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OPTIMAL REGULARIZING EFFECT

FOR SCALAR CONSERVATION LAWS

FRANÇOIS GOLSE AND BENOÎT PERTHAME

Abstract. We investigate the regularity of bounded weak solutions of scalar
conservation laws with uniformly convex flux in space dimension one, satisfying
an entropy condition with entropy production term that is a signed Radon

measure. We prove that all such solutions belong to the Besov space B
1/3,3
∞,loc.

Since C. DeLellis and M. Westdickenberg [Ann. Inst. H. Poincaré Anal. Non
Linéaire 20 (2003), 1075–1085] have proved the existence of such solutions that
do not belong to Bs,p

q,loc if either s > 1/max(p, 3) or s = 1/3 and 1 ≤ q < p < 3

or s = 1/p with p ≥ 3 and q < ∞, this regularizing effect is optimal. The
proof is based on the kinetic formulation of scalar conservation laws and on
an interaction estimate in physical space.

1. Introduction

Consider the Cauchy problem for the free transport equation with unknown
u ≡ u(t, x) ∈ R

(1)

{

∂tu+ c∂xu = 0 , x ∈ R , t > 0 ,

u
∣

∣

t=0
= uin ,

where c ∈ R is a constant. It is well known that

u(t, x) = uin(x− ct) ,

so that u(t, ·) has exactly the same level of regularity as uin.
If the speed of propagation c depends on the unknown u, the situation is com-

pletely different. Consider the scalar conservation law with unknown u ≡ u(t, x) ∈
R and flux a : R → R of class C2

(2)

{

∂tu+ ∂xa(u) = 0 , x ∈ R , t > 0 ,

u
∣

∣

t=0
= uin .

If u is of class C1, the scalar conservation law (2) is equivalent to the free transport
equation (1) with c = a′(u). But even if uin ∈ C1(R), it may happen that the
solution u of (2) loses the C1 regularity in finite time. (This was already known
to Riemann: see [34].) More precisely, if a is convex, and if uin is decreasing on
an open interval, there exists T ∈ R∗

+ such that (2) cannot have a C1 solution
defined on (0, T ′)×R for all T ′ > T . However, (2) has global weak solutions whose
restrictions to (T,∞)×R contains jump discontinuities.
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2 F. GOLSE AND B. PERTHAME

If a′′(v) ≥ α > 0 for each v ∈ R, for each uin ∈ L1(R), there exists a unique weak
solution u ∈ L∞(R+;L

1(R)) of (2) satisfying in addition the differential inequality,
referred to as the entropy condition

(3) ∂tη(u) + ∂xq(u) ≤ 0

for each convex C1 function η, referred to as the entropy, where

(4) q(v) =

∫ v

η′(w)a′(w)dw ,

referred to as entropy flux associated to η.
This solution satisfies u(t, ·) ∈ BVloc ∩ L∞(R) for each t > 0 — see formula

(4.9) in chapter 4 of [26] for the L∞ bound, and chapter I6 §A in [37] for the
BVloc bound. Thus, if uin ∈ C1(R), since u(t, ·) ∈ BVloc(R) may contain jump
discontinuities, the effect of the nonlinearity a is a loss of regularity in the solution.
Yet, if uin ∈ L1(R), the fact that u(t, ·) ∈ BVloc(R) for each t > 0 can be viewed
as a (limited) regularizing effect.

The purpose of the present paper is to study the optimal regularizing effect for
weak solutions of (2) satisfying the weaker entropy condition

(5) ∂tη(u) + ∂xq(u) = −µ

for each entropy-entropy flux pair (η, q) as above, i.e. satisfying (4), where µ is a
signed Radon measure on R∗

+ ×R (instead of a positive measure). Such solutions
may contain jump discontinuities that would dissipate instead of create entropy and
therefore would be considered as unphysical by analogy with gas dynamics. Yet,
such solutions are relevant for other physical applications, such as micromagnetism:
see for instance [35] and the references therein.

Another motivation for considering the entropy condition (5) with entropy pro-
duction µ of indefinite sign can be found in the work of Hwang and Tzavaras [21].
In this work, the authors show that two different strategies for approximating so-
lutions of scalar conservation laws, the relaxation approximation à la Jin-Xin [24]
and the diffusion-dispersion approximation à la Schonbek [36], may lead to kinetic
formulations involving entropy production measures that may in general fail to be
positive.

The regularizing effect for this type of solutions of (2) has been studied so far by
using a kinetic formulation of the scalar conservation law: see [27] for the original
contribution, [22] for an improved regularity result, and [32] for a detailed presen-
tation of kinetic formulations and their properties. The tool for establishing the
regularizing effect for kinetic formulations is a class of results known as velocity av-
eraging, introduced independently in [1] and [19], with subsequent generalizations
and improvements described for instance in chapter 1 of [7] — see also the list of
references given in section 3.

The best result obtained by this method is that u ∈W s,r
loc (R

∗
+×R) for all s < 1/3

and 1 ≤ r < 3/2 (see [22]) — in the earlier result [27], the integrability exponent
was restricted to r < 5/3. On the other hand, it is possible to construct such

solutions that do not belong to any Besov space “better than” B
1/3,3
∞,loc(R

∗
+ ×R) —

see section 4 for a more precise statement of this optimality result and [11] for the
proof.

In the present paper, we prove that solutions of (2) with entropy production
that is a signed Radon measure for each convex entropy does indeed satisfy a
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(local) B
1/3,3
∞ estimate provided that the flux function is uniformly convex. With

the result in [11], this shows that the optimal regularity space for such solutions is

indeed B
1/3,3
∞,loc(R

∗
+ ×R).

Theorem 1.1. Assume that a ∈ C2(R) satisfies a′′ ≥ α0 > 0 on R, and let
uin ∈ L∞(R). Any bounded weak solution of (2) satisfying (5) for each convex
entropy η, with an entropy production µ that is a signed Radon measure on R+×R,

belongs to B
1/3,3
∞,loc(R

∗
+ ×R).

Our proof of this result relies on a method completely different from velocity
averaging. At variance with velocity averaging, this method does not use any
argument from harmonic analysis (Fourier transform, Littlewood-Paley decompo-
sitions...), but is based on an “interaction identity” presented in section 2. After
recalling an earlier, weaker regularizing effect obtained in [15, 16] for solutions of (2)
subject to a weaker entropy condition — Theorem 5.1 in section 4 — the optimal
regularizing effect is stated as Theorem 4.1 in that same section. As a warm-up,
we use our method based on the interaction identity to establish a new velocity
averaging result — Theorem 3.1 in section 3. Unlike in all velocity averaging the-
orems known to this date, the regularity of velocity averages of the solution of the
transport equation obtained in this result is independent of the regularity of the
source term in the velocity variable. The tradeoff is that the kinetic solution must
satisfy a seemingly unnatural monotonicity condition — see condition (11) below
— which however turns out to be satisfied precisely in the context of the kinetic
formulation of scalar conservation laws.

This new method is reminiscent of some tools from compensated compactness
[28, 39]— see section 2 below and the comments in section 2 of [15]. A shortcoming
of this method is that, unlike velocity averaging, it seems confined to the case of one
space dimension, at least at the time of this writing. In the case of space dimension
higher than one, some regularizing effect in the time variable of special classes of
nonlinear fluxes (that are in particular power-like at infinity) has been established
in [30] — an earlier result of same type in the case of homogeneous nonlinearities
can be found in [3].

2. The Interaction Identity

Consider the system of partial differential relations

(6)

{

∂tA+ ∂xB = C ,

∂tD + ∂xE = F ,

where A,B,C,D,E, F are real-valued functions of t ≥ 0 and x ∈ R. We henceforth
assume that the functions A,B,C,D,E, F have compact support in R∗

+ ×R, and
are extended by 0 to R×R.

The quantity

I1(t) :=

∫∫

x<y

A(t, x)D(t, y)dxdv

has been introduced by S.R.S. Varadhan — see Lemma 22.1 in [41] — in the context
of discrete velocity models in kinetic theory, and used by several authors since then
(J.-M. Bony [5], C. Cercignani [8], S.-Y. Ha [20]). It is also reminiscent of Glimm’s
interaction functional used in the theory of hyperbolic systems of conservation laws
in space dimension 1: see [14].
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Differentiating under the integral sign and using both equations in (6), one ob-
tains the following interaction identity

dI1
dt

(t) =

∫∫

x<y

(C(t, x)D(t, y) +A(t, x)F (t, y))dxdy

−

∫∫

x<y

(∂xB(t, x)D(t, y) +A(t, x)∂yE(t, y))dxdy

=

∫∫

x<y

(C(t, x)D(t, y) +A(t, x)F (t, y))dxdy

+

∫

R

(AE −DB)(t, z)dz .

Integrating further in the time variable and observing that I1 is compactly sup-
ported in t ∈ R∗

+, we arrive at the identity

(7)

∫∫

R×R

(AE −DB)(t, z)dzdt =−

∫∫

R×R

C(t, x)

(
∫ ∞

x

D(t, y)dy

)

dxdt

−

∫∫

R×R

F (t, y)

(
∫ y

−∞

A(t, x)dx

)

dydt .

Exchanging the roles of the time and space variables in the computation above,
one can consider the quantity

I2(t) :=

∫∫

s<t

B(s, z)E(t, z)dsdt

instead of I1. Proceeding as above, one sees that

dI2
dz

(z) =

∫∫

s<t

(C(s, z)E(t, z) +B(s, z)F (t, z))dsdt

−

∫∫

s<t

(∂sA(s, z)E(t, z) +B(s, z)∂tD(t, z))dsdt

=

∫∫

s<t

(C(s, z)E(t, z) +B(s, z)F (t, z))dsdt

−

∫

R

(AE −DB)(t, z)dt .

Integrating further in z and observing that I2 is compactly supported in z ∈ R, we
obtain

(8)

∫∫

R×R

(AE −DB)(t, z)dt =

∫∫

R×R

C(s, z)

(
∫ ∞

s

E(t, z)dt

)

dzds

+

∫∫

R×R

F (t, z)

(
∫ t

−∞

B(s, z)ds

)

dzdt .

In his proof of the interaction identity on p. 182 of his book [41], L. Tartar ob-
serves that the structure of this identity is reminiscent of compensated compactness
[28, 39]. Indeed, introducing the vector fields

U(t, x, y) := (A(t, x), B(t, x), 0) , V (t, x, y) = (E(t, x),−B(t, x), 0)

we see that the system (6) takes the form
{

div U = C ,
curlV = (0, 0,−F ) .
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While the left hand side of (7) involves the inner product U · V , the right hand
side involves integrands in the form of binary products where one of the terms is
integrated — and therefore gains one order of regularity — in the space variable.
The same is true of (8), by which one can hope to gain one order of regularity in
the time variable.

In view of this observation, the idea of using the interaction identities (7)-(8) for
the purpose of establishing regularization result appears fairly natural, and will be
used systematically in the sequel.

3. Velocity Averaging in Physical Space

Let f ≡ f(t, x, v) satisfy

(9) (∂t + a′(v)∂x)f = ∂γvm

where a is a smooth function while m is a bounded, signed Radon measure on
R+ ×R×R, and γ ∈ N.

Transport equations of this type naturally appear in the kinetic formulation
of hyperbolic systems of conservation laws: see for instance [32]. A fundamental
question in the context of kinetic models is to investigate the local regularity of
moments in the velocity variable v of the function f . Systematic investigations on
this class type of questions began with our work with R. Sentis [19] (see also the
independent study by V. Agoshkov [1]) and in a series of subsequent contributions
by several authors where more and more general classes of functions f and right
hand sides are considered: see in particular [17, 13, 6, 12, 33, 18, 38, 22, 23, 4, 2].

All these works use at some point tools from harmonic analysis: Fourier trans-
form, Hardy-Littlewood decomposition, Radon transform. Moreover, in all these
results, the regularity of moments in v of the function f depends on γ.

In this section, we give an example of velocity averaging result where the reg-
ularity of the moments in v of f is independent of γ, at the expense of an extra
assumption on the v dependence in f . Also, the proof of this result is based on the
interaction identities (7)-(8) and uses only elementary techniques in physical space.

Theorem 3.1. Let a ∈ C1(R); assume that there exists β ≥ 1 such that, for each
M > 0, there exists αM > 0 for which

(10) a′(v)− a′(w) ≥ αM (v − w)β , −M ≤ w < v ≤M .

Let γ ∈ N and let m be a signed Radon measure on R+ ×R×R.
Assume that f ∈ L∞(R+ ×R×R) satisfies (9) and that

(11) ∂v1f(t,x,v)≥f(t,y,v) = 0 in D′(R∗
+ ×Rx ×Ry ×Rv) .

Then, for each ψ ∈ C∞
c (R), one has

∫

R

fψ(v)dv ∈ Bs,2
∞,loc(R

∗
+ ×R) with s =

1

4 + 2β
.

We recall that, in the context of velocity averaging, the gain of regularity ob-
tained on averages of the form

∫

|ξ|≤M

f(t, x, ξ)dξ

of solutions of the transport equation

(∂t + V (ξ) · ∇x)f(t, x, ξ) = g(t, x, ξ)
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involves

sup
ω2+|k|2=1

|{ξ ∈ RN s.t. |ξ| ≤M and |ω + V (ξ) · k| ≤ ǫ}| ,

where, for each A ⊂ RN , the Lebesgue measure of A is designated by |A| — see
condition (2.1) in [17]. Equivalently, whenever k 6= 0,

|{ξ ∈ RN s.t. |ξ| ≤M and |ω + V (ξ) · k| ≤ ǫ}|

=

∣

∣

∣

∣

{

ξ ∈ RN s.t. |ξ| ≤M and V (ξ) ·
k

|k|
∈

[

−
ω + ǫ

|k|
,
ǫ− ω

|k|

]}∣

∣

∣

∣

.

On the other hand, (10) implies that a is strictly convex and is equivalent to the
condition

|{v ∈ R s.t. |v| ≤M and a′(v) ∈ [A,B]}| = a′−1(B)− a′−1(A) ≤

(

B −A

αM

)1/β

for each A,B such that a′(−M) ≤ A < B ≤ a′(M). Therefore, (10) is a condition
of the same type as the classical condition used in velocity averaging.

A typical sufficient condition under which a satisfies (10) is as follows. Assume
that a ∈ C2n(R) is convex and and that, for some n ∈ N∗ and z ∈ (−M,M), one
has

a′′(z) = . . . = a(2n−1)(z) = 0 , and a(2n)(z) > 0 .

(An example of this situation is the case of

a(v) :=
1

2n
v2n ,

with z = 0.) By continuity of a(2n), there exists ρ > 0 such that [z − ρ, z + ρ] ⊂
(−M,M) and λ > 0 such that

a(2n)(t) ≥ λ > 0 for each t ∈ [z − ρ, z + ρ] .

By Taylor’s formula, whenever z − ρ ≤ w ≤ v ≤ z + ρ, one has

a′(v)− a′(w) =

∫ v

w

1

(2n− 2)!
((v − t)2n−21t>z + (t− w)2n−21t<z)a

(2n)(t)dt

≥
λ

(2n− 1)!
((v − z)2n−1 + (z − w)2n−1)

≥
λ

(2n− 1)!
max((v − z)2n−1, (z − w)2n−1)

≥
λ

22n−1(2n− 1)!
(v − w)2n−1 .

On the other hand, whenever −M ≤ w < z − ρ < z + ρ < v ≤M , one has

a′(v)− a′(w) = a′(v)− a′(z + ρ) + a′(z + ρ)− a′(z − ρ) + a′(z − ρ)− a′(w)

≥ a′(z + ρ)− a′(z − ρ)

≥
λ

22n−1(2n− 1)!
(2ρ)2n−1

≥
λ

22n−1(2n− 1)!

( ρ

M

)2n−1

(v − w)2n−1 ,

where the first inequality follows from the convexity of a, while the second is a
consequence of the previous estimate in the case v = z+ρ and w = z−ρ. Therefore
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a satisfies (10) with β = 2n− 1 and αM = λ
22n−1(2n−1)!

(

ρ
M

)2n−1
. This situation is

essentially the same as the one described in assumption (H) before Theorem 2.2 in
[15].

The assumption (11) may seem somewhat unnatural; however, as we shall see
below, it is relevant in the context of conservation laws. A typical example of
functions f satisfying (11) is as follows.

Let W : R → R be a monotonous function, and let ρ ∈ L∞(R+ ×R); then the
function f defined by the formula

f(t, x, v) =W (ρ(t, x) − v)

satisfies (11). Indeed

f(t, x, v)− f(t, y, v) =

∫ ρ(t,x)

ρ(t,y)

W ′(u− v)du

so that, assuming without loss of generality that W is nondecreasing, we see that

1f(t,x,v)≥f(t,y,v) = 1ρ(t,x)≥ρ(t,y)

for a.e. t ≥ 0 and x, y, v ∈ R.

We do not claim that the Bs,2
∞,loc regularity obtained in Theorem 3.1 is optimal.

Since Theorem 3.1 is not the main result in the present paper, but rather an illus-
tration of how to use the interaction identities (7)-(8) for the purpose of obtaining
a velocity averaging theorem where the regularity index s = 1

4+2β is independent

of the number γ of derivatives in v in the source term, we have left this question
aside.

Proof. For h ∈ R, define the operators Dh
t and Dh

x by the formulas

(12)







Dh
t φ(t, x) := φ(t + h, x)− φ(t, x) ,

Dh
xφ(t, x) := φ(t, x + h)− φ(t, x) .

Pick χ ∈ C∞
c (R∗

+ ×R). One seeks to estimate

∫∫

χ(t, x)2
∣

∣

∣

∣

Dh
x

∫

f(t, x, v)ψ(v)dv

∣

∣

∣

∣

2

dxdt .

This quantity is decomposed as
∫∫

χ(t, x)2
∣

∣

∣

∣

Dh
x

∫

f(t, x, v)ψ(v)dv

∣

∣

∣

∣

2

dxdt

=

∫∫ ∫∫

χ(t, x)2Dh
xf(t, x, v)D

h
xf(t, x, w)ψ(v)ψ(w)dvdwdxdt

=

∫∫ ∫∫

(1− φǫ(w − v))χ(t, x)2Dh
xf(t, x, v)D

h
xf(t, x, w)ψ(v)ψ(w)dvdwdxdt

+

∫∫ ∫∫

φǫ(w − v)χ(t, x)2Dh
xf(t, x, v)D

h
xf(t, x, w)ψ(v)ψ(w)dvdwdxdt

= J1 + J2 ,

where φǫ(z) = Φ(z/ǫ) and Φ ∈ C∞(R) satisfies

0 ≤ Φ(z) ≤ 1 , Φ(z) = 1 if |z| ≥ 2 and Φ(z) = 0 if |z| ≤ 1 .
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By assumption (11), the integral J1 is estimated as follows:

(13)

|J1| ≤

∫∫ ∫∫

|v−w|≤2ǫ

χ(t, x)2Dh
xf(t, x, v)D

h
xf(t, x, w)ψ(v)ψ(w)dvdwdxdt

≤ 4‖χ2‖L1‖f‖2L∞

∫∫

|v−w|≤2ǫ

ψ(v)ψ(w)dvdw

≤ C0ǫ ,

where

C0 := 16‖χ2‖L1‖f‖2L∞‖ψ‖L1‖ψ‖L∞ .

As for the integral J2, using again assumption (11) shows that

|J2| ≤ cǫJ3

where, by (10),

cǫ = sup
−V≤w<v≤V

φǫ(w − v)

(v − w)(a′(v)− a′(w))
≤

1

αV ǫ1+β
,

assuming without loss of generality that supp(ψ) ⊂ [−V, V ], and

J3=

∫∫∫∫

(v−w)(a′(v)−a′(w))χ(t, x)2Dh
xf(t,x,v)D

h
xf(t,x,w)ψ(v)ψ(w)dvdwdxdt.

The integral J3 is now estimated by the interaction identity (7).
Set

A(t, x, v) := χ(t, x)Dh
xf(t, x, v) , D(t, x, w) := χ(t, x)Dh

xf(t, x, w) .

Since f ≡ f(t, x, v) satisfies (9), the functions A and D defined above satisfy (6)
with

B(t, x, v) := a′(v)χ(x)Dh
xf(t, x, v) , E(t, x, w) := a′(w)χ(x)Dh

xf(t, x, w) ,

and
{

C(t, x, v) := χ(t, x)∂γvD
h
xm(t, x, v) +X(t, x, v)Dh

xf(t, x, v) ,

F (t, x, w) := χ(t, x)∂γwD
h
xm(t, x, w) +X(t, x, w)Dh

xf(t, x, w) ,

with the notation

X(t, x, v) = (∂tχ+ a′(v)∂xχ)(t, x) .

(We have abused the notation m(t, x, v) as if the signed Radon measure m was a
function.)

At this point, we apply the interaction identity (7). After multiplying both sides
of this identity by (v − w)ψ(v)ψ(w) and integrating in v, w, one obtains

(14)

J3 =−

∫∫

(v − w)ψ(v)ψ(w)

∫∫

C(t, x, v)

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdvdw

−

∫∫

(v − w)ψ(v)ψ(w)

∫∫

F (t, y, w)

(
∫ y

−∞

A(t, x, v)dx

)

dydtdvdw .

Each integral in the right hand side of J3 involves two different kinds of terms. One
is
(15)

J31 =

∫∫

(v−w)ψ(v)ψ(w)

∫∫

X(t, x, v)Dh
xf(t, x, v)

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdvdw ,
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the other being
(16)

J32 =

∫∫

(v−w)ψ(v)ψ(w)

∫∫

χ(t, x)∂γvD
h
xm(t, x, v)

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdvdw .

In both expressions, the inner integral is put in the form
∫ ∞

x

D(t, y, w)dy =

∫ ∞

x

Dh
y (χ(t, y)f(t, y, w))dy −

∫ ∞

x

f(t, y + h,w)Dh
yχ(t, y)dy

= −

∫ x+h

x

χ(t, y)f(t, y, w)dy −

∫ ∞

x

f(t, y + h,w)

(

∫ h

0

∂xχ(t, y + z)dz

)

dy ,

so that

(17)

∣

∣

∣

∣

∫ ∞

x

D(t, y, w)dy

∣

∣

∣

∣

≤ ‖f‖L∞(‖χ‖L∞ + ‖∂xχ‖L1)|h| .

Thus

|J31| ≤ C1|h|

with

C1 = 2‖f‖2L∞(‖χ‖L∞ + ‖∂xχ‖L1)(‖vXψ‖L1‖ψ‖L1 + ‖Xψ‖L1‖vψ‖L1) .

In J32, we first integrate by parts and bring the v derivatives to bear on the
weight (v − w)ψ(v):

J32 = (−1)γ
∫∫

∂γv ((v − w)ψ(v))ψ(w)

∫∫

χ(t, x)Dh
xm(t, x, v)

×

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdvdw .

Assuming without loss of generality that supp(χ) ⊂ [0, T ]× [−R,R] and recalling
that supp(ψ) ⊂ [−V, V ] while |h| ≤ 1, one obtains

|J32| ≤ C2|h|

with
C2 = 2‖f‖L∞(‖∂γ(vψ)‖L∞‖ψ‖L1 + ‖∂γψ‖L∞‖vψ‖L1)

×(‖χ‖L∞ + ‖∂xχ‖L1)‖χ‖L∞

∫ T

0

∫ R+1

−R−1

∫ V

−V

|m| .

In conclusion

|J3| ≤ 2(C1 + C2)|h| .

Therefore
∫∫

χ(t, x)2
∣

∣

∣

∣

Dh
x

∫

f(t, x, v)ψ(v)dv

∣

∣

∣

∣

2

dxdt ≤ C0ǫ +
2

αV
(C1 + C2)

|h|

ǫ1+β
,

and choosing ǫ = |h|1/(2+β), we find that

(18)

∫∫

χ(t, x)2
∣

∣

∣

∣

Dh
x

∫

f(t, x, v)ψ(v)dv

∣

∣

∣

∣

2

dxdt ≤
(

C0 +
2

αV

(C1 + C2)
)

|h|1/(2+β) .
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As for the time regularity, it is obtained similarly, exchanging the roles of the
variables t and x. We briefly sketch the argument below. One seeks to estimate,
for each h > 0, the quantity

∫∫

χ(t, x)2
∣

∣

∣

∣

Dh
t

∫

f(t, x, v)ψ(v)dv

∣

∣

∣

∣

2

dxdt

that is decomposed as
∫∫

χ(t, x)2
∣

∣

∣

∣

Dh
t

∫

f(t, x, v)ψ(v)dv

∣

∣

∣

∣

2

dxdt

=

∫∫ ∫∫

χ(t, x)2Dh
t f(t, x, v)D

h
t f(t, x, w)ψ(v)ψ(w)dvdwdxdt

=

∫∫ ∫∫

(1− φǫ(w − v))χ(t, x)2Dh
t f(t, x, v)D

h
t f(t, x, w)ψ(v)ψ(w)dvdwdxdt

+

∫∫ ∫∫

φǫ(w − v)χ(t, x)2Dh
t f(t, x, v)D

h
t f(t, x, w)ψ(v)ψ(w)dvdwdxdt

= K1 +K2 .

The term K1 is obviously estimated exactly as J1:

(19) |K1| ≤ 4‖χ2‖L1‖f‖2L∞

∫∫

|v−w|≤2ǫ

ψ(v)ψ(w)dvdwdxdt ≤ C0ǫ .

As in the case of J2, one has

|K2| ≤ cǫK3

where

K3=

∫∫∫∫

(v−w)(a′(v)−a′(w))χ(t, x)2Dh
t f(t,x,v)D

h
t f(t,x,w)ψ(v)ψ(w)dvdwdxdt.

This last integral is estimated by using the interaction identity (8), with a slightly
different definition of A,B,C,D,E, F :

A(t, x, v) := χ(t, x)Dh
t f(t, x, v) , D(t, x, w) := χ(t, x)Dh

t f(t, x, w) ,

while

B(t, x, v) := a′(v)χ(x)Dh
t f(t, x, v) , E(t, x, w) := a′(w)χ(x)Dh

t f(t, x, w)

and
{

C(t, x, v) = χ(t, x)∂γvD
h
tm(t, x, v) +X(t, x, v)Dh

t f(t, x, v) ,

F (t, x, w) = χ(t, x)∂γwD
h
tm(t, x, w) +X(t, x, w)Dh

t f(t, x, w) .

Apply the interaction identity (8) after multiplying both sides of this identity by
(v − w)ψ(v)ψ(w) and integrating in v, w:

(20)

K3 =−

∫∫

(v − w)ψ(v)ψ(w)

∫∫

C(s, x, v)

(
∫ ∞

s

E(t, x, w)dt

)

dxdsdvdw

−

∫∫

(v − w)ψ(v)ψ(w)

∫∫

F (t, x, w)

(
∫ t

−∞

B(s, x, v)ds

)

dxdtdvdw .

As in the case of J3, the right hand side of K3 involves two different kinds of terms:
(21)

K31 =

∫∫

(v−w)ψ(v)ψ(w)

∫∫

X(t, x, v)Dh
s f(s, x, v)

(
∫ ∞

s

E(t, x, w)ds

)

dxdsdvdw
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and
(22)

K32 =

∫∫

(v−w)ψ(v)ψ(w)

∫∫

χ(t, x)∂γvD
h
sm(s, x, v)

(
∫ ∞

s

E(t, x, w)dt

)

dxdsdvdw .

The inner integral is put in the form
∫ ∞

s

E(t, x, w)dt =

∫ ∞

s

Dh
s (χ(t, x)a

′(w)f(t, x, w))dy

−

∫ ∞

s

a′(w)f(t + h, x, w)Dh
t χ(t, x)dt

=−

∫ s+h

s

χ(t, x)a′(w)f(t, x, w)dt

−

∫ ∞

s

a′(w)f(t + h, x, w)

(

∫ h

0

∂tχ(t+ τ, x)dτ

)

dt ,

so that

(23)

∣

∣

∣

∣

∫ ∞

s

E(t, x, w)dt

∣

∣

∣

∣

≤ |a′(w)|‖f‖L∞(‖χ‖L∞ + ‖∂tχ‖L1)h .

Thus

|K13| ≤ C3h ,

with

C3 = 2‖f‖2L∞(‖χ‖L∞ + ‖∂tχ‖L1)(‖vXψ‖L1‖a′ψ‖L1 + ‖Xψ‖L1‖va′ψ‖L1) .

Next

K32 = (−1)γ
∫∫

∂γv ((v − w)ψ(v))ψ(w)

∫∫

χ(t, x)Dh
sm(s, x, v)

×

(
∫ ∞

s

E(t, x, w)dt

)

dxdtdvdw .

Assuming that supp(χ) ⊂ [0, T ]× [−R,R] while supp(ψ) ⊂ [−V, V ] without loss of
generality, and that 0 < h ≤ 1, one obtains

|K32| ≤ C4h

with
C4 = 2‖f‖L∞(‖∂γ(vψ)‖L∞‖a′ψ‖L1 + ‖∂γψ‖L∞‖va′ψ‖L1)

×(‖χ‖L∞ + ‖∂tχ‖L1)‖χ‖L∞

∫ T+1

0

∫ R

−R

∫ V

−V

|m| .

In conclusion

|K3| ≤ 2(C3 + C4)|h| ,

so that
∫∫

χ(t, x)2
∣

∣

∣

∣

Dh
t

∫

f(t, x, v)ψ(v)dv

∣

∣

∣

∣

2

dxdt ≤ C0ǫ +
2

αV

(C3 + C4)
h

ǫ1+β
,

and choosing ǫ = h1/(2+β), we find that

(24)

∫∫

χ(t, x)2
∣

∣

∣

∣

Dh
t

∫

f(t, x, v)ψ(v)dv

∣

∣

∣

∣

2

dxdt ≤
(

C0 +
2
α (C3 + C4)

)

h1/(2+β) .
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Putting together (24) and (18), we conclude that
∫

fψ(v)dv ∈ Bs,2
∞,loc(R

∗
+ ×R) with s =

1

4 + 2β
.

�

4. Optimal Regularizing Effect for Scalar Conservation Laws in

Space Dimension One

Consider the scalar conservation law

(25)







∂tu+ ∂xa(u) = 0 , x ∈ R , t > 0 ,

u
∣

∣

t=0
= uin .

Assume that u is a weak solution whose entropy production rate is a signed Radon
measure. Specifically, we mean that, for each convex entropy η ∈ C1(R), one has

∂tη(u) + ∂xq(u) = −

∫

R

η′′(v)dm(·, ·, v)

where m is a signed Radon measure on R+ ×R×R (with compact support in the
variable v) and the entropy flux q is defined by (4).

Equivalently (see for instance §6.7 in [9]), u satisfies the following kinetic formu-
lation of (25)

(26)







∂tf + a′(v)∂xf = ∂vm, x, v ∈ R , t > 0 ,

f
∣

∣

t=0
= f in ,

where

(27) f(t, x, v) :=

{

+1[0,u(t,x)](v) if u(t, x) ≥ 0 ,
−1[u(t,x),0](v) if u(t, x) < 0 ,

while

(28) f in(x, v) :=

{

+1[0,uin(x)](v) if uin(x) ≥ 0 ,
−1[uin(x),0](v) if uin(x) < 0 .

Theorem 4.1. Let a ∈ C2(R) satisfy (10), let m be a signed Radon measure on
R+ ×R×R. Let uin ∈ L∞(R) and let u ∈ L∞([0, T ]×R) satisfy (26). Then

u ∈ B
1/p,p
∞,loc(R

∗
+ ×R) with p = 2 + β .

More precisely, for all ǫ > 0 and all ξ ∈ [−ǫ, ǫ], one has

αUβ
2

(β + 1)(β + 2)

∫ T

0

∫

R

χ(t, x)2|u(t, x+ ξ)− u(t, x)|2+βdxdt

≤ 2|ξ|(‖χ‖L∞ + ‖∂xχ‖L1)

(

2U‖X‖L1 + ‖χ‖L∞

∫ T

0

∫ R+ǫ

−R−ǫ

∫ U

−U

d|m|

)

and, for all 0 < τ < ǫ

αUβ
2

(β + 1)(β + 2)

∫ T

0

∫

R

χ(t, x)2|u(t+ τ, x)− u(t, x)|2+βdxdt

≤ 2τ(‖χ‖L∞ + ‖∂xχ‖L1)

(

‖a′‖L1(−U,U)‖X‖L1 + ‖χ‖L∞

∫ T+ǫ

0

∫ R

−R

∫ U

−U

|a′|d|m|

)
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where U := ‖u‖L∞ while X(t, x, v) := (∂t + a′(v)∂x)χ(t, x) and T,R > 0 are such
that supp(χ) ⊂ [0, T ]× [−R,R].

The following statement is an obvious consequence of this theorem.

Corollary 4.2. Under the same assumptions as in Theorem 4.1, one has also

u ∈ B
1/p,p
∞,loc(R+ ×R) for each p ≥ 2 + β .

Proof. Pick χ ∈ C∞
c (R∗

+×R), and extend χu by 0 to R2. Then, for each p > 2+β
and τ, ξ ∈ R, one has
∫∫

|χu(t+ τ, x+ ξ)− χu(t, x)|pdxdt

≤ (2‖χu‖L∞)p−2−β

∫∫

|χu(t+ τ, x+ ξ)− χu(t, x)|2+βdxdt ≤ C(|τ | + |ξ|)

since χu ∈ L∞(R2)×B
1/(2+β),2+β
∞,loc (R2). �

Before giving the proof of this theorem, a few remarks are in order.
First, the exponent β in (10) can be viewed as a measure of the nonlinearity in

(25). Indeed, if a is linear, a′ is a constant so that (10) holds (for |w− v| < 1) with
β = +∞, and there is no regularizing effect. In other words, the regularizing effect
predicted in Theorem 4.1 is a consequence of the nonlinearity.

In the case where a satisfies

(29) a ∈ C2(R) with a′′(v) ≥ α > 0 , v ∈ R

P. Lax [25] and O. Oleinik [29] have proved that, for each initial data uin ∈ L1(R),
the Cauchy problem (25) has a unique entropy solution, i.e. a weak solution satis-
fying

∂tη(u) + ∂xq(u) ≤ 0

for each convex η ∈ C1(R) and q defined by (4), and that this solution u satisfies
u(t, ·) ∈ L∞(R) for each t > 0 and together with the one-sided bound

∂xu(t, x) ≤
1

αt
, t > 0 , x ∈ R .

A consequence of this one-sided bound is that u ∈ BVloc(R+ ×R).
In the case where a(v) = 1

2v
2, for each p ∈ [1,∞] and each σ > 1/max(3, p), C.

DeLellis and M. Westdickenberg [11] have proved the existence of a weak solutions
u of (25) satisfying the entropy relation (42) for each convex η ∈ C2(R) with q
defined as in (4) and an entropy production rate µ that is a signed Radon measure
on R+ ×R, such that

u /∈ Bσ,p
∞,loc(R

∗
+ ×R) .

Of course, the condition (29) implies that (10) is verified with αM = α for each
M > 0 and β = 1. In that case, Theorem 4.1 predicts that weak solutions u of (25)
satisfying the entropy relation (42) for each convex η ∈ C2(R) with q defined as in
(4) and an entropy production rate µ that is a signed Radon measure on R+ ×R

belong to the Besov space B
1/3,3
∞,loc(R

∗
+ ×R). According to the result of C. DeLellis

and M. Westdickenberg [11], this regularity is optimal.

A key argument in the proof of Theorem 4.1 is the following inequality.
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Lemma 4.3. Assume that a ∈ C1(R) satisfies assumption (10). For all u ∈ R,
define

Mu(v) :=

{

+1[0,u](v) if u ≥ 0 ,
−1[u,0](v) if u < 0 .

and

∆(u, ū) :=

∫∫

1R+
(v−w)(a′(v)−a′(w))(Mu(v)−Mū(v))(Mu(w)−Mū(w))dvdw .

Then, for each V > 0 and ū, u ∈ [−V, V ], one has

∆(u, ū) ≥
αV β

2

(β + 1)(β + 2)
|u− ū|2+β .

The proof of this inequality is deferred until after the proof of Theorem 4.1.

Proof of Theorem 4.1. Pick χ ∈ C∞
c (R+ × R), with support in [0, T ] × [−R,R],

and let U = ‖u‖L∞([0,T ]×R).
We first establish the regularity in the space variable x. As in the proof of

Theorem 3.1, set

A(t, x, v) := χ(t, x)Dh
xf(t, x, v) , D(t, x, w) := χ(t, x)Dh

xf(t, x, w) .

Since f ≡ f(t, x, v) satisfies (9), the function A and D defined above satisfy (6)
with

B(t, x, v) := a′(v)χ(t, x)Dh
xf(t, x, v) , E(t, x, w) := a′(w)χ(t, x)Dh

xf(t, x, w)

and
{

C(t, x, v) := χ(t, x)∂vD
h
xm(t, x, v) +X(t, x, v)Dh

xf(t, x, v) ,

F (t, x, w) := χ(t, x)∂wD
h
xm(t, x, w) +X(t, x, w)Dh

xf(t, x, w) ,

with the notation

X(t, x, v) := ∂tχ(t, x) + a′(v)∂xχ(t, x) .

Multiplying each side of the interaction identity (7) by 1R+
(v−w) and integrating

both sides of the resulting equality in the variables v and w,
(30)

Q :=

∫∫

R×R

1R+
(v−w)

∫∫

R×R

(A(t, x, v)E(t, x, w)−B(t, x, v)D(t, x, w))dxdtdvdw

=−

∫∫

R×R

1R+
(v − w)

∫∫

R×R

C(t, x, v)

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdvdw

−

∫∫

R×R

1R+
(v − w)

∫∫

R×R

F (t, y, w)

(
∫ y

−∞

A(t, x, v)dx

)

dydtdvdw .

The right hand side of this identity involves essentially terms of two different kinds:
(31)

Q1 =

∫∫

1R+
(v − w)

∫∫

R×R

X(t, x, v)Dh
xf(t, x, v)

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdvdw ,

the other being
(32)

Q2 =

∫∫

1R+
(v − w)

∫∫

R×R

χ(t, x)∂vD
h
xm(t, x, v)

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdvdw .
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Proceeding as in the proof of Theorem 3.1, we put the inner integral in the form
∫ ∞

x

D(t, y, w)dy =

∫ ∞

y

Dh
y (χ(t, y)f(t, y, w))dy −

∫ ∞

x

f(t, y + h,w)Dh
yχ(t, y)dy

= −

∫ x+h

x

χ(t, y)f(t, y, w)dy −

∫ ∞

x

f(t, y + h,w)

(

∫ h

0

∂xχ(t, y + z)dz

)

dy ,

so that

(33)

∣

∣

∣

∣

∫ ∞

x

D(t, y, w)dy

∣

∣

∣

∣

≤ (‖χ‖L∞ + ‖∂xχ‖L1)|h|1[−U,U ](w) .

Thus

|Q1| ≤ K1|h| ,

with

(‖χ‖L∞ + ‖∂xχ‖L1)

∫∫

‖X(·, ·, v)‖L11[−U,U ](v)1[−U,U ](w)dvdw

≤ 2U(‖χ‖L∞ + ‖∂xχ‖L1)‖X‖L1 =: K1 .

On the other hand, for each h ∈ [−ǫ, ǫ]

Q2 =

∫∫

1R+
(v − w)

∫∫

R×R

χ(t, x)∂vD
h
xm(t, x, v)

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdvdw

= −

∫

R

∫∫

R×R

χ(t, x)Dh
xm(t, x, w)

(
∫ ∞

x

D(t, y, w)dy

)

dxdtdw ,

so that

|Q2| ≤ K2|h|

with

K2 := 2(‖χ‖L∞ + ‖∂xχ‖L1)‖χ‖L∞

∫ T

0

∫ R+ǫ

−R−ǫ

∫ U

−U

|m| .

In conclusion, one has, by the same argument as in the proof of Theorem 3.1

(34) |Q| ≤ 2(K1 +K2)|h| .

On the other hand, according to Lemma 4.3

(35)

Q =

∫ T

0

∫

R

χ(t, x)2∆(u(t, x), u(t, x + h))dxdt

≥
αUβ

2

(β + 1)(β + 2)

∫ T

0

∫

R

χ(t, x)2|Dh
xu(t, x)|

2+βdxdt .

Putting together (35) and (34) shows that

u ∈ L2+β
loc (R∗

+;B
1/(2+β),2+β
∞,loc (R)) .

Now for the time regularity. Following the proof of Theorem 3.1, pick 0 < h < ǫ
and set

A(t, x, v) := χ(t, x)Dh
t f(t, x, v) , D(t, x, w) := χ(t, x)Dh

t f(t, x, w) .

Since f ≡ f(t, x, v) satisfies (9), the function A and D defined above satisfy (6)
with

B(t, x, v) := a′(v)χ(t, x)Dh
t f(t, x, v) , E(t, x, w) := a′(w)χ(t, x)Dh

t f(t, x, w) ,
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and
{

C(t, x, v) := χ(t, x)∂vD
h
xm(t, x, v) +X(t, x, v)Dh

t f(t, x, v) ,

F (t, x, w) := χ(t, x)∂wD
h
xm(t, x, w) +X(t, x, w)Dh

t f(t, x, w) ,

Multiplying each side of the interaction identity (8) by 1R+
(v−w) and integrating

both sides of the resulting equality in the variables v and w,
(36)

S :=

∫∫

R×R

(AE −BD)(t, x)dxdt

=

∫∫

1R+
(v − w)

∫∫

R×R

C(s, x, v)

(
∫ ∞

s

E(t, x, w)dt

)

dxdsdvdw

+

∫∫

1R+
(v − w)

∫∫

R×R

F (t, x, w)

(
∫ t

−∞

B(s, x, v)ds

)

dxdtdvdw .

As before, the right hand side of this identity involves terms of two different kinds:
(37)

S1 =

∫∫

1R+
(v − w)

∫∫

R×R

X(s, x, v)Dh
s f(s, x, v)

(
∫ ∞

s

E(t, x, w)dt

)

dxdsdvdw ,

the other being
(38)

S2 =

∫∫

1R+
(v − w)

∫∫

R×R

χ(s, x)∂vD
h
xm(s, x, v)

(
∫ ∞

s

E(t, x, w)dt

)

dxdsdvdw .

The inner integral
∫ ∞

s

E(t, x, w)dt=

∫ ∞

s

Dh
s (χ(t, x)a

′(w)f(t, x, w))dt −

∫ ∞

x

f(t+ h, x, w)Dh
t χ(t, x)dt

=

∫ s+h

s

χ(t, y)a′(w)f(t, y, w)dy−

∫ ∞

s

a′(w)f(t + h, x, w)

(

∫ h

0

∂xχ(t+ τ, x)dτ

)

dt ,

so that

(39)

∣

∣

∣

∣

∫ ∞

s

E(t, x, w)dt

∣

∣

∣

∣

≤ (‖χ‖L∞ + ‖∂tχ‖L1)h|a′(w)|1[−U,U ](w) .

Thus

|S1| ≤ L1h ,

with

(‖χ‖L∞ + ‖∂tχ‖L1)

∫∫

‖X(·, ·, v)‖L1 |a′(w)|1[−U,U ](v)1[−U,U ](w)dvdw

≤ (‖χ‖L∞ + ‖∂tχ‖L1)‖X‖L1‖a′‖L1(−U,U) =: L1 .

Moreover

S2 =

∫∫

1R+
(v − w)

∫∫

R×R

χ(s, x)∂vD
h
sm(s, x, v)

(
∫ ∞

s

E(t, x, w)dt

)

dxdsdvdw

= −

∫

R

∫∫

R×R

χ(t, x)Dh
sm(s, x, w)

(
∫ ∞

s

E(t, x, w)dt

)

dxdsdw ,

so that

|S2| ≤ L2h
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with

L2 := 2(‖χ‖L∞ + ‖∂tχ‖L1)‖χ‖L∞

∫ T+ǫ

0

∫ R

−R

∫ U

−U

|a′||m| .

Collecting the bounds on S1 and S2, one has

(40) |S| ≤ 2(L1 + L2)h .

On the other hand, according to Lemma 4.3

(41)

S =

∫ T

0

∫

R

χ(t, x)2∆(u(t, x), u(t+ h, x))dxdt

≥
αUβ

2

(β + 1)(β + 2)

∫ T

0

∫

R

χ(t, x)2|Dh
t u(t, x)|

2+βdxdt .

Putting together (41) and (40) shows that

u ∈ L2+β
loc (R;B

1/(2+β),2+β
∞,loc (R∗

+)) ,

which concludes the proof. �

Proof of Lemma 4.3. Assume that ū ≤ u. Then

Mu(v)−Mū(v) =







1(ū,u](v) if u ≥ ū ≥ 0 ,
1[ū,u](v) + 10(v) if u ≥ 0 > ū ,
1[ū,u)(v) + 10(v) if 0 > u ≥ ū .

Observe that

sign(Mu(v)−Mū(v)) = sign(u− ū) ,

so that Mu is an example of function satisfying the assumption (11) above.
Therefore, if −V ≤ ū < u ≤ V , one has

∆(u, ū) =

∫∫

1R+
(v − w)(a′(v)− a′(w))1(ū,u)(v)1(ū,u)(w)dvdw

=

∫ u

ū

(
∫ u

w

(a′(v)− a′(w))dv

)

dw

≥ αV

∫ u

ū

∫ u

w

(v − w)βdvdw

≥
αV β

β + 1

∫ u

ū

(u− w)β+1dw

=
αV β

2

(β + 1)(β + 2)
(u− ū)β+2 ,

which is the announced lower bound when ū < u.
On the other hand,

(Mu(v) −Mū(v))(Mu(w) −Mū(w)) = (Mū(v)−Mu(v))(Mū(w)−Mu(w))

for all u, ū, v, w ∈ R, so that

∆(u, ū) = ∆(ū, u) .

With the previous inequality, this establishes the announced lower bound for all
u, ū ∈ R. �
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5. Regularizing Effect with One Convex Entropy

In the case where the entropy condition is known to hold for one convex en-
tropy, and with an entropy production rate that is a Radon measure with possibly
undefinite sign, the following result was obtained by the first author:

Theorem 5.1. [15, 16] Let a ∈ C1(R) satisfy (10), and let µ be a signed Radon
measure on R+ ×R. Assume that the Cauchy problem for the scalar conservation
law (25) has a weak solution u ∈ L∞(R+ ×R) satisfying

(42) ∂tη(u) + ∂xq(u) = −µ

for some η ∈ C1(R) such that there exists β′ ≥ 1 for which, given any V > 0, there
exists η0V > 0 such that

(43) η′(v)− η′(w) ≥ η0,V (v − w)β
′

, whenever − V ≤ w < v ≤ V ,

with q defined by (4). Then

u ∈ B
1/p,p
∞,loc(R

∗
+ ×R) with p = β + β′ + 2 .

More precisely, for all ǫ > 0 and each ξ ∈ [−ǫ, ǫ]

αUη0U (β + β′)

(β + β′ + 1)(β + β′ + 2)

∫∫

R×R

χ(t, z)2|u(t, x+ ξ)− u(t, x)|β+β′+2dxdt

≤

(

M1 +M2 + 2U‖χ‖L∞(‖χ‖L∞ + ‖∂xχ‖L1)

∫ T

0

∫ R+ǫ

−R−ǫ

d|µ|

)

and, for each τ ∈ [0, ǫ],

αUη0U (β + β′)

(β + β′ + 1)(β + β′ + 2)

∫∫

R×R

χ(t, z)2|u(t+ τ, x)− u(t, x)|β+β′+2dxdt

≤

(

N1 +N2 + 2U‖χ‖L∞(‖χ‖L∞ + ‖∂tχ‖L1)

∫ T+ǫ

0

∫ R

−R

d|µ|

)

where U = ‖χ‖L∞, while M1, M2, N1, N2 are defined in (44), (45), (47) and (48)
respectively and T,R > 0 are chosen so that supp(χ) ⊂ [0, T ]× [−R,R].

The proof of this result in [15, 16] is based on an argument that is reminiscent
of Tartar’s compensated compactness method for proving the convergence of the
vanishing viscosity method for scalar conservation laws [39].

Whenever a, η ∈ C2(R) satisfy

a′′(v) ≥ α > 0 and η′′(v) ≥ η0 > 0 for all v ∈ R ,

one can take β = β′ = 1 in (10) and (43), and Theorem 5.1 predicts that u ∈

B
1/4,4
∞,loc(R

∗
+ ×R).

In any case, the regularity obtained in Theorem 5.1 in the case where the weak
solution u satisfies only one entropy relation with entropy production rate that is
a signed Radon measure also belongs to the DeLellis-Westdickenberg [11] optimal

regularity class — i.e. the spaces B
1/p,p
∞,loc for p ≥ 3.

A remarkable result due to Panov [31] states that, if u ∈ L∞(R+ ×R) is a weak
solution of (25) with a ∈ C2(R) such that a′′ > 0 satisfying one entropy condition
(42) with η ∈ C2(R) such that η′′ > 0 and µ ≥ 0, then it is the unique entropy
solution of (25). In particular, it satisfies (42) for all η ∈ C2(R) such that η′′ > 0,
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with nonnegative entropy production µ. Panov’s result was subsequently somewhat
generalized by DeLellis, Otto and Westdickenberg [10]. However, we do not know
whether any weak solution of (25) with a ∈ C2(R) such that a′′ > 0 satisfying one
entropy condition (42) with η ∈ C2(R) such that η′′ > 0 and µ a signed Radon
measure must satisfy (42) for all convex entropies, i.e. whether such a solution
satisfies the assumptions of Theorem 4.1. Therefore, Theorem 5.1 seems to be of
independent interest.

Below, we give a new proof of Theorem 5.1 based on the interaction identity of
section 2 instead of the variant of compensated compactness used in [15, 16].

Lemma 5.2. Assuming that the functions a, η and q belong to C1(R) and satisfy
(10) and (43) while q′ = a′η′, one has, for each V > 0

(w − v)(q(w) − q(v)) − (a(w)− a(v))(η(w) − η(v))

≥
αV η0V (β + β′)

(β + β′ + 1)(β + β′ + 2)
|w − v|β+β′+2 ,

whenever v, w ∈ [−V, V ].

In the most general case where a and η are C1 convex functions, the inequality

(w − v)(q(w) − q(v))− (a(w) − a(v))(η(w) − η(v)) ≥ 0 , v, w ∈ R .

is stated without proof by L. Tartar: see Remark 30 in [39].
For a proof in the case where a, η ∈ C2(R) with

η′′(v) ≥ η0 > 0 and a′′(v) ≥ α > 0 for all v ∈ R ,

corresponding with assumptions (10) and (43) with β = β′ = 1, see Lemma 2.3 in
[15].

Proof. One has

(w − v)(q(w) − q(v))− (a(w) − a(v))(η(w) − η(v))

=

∫ w

v

∫ w

v

η′(ζ)(a′(ζ)− a′(ξ))dξdζ

= 1
2

∫ w

v

∫ w

v

(η′(ζ)− η(ξ)(a′(ζ) − a′(ξ))dξdζ

≥ 1
2η0V αV

∫ w

v

∫ w

v

(ζ − ξ)β+β′

dξdζ

= αV η0V (β+β′)
(β+β′+1)(β+β′+2) |w − v|β+β′+2 .

�

Proof of Theorem 5.1. Pick χ ∈ C∞
c (R+ × R), with support in ]0, T ] × [−R,R],

and let U := ‖u‖L∞(R+×R).
As above, we first establish the regularity in the space variable x. Set

A(t, x) := χ(t, x)Dh
xu(t, x) , D(t, x) := χ(t, x)Dh

xη(u)(t, x) .

Since u ≡ f(t, x) satisfies (25)-(42), the function A and D defined above satisfy (6)
with

B(t, x) := χ(t, x)Dh
xa(u)(t, x) , E(t, x) := χ(t, x)Dh

xq(u)(t, x) ,
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and
{

C(t, x) := Dh
xu(t, x)∂tχ(t, x) +Dh

xa(u)(t, x)∂xχ(t, x) ,

F (t, x) := Dh
xη(u)(t, x)∂tχ(t, x) +Dh

xq(u)(t, x)∂xχ(t, x)− χ(t, x)Dh
xµ .

Using the identity (7) shows that
∫∫

R×R

χ(t, z)2(Dh
xuD

h
xq(u)−Dh

xa(u)D
h
xη(u))(t, z)dzdt

=−

∫∫

R×R

C(t, x)

(
∫ ∞

x

D(t, y)dy

)

dxdt

−

∫∫

R×R

F (t, y)

(
∫ y

−∞

A(t, x)dx

)

dydt .

Proceeding as in the proof of Theorem 4.1, we see that
∫ y

−∞

A(t, x)dx =

∫ y

−∞

Dh
x(χu)(t, x)dx −

∫ y

−∞

u(t, x+ h)Dh
xχ(t, x)dx

∫ y+h

y

χu(t, x)dx −

∫ y

−∞

u(t, x+ h)

(

∫ h

0

∂xχ(t, x+ z)dz

)

dx ,

so that
∣

∣

∣

∣

∫ y

−∞

A(t, x)dx

∣

∣

∣

∣

≤ ‖u‖L∞(‖χ‖L∞ + ‖∂xχ‖L1)|h| .

Likewise
∣

∣

∣

∣

∫ ∞

x

D(t, y)dy

∣

∣

∣

∣

≤ ‖η(u)‖L∞(‖χ‖L∞ + ‖∂xχ‖L1)|h| .

Therefore, assuming that |h| ≤ ǫ, one has
∣

∣

∣

∣

∫∫

R×R

C(t, x)

(
∫ ∞

x

D(t, y)dy

)

dxdt

∣

∣

∣

∣

≤M1|h| ,

with

(44) M1 := (2‖u‖L∞‖∂tχ‖L1 + ‖a(u)‖L∞‖∂xχ‖L1)‖η(u)‖L∞(‖χ‖L∞ + ‖∂xχ‖L1) ,

while
∣

∣

∣

∣

∫∫

R×R

F (t, y)

(
∫ y

−∞

A(t, x)dx

)

dydt

∣

∣

∣

∣

≤ (M2 +M3)|h| ,

with

(45) M2 := (2‖η(u)‖L∞‖∂tχ‖L1 + ‖q(u)‖L∞‖∂xχ‖L1)‖u‖L∞(‖χ‖L∞ + ‖∂xχ‖L1)

and

M3 := 2‖u‖L∞(‖χ‖L∞ + ‖∂xχ‖L1)‖χ‖L∞

∫ T

0

∫ R+ǫ

−R−ǫ

|µ| .

Thus
∣

∣

∣

∣

∫∫

R×R

χ(t, z)2(Dh
xuD

h
xq(u)−Dh

xa(u)D
h
xη(u))(t, z)dzdt

∣

∣

∣

∣

≤ (M1 +M2 +M3)|h| .

On the other hand, by Lemma 5.2

(46) (Dh
xuD

h
xq(u)− Dh

xa(u)D
h
xη(u)) ≥

αUη0U (β + β′)

(β + β′ + 1)(β + β′ + 2)
|Dh

xu|
β+β′+2 ,
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so that the inequality above entails the estimate
∫∫

R×R

χ(t, z)2|Dh
xu|

β+β′+2(t, z)dzdt

≤
(β + β′ + 1)(β + β′ + 2)

αUη0U (β + β′)
(M1 +M2 +M3)|h| ,

showing that

u ∈ Lβ+β′+2
loc (R∗

+;B
1/(β+β′+2),β+β′+2
∞,loc (R)) .

As for the time regularity, pick h ∈ [0, ǫ] and set

A(t, x) := χ(t, x)Dh
t u(t, x) , D(t, x) := χ(t, x)Dh

t η(u)(t, x) .

Since u ≡ f(t, x) satisfies (25)-(42), the function A and D defined above satisfy (6)
with

B(t, x) := χ(t, x)Dh
t a(u)(t, x) , E(t, x) := χ(t, x)Dh

t q(u)(t, x) ,

and
{

C(t, x) := Dh
t u(t, x)∂tχ(t, x) +Dh

t a(u)(t, x)∂xχ(t, x) ,

F (t, x) := Dh
t η(u)(t, x)∂tχ(t, x) +Dh

t q(u)(t, x)∂xχ(t, x)− χ(t, x)Dh
t µ .

At this point, we use the identity (8) which shows that
∫∫

R×R

χ(t, z)2(Dh
t uD

h
t q(u)−Dh

t a(u)D
h
t η(u))(t, z)dzdt

=

∫∫

R×R

C(s, x)

(
∫ ∞

s

D(t, x)dt

)

dxds

+

∫∫

R×R

F (t, x)

(
∫ t

−∞

A(s, x)ds

)

dxdt .

As above
∫ t

−∞

A(s, x)ds =

∫ t

−∞

Dh
x(χu)(s, x)ds−

∫ t

−∞

u(s+ h, x)Dh
t χ(s, x)ds

∫ t+h

t

χu(s, x)ds−

∫ t

−∞

u(s+ h, x)

(

∫ h

0

∂xχ(s+ τ, x)dτ

)

ds ,

so that
∣

∣

∣

∣

∫ t

−∞

A(s, x)ds

∣

∣

∣

∣

≤ ‖u‖L∞(‖χ‖L∞ + ‖∂tχ‖L1)h .

Likewise
∣

∣

∣

∣

∫ ∞

s

D(t, x)dt

∣

∣

∣

∣

≤ ‖η(u)‖L∞(‖χ‖L∞ + ‖∂tχ‖L∞)h .

Therefore
∣

∣

∣

∣

∫∫

R×R

C(s, x)

(
∫ ∞

s

D(t, x)ds

)

dxdt

∣

∣

∣

∣

≤ N1|h|

with

(47) N1 := (2‖u‖L∞‖∂tχ‖L1 + ‖a(u)‖L∞‖∂xχ‖L1)‖η(u)‖L∞(‖χ‖L∞ + ‖∂tχ‖L1) ,

while
∣

∣

∣

∣

∫∫

R×R

F (t, x)

(
∫ t

−∞

A(s, x)ds

)

dxdt

∣

∣

∣

∣

≤ (M2 +M3)|h| ,
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with

(48) N2 := (2‖η(u)‖L∞‖∂tχ‖L1 + ‖q(u)‖L∞‖∂xχ‖L1)‖u‖L∞(‖χ‖L∞ + ‖∂tχ‖L1)

and

N3 := 2‖u‖L∞(‖χ‖L∞ + ‖∂tχ‖L1)‖χ‖L∞

∫ T+ǫ

0

∫ R

−R

|µ| .

Using the inequality (46), we conclude that
∫∫

R×R

χ(t, z)2|Dh
t u|

β+β′+2(t, z)dzdt

≤
(β + β′ + 1)(β + β′ + 2)

αUη0U (β + β′)
(N1 +N2 +N3)h ,

so that
u ∈ Lβ+β′+2

loc (R;B
1/(β+β′+2),β+β′+2
∞,loc (R∗

+)) ,

which concludes the proof. �
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