √ 2πC(w, N ) h(1/2) ǫ t 0 ∂Ω∩K 1 β ǫ (x) DG ǫ (s, x)dxds + 2C(w, N )ǫ 2 t 0 ∂Ω∩K α ǫ (x) ǫ R 3 F ǫ (s, x, v)(v • n x ) 2 dvdxds
for each ǫ ∈ (0, 1), each N ≥ 1 and each t ≥ 0, where

(28) C(w, N ) := 1 N R 3 (e N w L ∞ |v| -N w L ∞ |v| -1)(v • n x ) + M dv . Set (29) F ǫ = M G ǫ , G ǫ = 1 + ǫg ǫ .
Using the boundary condition in ( 16) and the substitution

v → R x v for v • n x < 0 shows that t 0 ∂Ω×R 3 F ǫ (s, x, v)(v τ • w τ )(s, x)(v • n x )dS(x)dvds = t 0 ∂Ω×R 3 (F ǫ (s, x, v) -F ǫ (s, x, R x v)(v τ • w τ )(s, x)(v • n x ) + dS(x)dvds F. GOLSE -notice that R x v τ = v τ . Thus t 0 ∂Ω×R 3 F ǫ (s, x, v)(v τ • w τ )(s, x)(v • n x )dS(x)dvds = ǫ t 0 ∂Ω×R 3 (g ǫ (s, x, v) -g ǫ (s, x, R x v)(v τ • w τ )(s, x)(v • n x ) + M (v)dS(x)dvds = ǫ t 0 ∂Ω×R 3 (g ǫ -µ ǫ x,v , g ǫ )(s, x, v)(v τ • w τ )(s, x)(v • n x ) + M (v)dS(x)dvds .
Since µ ǫ x,v is a probability measure acting on the velocity variable only,

g ǫ -µ ǫ x,v , g ǫ = g ǫ -Λ x g ǫ -µ ǫ x,v , g ǫ -Λ x g ǫ , where (30) Λ x φ := √ 2π R 3 φ(v)(v • n x ) + M (v)dv . Therefore t 0 Γ F ǫ (s, x, v)(v τ • w τ (s, x, v))(v • n x )dS(x)dvds = ǫ t 0 Γ+ (g ǫ -Λ x g ǫ -µ ǫ x,v , g ǫ -Λ x g ǫ )(v τ • w τ )(v • n x ) + M (v)dv ≤ ǫ t 0 Γ+ α ǫ (x)|g ǫ -Λ x g ǫ |(s, x, v)|v τ ||w τ |(s, x)(v • n x ) + M (v)dv
by assumption [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF]. At this point, the proof of Proposition 3.2 is done in two steps. The first step is summarized in the following lemma.

Lemma 3.3. Under the same assumptions as in Proposition 3.2 and with the notation [START_REF] Schlichting | Boundary layer theory[END_REF], for each (t, x) ∈ (R + ×∂Ω)∩supp(w), each N ≥ 1 and each ǫ ∈ (0, 1),

N ǫ 2 R 3 |g ǫ -Λ x g ǫ ||v τ ||w τ |(v • n x ) + M (v)dv ≤ R 3 (h(ǫg ǫ ) -h(ǫΛ x (g ǫ )))(v • n x ) + M (v)dv + N C(w, N )ǫ 2 Λ x (F ǫ ) ,
where Λ x has been defined in [START_REF] Sone | Molecular Gas Dynamics: Theory, Techniques and Applications[END_REF] and C(w, N ) in [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler limit[END_REF].

Proof. The proof follows that of Lemma 4.6 in [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF]. Pick z 0 > -1, and define, for

each z > -1 l(z -z 0 ) := h(z) -h(z 0 ) -h ′ (z 0 )(z -z 0 ) .
We recall that the Legendre dual of h and l are

h * (p) = e p -p -1 and l * (p) = (1 + z 0 )h * (p) = (1 + z 0 )(e p -p -1) .
Applying Young's inequality (see [START_REF] Bardos | Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation[END_REF], especially section 3 there) to l with z = ǫg ǫ and z 0 = ǫΛ x (g ǫ )

N ǫ 2 |g ǫ -Λ x (g ǫ )||v τ ||w τ | ≤ l(ǫ(g ǫ -Λ x (g ǫ ))) + l * (N ǫ sign(g ǫ -Λ x (g ǫ ))|v τ ||w τ |) = l(ǫ(g ǫ -Λ x (g ǫ ))) + (1 + ǫΛ x (g ǫ ))(e N ǫ|w||v| -N ǫ|w||v| -1) ≤ l(ǫ(g ǫ -Λ x (g ǫ ))) + ǫ 2 (1 + ǫΛ x (g ǫ ))(e N |w||v| -N |w||v| -1) ,
whenever 0 < ǫ < 1. (Indeed, for each z > 0 and ǫ ∈ (0, 1), one has

e ǫz -ǫz -1 = n≥2 (ǫz) n n! ≤ ǫ 2 n≥2 z n n! = ǫ 2 (e z -z -1) ;
see also (3.14) in [START_REF] Bardos | Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation[END_REF].) Therefore ( 31)

N ǫ 2 R 3 |g ǫ -Λ x (g ǫ )|(s, x, v)|v τ ||w τ |(s, x)(v • n x ) + M (v)dv ≤ R 3 l(ǫ(g ǫ -Λ x (g ǫ )))(v • n x ) + M (v)dv + N C(w, N )ǫ 2 Λ x (F ǫ ) .
Moreover, since Λ x is constant in v and the average under a probability measure,

R 3 h ′ (ǫΛ x (g ǫ ))(g ǫ -Λ x (g ǫ ))(v • n x ) + M dv = h ′ (ǫΛ x (g ǫ )) R 3 (g ǫ -Λ x (g ǫ ))(v • n x ) + M dv = h ′ (ǫΛ x (g ǫ )) 1 √ 2π Λ x (g ǫ -Λ x (g ǫ )) = 0 , so that R 3 l(ǫ(g ǫ -Λ x (g ǫ )))(v • n x ) + M (v)dv = R 3 (h(ǫg ǫ ) -h(ǫΛ x (g ǫ )))(v • n x ) + M (v)dv .
Substituting this last integral in the right hand side of (31) leads to the inequality in the statement of Lemma 3.3.

It remains to relate the integral on the right hand side of the inequality in Lemma 3.3 to the Darrozes-Guiraud information.

Lemma 3.4. Under the same assumptions as in Proposition 3.2 and with the notation [START_REF] Schlichting | Boundary layer theory[END_REF], for each (t, x) ∈ R + × ∂Ω and each ǫ ∈ (0, 1), one has

α ǫ (x)β ǫ (x) R 3 (h(ǫg ǫ ) -h(ǫΛ x (g ǫ )))(t, x, v)(v • n x ) + M (v)dv ≤ DG ǫ (t, x) .
Proof. By [START_REF] Kato | Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary[END_REF], the reflection kernel K can be put in the form

K(x, v, dv ′ ) = α ǫ (x)β ǫ (x) √ 2π(v • n x ) + M (v)dv + (1 -α ǫ (x)β ǫ (x))L ǫ (x, v, dv ′ ) . Since 0 ≤ α ǫ (x)β ǫ (x) ≤ 1, the kernel L ǫ (x, v, dv ′ ) so defined satisfies the properties (i), (ii) and (iii') for each x ∈ ∂Ω, M (v)v•n x = v ′ •nx>0 M (v ′ )v ′ •n x L ǫ (x, v, dv ′ ) , v•n x > 0 .
Define ν x,v by analogy with µ x,v :

ν ǫ x,v (dv ′ ) := (v ′ • n x ) + M (v ′ )L ǫ (x, v, dv ′ ) (v • n x ) + M (v) ,
so that the boundary condition satisfied by the solution F ǫ of ( 16) takes the form

F ǫ M (t, x, R x v) = α ǫ (x)β ǫ (x)Λ x F ǫ M + (1 -α ǫ (x)β ǫ (x)) ν ǫ x,v , F ǫ M (t, x, v) ,
for each (x, v) ∈ Γ + and t ≥ 0 , or equivalently

g ǫ (t, x, R x v) = α ǫ (x)β ǫ (x)Λ x (g ǫ )(t, x, v) + (1 -α ǫ (x)β ǫ (x)) ν ǫ x,v , g ǫ (t, x, •) , for each (x, v) ∈ Γ + and t ≥ 0 . Thus DG ǫ (t, x) = h(ǫg ǫ )(t, x, v)v • n x M (v)dv = (h(ǫg ǫ )(t, x, v) -h(ǫg ǫ )(t, x, R x v))(v • n x ) + M (v)dv
which can be put in the form

DG ǫ = 1 √ 2π Λ x (h(ǫg ǫ ) -h(α ǫ β ǫ (x)Λ x (g ǫ ) + (1 -α ǫ β ǫ (x)) ν ǫ x,v , g ǫ )) By convexity of h h(α ǫ β ǫ (x)Λ x (g ǫ ) + (1 -α ǫ β ǫ (x)) ν ǫ x,v , g ǫ ) ≤ α ǫ β ǫ (x)h(Λ x (g ǫ )) + (1 -α ǫ β ǫ (x))h( ν ǫ x,v , g ǫ ) so that DG ǫ ≥ 1 √ 2π α ǫ β ǫ (x)Λ x (h(ǫg ǫ ) -h(Λ x (g ǫ ))) + 1 √ 2π (1 -α ǫ β ǫ (x))Λ x (h(ǫg ǫ ) -h( ν ǫ x,v , g ǫ )) Since the kernel L ǫ satisfies property (i), one has Λ x (h(ǫg ǫ )) = Λ x ( ν ǫ x,v , h(ǫg ǫ ) ) so that Λ x (h(ǫg ǫ ) -h( ν ǫ x,v , g ǫ )) = Λ x ( ν ǫ x,v , h(ǫg ǫ ) -h( ν ǫ x,v , g ǫ ) )
≥ 0 , where the last inequality follows from Jensen's inequality applied to the probability measure ν ǫ

x,v and the convex function h. Since 0 ≤ α ǫ (x)β ǫ (x) ≤ 1 for all x ∈ ∂Ω, we conclude that

DG ǫ ≥ 1 √ 2π α ǫ β ǫ (x)Λ x (h(ǫg ǫ ) -h(Λ x (g ǫ )))
which is precisely the sought inequality.

Finally, we control the outgoing mass flux at the boundary exactly as explained in Lemma 4.7 of [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF]. Lemma 3.5. Under the same assumptions and with the same notation as in Proposition 3.2, for each (t, x) ∈ R + × ∂Ω and each ǫ, η ∈ (0, 1), one has

α ǫ (x) R 3 F ǫ (t, x, v)(v • n x ) + M (v)dv ≤ 1 h(η)β ǫ (x) DG ǫ (t, x) + α ǫ (x) √ 2π(1 -η) R 3 F ǫ (t, x, v)(v • n x ) 2 dv .
Proof. Following the argument in Lemma 4.7 of [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF] shows that

R 3 F ǫ (t, x, v)(v • n x ) + M (v)dv ≤ 1 h(η) R 3 G ǫ ln G ǫ Λ x (G ǫ ) -G ǫ + Λ x (G ǫ ) (t, x, v)(v • n x ) + M (v)dv + 1 √ 2π(1 -η) R 3 F ǫ (t, x, v)(v • n x ) 2 dv = 1 h(η) R 3 (h(ǫg ǫ ) -h(ǫΛ x (g ǫ )))(t, x, v)(v • n x ) + M (v)dv + 1 √ 2π(1 -η) R 3 F ǫ (t, x, v)(v • n x ) 2 dv .
We conclude by applying Lemma 3.4 to the first integral on the right hand side of the last equality above.

Putting together the inequalities in Lemmas 3.3, 3.4 and 3.5 with η = 1 2 leads to the estimate in Proposition 3.2.

Next we return to [START_REF] Saint-Raymond | Du modèle BGK de l'équation de Boltzmann aux équations d'Euler des fluides incompressibles[END_REF], and observe that the boundary term can be absorbed by the Darrozes-Guiraud information, as follows.

Pick a compactly supported vector field w of class C 1 such that div x w = 0, w • n ∂Ω = 0 and let K be a compact subset of R 3 such that supp(w) ⊂ R + × K. Set 

1 ǫ 2 H(F ǫ |M 1,ǫw,1 )(t) ≤ 1 ǫ 2 H(F in ǫ |M 1,ǫw(0,•),1 ) - 1 ǫ 4+q t 0 Ω P ǫ (s, x)dxds - 1 ǫ 3 1 - 1 N β * - √ 2πC(w, N ) h(1/2)β * ǫ 2 t 0 ∂Ω DG ǫ (s, x)dS(x)ds - 1 ǫ 2 t 0 Ω×R 3 (v -ǫw(s, x)) ⊗2 : ∇ x w(s, x)F ǫ (s, x, v)dxdvds - 1 ǫ t 0 Ω×R 3 (v -ǫw(s, x)) • E(w)(s, x)F ǫ (s, x, v)dvdxds +2C(w, N )r ǫ t 0 (∂Ω∩K)×R 3 F ǫ (s, x, v)(v • n x ) 2 dS(x)dvds .
At this point, we recall that solutions of the initial boundary value problem ( 16) Boltzmann equation satisfy the bound

sup ǫ>0 t 0 (∂Ω∩K)×R 3 F ǫ (s, x, v)(v • n x ) 2 dS(x)dvds < ∞
for each t > 0 and each compact K ⊂ R 3 -see [START_REF] Masmoudi | From the Boltzmann equation to the Stokes-Fourier system in a bounded domain[END_REF] and the proof of Theorem 4.1 d) in [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF].

Since r ǫ → 0 as ǫ → 0 by our assumption ( 18)-( 20) on the reflection kernel K ǫ , and

1 - 1 N β * - √ 2πC(w, N ) h(1/2)β * ǫ 2 > 0
for all small enough ǫ > 0, the inequality (32) is of the same form as the inequality stated as Theorem 5 in [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler limit[END_REF]. One then concludes by the same argument as in [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler limit[END_REF].

Conclusion and Final Remarks

In this work, we have derived the incompressible Euler equations from the Boltzmann equation in the case of the initial boundary value problem, for a class of boundary conditions at the kinetic level of description that is more general than the case of Maxwell accomodation considered in [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF]. However, the asymptotic regime for these boundary conditions considered here is the same as the one considered in [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF]: condition ( 18)-( 20) means that, in the vanishing ǫ limit, the tangential momentum of gas molecules tends to be conserved. In the case of Maxwell's accomodation condition at the boundary, this is the case precisely when the accomodation parameter vanishes, so that Maxwell's condition approaches specular reflection. The (unrealistic) specular reflection condition is the analogue for the Boltzmann equation of the (equally unrealistic) Navier full slip boundary condition, for which the inviscid limit of the Navier-Stokes equation is known to be described by the Euler equation. In that sense, Theorem 3.1 is the analogue for the Boltzmann equation of the (much simpler) Theorem 2.1 already established in [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF].

There is no single notion of accomodation parameter for boundary conditions defined by a reflection kernel as in (15), as in the case of Maxwell's condition. There is however a notion of accomodation parameter that can be defined for each mechanical quantity attached to a gas molecule impinging on the material surface: see the discussion in section 8.3 in [START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF], and especially formulas (3.4) and (3.11) there. The interested reader is invited to compare that definition of accomodation parameter with the condition ( 18)- [START_REF] Landau | Fluid Mechanics[END_REF] used in Theorem 3.1.

We have already stressed the striking analogy between our proofs of Theorems 2.1 and 3.1. In order to go further in the analysis of the incompressible Euler limit of the Boltzmann equation in the presence of material boundaries, it seems natural to investigate the similarities between the various terms that appear in the energy inequality [START_REF] Caflisch | Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equations on a Half-Space II: Construction of the Navier-Stokes Solution[END_REF] in the Navier-Stokes case, and the relative entropy inequality [START_REF] Saint-Raymond | Du modèle BGK de l'équation de Boltzmann aux équations d'Euler des fluides incompressibles[END_REF] in the Boltzmann case. The entropy production rate ǫ -4-q P ǫ in ( 27) is clearly the analogue of the viscous dissipation rate ǫ|Σ(u ǫ )| 2 (with the notation and scaling assumptions used in sections 1 and 2: see Proposition 4.6 in [START_REF] Bardos | Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation[END_REF], and especially formula (4.18) there 1 . The analogy with the Darrozes-Guiraud information ǫ -3 DG ǫ is already somewhat less clear. The boundary friction term λ ǫ |u ǫ | 2 appearing in [START_REF] Caflisch | Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equations on a Half-Space II: Construction of the Navier-Stokes Solution[END_REF] is partly analogous to the Darrozes-Guiraud -but only partly so, since the Darrozes-Guiraud information also controls the departure of the distribution function of gas molecules impinging on the material boundary from thermodynamic equilibrium. For instance, the Darrozes-Guiraud information term is present except in the case of specular reflection of gas molecules at the boundary, whereas 1 This formula is established under the assumption of the Navier-Sokes scaling corresponding with q = 0 in the notation of the present paper; extending it to the Euler scaling is straightforward. The reader is also invited to pay attention to the definition of q in that reference, whose meaning is different than in the present paper.

the boundary friction term vanishes identically if the solutions of the Navier-Stokes equations are assumed to satisfy the Dirichlet boundary condition.

If the family of solutions u ǫ of the Navier-Stokes equations ( 1) or ( 7) converges to the solution of the Euler equations (2) as ǫ → 0, then

ǫ|Σ(u ǫ )| 2 → 0 in L 2 ((0, T ) × Ω)
where T is the life-time of the Euler solution, and, in the case where the Navier-Stokes solutions satisfy a slip boundary condition with slip coefficient λ ǫ ,

λ ǫ |u ǫ ∂Ω | 2 → 0 in L 2 ((0, T ) × ∂Ω)
as ǫ → 0. (Indeed, the kinetic energy of the fluid is an invariant of the motion under the Euler dynamics.) Likewise, if the family F ǫ of solutions of ( 16) satisfies

1 ǫ R 3 vF ǫ dv → u and 1 ǫ 2 H(F ǫ |M (1,ǫu, 1 
) ) → 0 as ǫ → 0, where u is the solution of (2), then 1 ǫ 4+q P ǫ → 0 in L ((0, T ) × Ω) and

1 ǫ 3 DG ǫ → 0 in L 1 ((0, T ) × ∂Ω) .
In the case where the Navier-Stokes solutions satisfy the Dirichlet condition, it is easily seen that the Navier-Stokes solutions converge to the Euler solution if and only if ǫ(Σ(u ǫ ) • n) τ → 0 in D ′ ((0, T ) × ∂Ω)). In Kato's paper [START_REF] Kato | Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary[END_REF], this term is controlled by only the viscous dissipation term, by a very clever argument involving the construction of a boundary layer different from the Prandtl construction together with Hardy's inequality. Whether there is an analogue of this argument for the Boltzmann equation remains an open question at the time of this writing.

Another issue related to the ones considered here is the incompressible Navier-Stokes limit of the Boltzmann equation with boundary condition of the type (15). At the formal level, this question is investigated in detail in [START_REF] Sone | Molecular Gas Dynamics: Theory, Techniques and Applications[END_REF]. However, the discussion in [START_REF] Sone | Molecular Gas Dynamics: Theory, Techniques and Applications[END_REF] leaves aside the special case where the Navier-Stokes limit leads to a slip boundary condition. In the case of the BGK model with Maxwell's accomodation condition at the boundary, this problem has been treated (at the formal level) by Aoki-Inamuro-Onishi in [START_REF] Aoki | Slightly rarefied gas flow over a body with small accommodation coefficient[END_REF], by the Hilbert expansion method, completed with appropriate Knudsen layer terms. In the case of the Boltzmann equation, under a scaling assumption leading to the evolution Stokes equations, the slip boundary condition has been obtained by Masmoudi and Saint-Raymond [START_REF] Masmoudi | From the Boltzmann equation to the Stokes-Fourier system in a bounded domain[END_REF] by a rigorous argument involving the same moment method as in [START_REF] Bardos | Fluid Dynamic Limits of the Boltzmann Equation I[END_REF][START_REF] Golse | Stokes-Fourier and Acoustic Limits for the Boltzmann Equation: Convergence Proofs[END_REF] together with the weak (i.e. in the sense of distributions) formulation of the slip boundary condition. The Navier-Stokes analogue of this result has been obtained (at the formal level) in section 3 of [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF].

While both approaches lead to the same value of the slip coefficient, a natural question is to study the Navier-Stokes limit of the Boltzmann equation with the most general boundary condition of the form (15), and to identify under which condition(s) on the reflection kernel K, the limiting velocity field satisfies the slip boundary condition. In particular, one should check that the Aoki-Inamuro-Onishi theory and the weak formulation of the momentum equations lead to the same boundary condition in the vanishing ǫ limit. We hope to return to these questions in a future publication [15].

Finally, we conclude with remarks of a more technical nature, on the notion of solution of the initial boundary value problem for the Boltzmann equation. A careful examination of the proof of Theorem 3.1 reveals that, in addition to the properties of solutions already used in [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler limit[END_REF] in the absence of material boundaries, all that is needed is the relative variant of Boltzmann's H theorem [START_REF] Lions | From Boltzmann Equation to the Navier-Stokes and Euler Equations II[END_REF], the weak form of the local conservation of mass (continuity equation) [START_REF] Lombardo | Non-local scattering kernel and the hydrodynamic limit[END_REF] and the weak form of the local conservation of momentum [START_REF] Masmoudi | From the Boltzmann equation to the Stokes-Fourier system in a bounded domain[END_REF]. Recently, Mischler [START_REF] Mischler | Kinetic equations with Maxwell boundary conditions[END_REF] constructed global, renormalized (in the sense of DiPerna-Lions [START_REF] Diperna | On the Cauchy problem for the Boltzmann equation: global existence and weak stability results[END_REF]) solutions of the Boltzmann equation in [START_REF] Golse | Stokes-Fourier and Acoustic Limits for the Boltzmann Equation: Convergence Proofs[END_REF], satisfying [START_REF] Lions | From Boltzmann Equation to the Navier-Stokes and Euler Equations II[END_REF] and [START_REF] Lombardo | Non-local scattering kernel and the hydrodynamic limit[END_REF]. However, the boundary condition in ( 16) should be replaced with the inequality

F ǫ (t, x, v)|v•n x | ≤ v ′ •nx>0 F ǫ (t, x, v ′ )v ′ •n x K ǫ (x, R x v, dv ′ ) , (x, v) ∈ Γ -.
Equality in the boundary condition is known at least in the case of Maxwell's accomodation condition -see Remark 6.4 in [START_REF] Mischler | Kinetic equations with Maxwell boundary conditions[END_REF]. The reason for these differences with what would be normally expected from classical solutions of ( 16) is that Mischler's solutions are obtained by a very delicate compactness procedure in some weak topology. Whether these solutions are uniquely determined by their initial data, or even satisfy the weak form of the local momentum conservation (25) remains yet unknown. On the other hand, obtaining classical solutions of ( 16) for all ǫ > 0 and for all compactly supported and solenoidal initial velocity fields u in of class C 1 the domain Ω and tangential on ∂Ω remains an open problem at the time of this writing. Since the only properties of solutions used in our proof of the Euler limit are ( 22), ( 23) and [START_REF] Masmoudi | From the Boltzmann equation to the Stokes-Fourier system in a bounded domain[END_REF], one could hope that some future refinement of Mischler's theory could be enough for our purposes.

On the other hand, the Euler limit stated in Theorem 3.1 can be formulated in terms of dissipative solutions of the incompressible Euler equations (see [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] for this notion, and [START_REF] Bardos | Euler equations for incompressible ideal fluids[END_REF] for its extension to the initial boundary value problem). The main advantage of such a formulation is that a) the definition of dissipative solutions corresponds exactly with the limiting form of the relative entropy inequality [START_REF] Saint-Raymond | Du modèle BGK de l'équation de Boltzmann aux équations d'Euler des fluides incompressibles[END_REF] as ǫ → 0, and b) for any initial velocity field with finite kinetic energy that is solenoidal and tangential on ∂Ω, there exists at least one dissipative solution of the incompressible Euler equations that is defined for all times -see Proposition 4.2 on p. 156 in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF]. Besides, should the Euler equations have a classical solution, it is known that all dissipative solutions with the same initial data must coincide with that classical solution -see Proposition 4.1 on p. 155 in [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF]. We have refrained from using the notion of dissipative solutions in the present paper for the sake of simplicity, and refer the interested reader to [START_REF] Bardos | The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition[END_REF] where the result analogous to Theorem 3.1 in the special case of Maxwell's accomodation condition is formulated in terms of dissipative solutions of the incompressible Euler equations.

  r ǫ := sup x∈K∩∂Ω α ǫ (x) ǫ and β * := inf 0<ǫ<1 x∈K∩∂Ω β ǫ (x) > 0 ; -see assumptions (20)-(21). Pick N ≥ 1 such that N β * > 1. It follows from Proposition 3.2 that (32)
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