Romain Lebreton
email: lebreton@lix.polytechnique.fr

Éric Schost
email: eschost@uwo.ca

Algorithms for the universal decomposition algebra

Let k be a field and let f ∈ k [T] be a polynomial of degree n. The universal decomposition algebra A is the quotient of k [X1, . . . , Xn] by the ideal of symmetric relations (those polynomials that vanish on all permutations of the roots of f). We show how to obtain efficient algorithms to compute in A. We use a univariate representation of A, i.e. an isomorphism of the form A ≃ k[T]/Q(T), since in this representation, arithmetic operations in A are known to be quasi-optimal. We give details for two related algorithms, to find the isomorphism above, and to compute the characteristic polynomial of any element of A.

INTRODUCTION

Let k be a field and let f = X n + n i=1 (-1) i fiX n-i in k [X] be a degree n separable polynomial. We let R := {α1, . . . , αn} be the set of roots of f in an algebraic closure of k. The ideal of symmetric relations Is is the ideal P ∈ k [X1, . . . , Xn] |∀σ ∈ Sn, P α σ(1) , . . . , α σ(n) = 0 .

It is is generated by (Ei -fi) i=1,...,n , where Ei is the ith elementary symmetric function on X1, . . . , Xn. Finally, the universal decomposition algebra is the quotient algebra A := k[X1, . . . , Xn]/Is, of dimension δ := n!. For all P ∈ A, we denote by X P,A its characteristic polynomial in A, that is, the characteristic polynomial of the multiplication-by-P endomorphism of A. Stickelberger's theorem shows that where Sn// Stab P are the right cosets of the stabilizer of P in the symmetric group Sn; indeed, these polynomials satisfy the relation X P,A = L # Stab P P . Computing Lagrange resolvents is a fundamental question, motivated for instance by applications to Galois theory or effective invariant theory. There exists an abundant literature on this question [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF][START_REF] Soicher | The computation of the Galois groups[END_REF][START_REF] Valibouze | Fonctions symétriques et changements de bases[END_REF]2,[START_REF] Arnaudiès | Lagrange resolvents[END_REF][START_REF] Lehobey | Resolvent computations by resultants without extraneous powers[END_REF][START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF][START_REF] Rennert | Calcul de résolvantes avec les modules de Cauchy[END_REF][START_REF] Aubry | Using Galois ideals for computing relative resolvents[END_REF]; known symbolic methods rely on techniques involving resultants, symmetric functions, standard bases or invariants (we will make use of some of these ingredients as well). However, little is known about the complexity of these methods. As it turns out, almost all algorithms have at least a quadratic cost δ 2 in the general case.

In some particular cases, though, it is known that resolvents can be computed in quasi-linear time [START_REF] Casperson | Symmetric functions, m-sets, and Galois groups[END_REF]. Our goal in this article is thus to shed some light on these questions, from the complexity viewpoint: is it possible to give fast algorithms (as close to quasi-linear time as possible) for general P ? What are some particular cases for which better solutions exist? To answer these questions, we measure the cost of our algorithms by the number of arithmetic operations in k they perform. Practically, this is well adapted to cases where k is a finite field; over k = Q, a combination of our results and modular techniques should be used.

The heart of the article, and the key to obtain better algorithms, is the question of which representation should be used for A. A commonly used representation is triangular. The divided differences, also known as Cauchy modules [START_REF] Chebotarev | Grundzüge des Galois'shen Theorie[END_REF][START_REF] Rennert | Calcul de résolvantes avec les modules de Cauchy[END_REF], are defined by C1(X1) := f (X1) and Ci+1 := Ci (X1, . . . , Xi) -Ci (X1, . . . , Xi-1, Xi+1) Xi -Xi+1

for 1 i < n. They form a triangular basis of Is, in the sense that Ci is in k [X1, . . . , Xi], monic in Xi and reduced with respect to (C1, . . . , Ci-1). In particular, they define a tower of intermediate algebras Ai for 1 i n:

A1 := k [X1] / C1
. . . Am := k [X1, . . . , Xm] / C1, . . . , Cm . . . A = An := k [X1, . . . , Xn] / C1, . . . , Cn . In this approach, elements of A are represented by means of multivariate polynomials reduced modulo (C1, . . . , Cn). For all m n, Am has dimension δm := n!/(n-m)!; its elements are represented as polynomials in X1, . . . , Xm.

Introducing these intermediate algebras makes it possible for us to refine our problem: we will also consider the question of fast arithmetics, and in particular characteristic polynomial computation for Am. The characteristic polynomial of P ∈ Am will be written X P,Am ∈ k [T]; it has degree δm and admits the factorization X P,Am = α 1 ,...,αm∈R pairwise distinct (T -P (α1, . . . , αm)). (3) Divided differences are inexpensive to compute via their recursive formula, but it is difficult to make computations in Am efficient with this representation. To review known results, it will be helpful to consider two extreme cases: when m is small (typically, m is a constant), and when m is close to n. Note that the first case covers some useful cases for Galois theory (such as the computation of resolvents associated to simple polynomials of the form X1X2 + X3X4, . . .).

When m is fixed (say m = 4 in the above example) and n → ∞, δm = n!/(m -n)! is equivalent to n m . In this case, there exist algorithms of cost O˜(δm) = O˜(n m) for multiplication and inversion (when possible) in Am [START_REF] Dahan | On the complexity of the D5 principle[END_REF][START_REF] Li | Fast arithmetic for triangular sets: from theory to practice[END_REF]. Here, and everywhere else in this paper, the O˜notation indicates the omission of logarithmic factors. For characteristic polynomial computation, it is possible to deduce from [START_REF] Li | Computations modulo regular chains[END_REF] a cost estimate of O˜(δmn 2) = O˜(n m+2).

However, all these algorithms hide exponential factors in m in their big-O, which makes them unsuitable for the case m ≃ n. For the case m = n, the paper [START_REF] Bostan | Homotopy methods for multiplication modulo triangular sets[END_REF] gives a multiplication algorithm of cost O˜(δn), but this algorithm hides high degree logarithmic terms in the big-O. There is no known quasi-linear algorithm for inverting elements of An.

The second representation we discuss is univariate. For m n, an element P of Am will be called primitive if the k-algebra k[P] spanned by P is equal to Am itself. If Λ is a primitive linear form in Am, a univariate representation of Am consists of polynomials P = (Q, S1, . . . , Sm) in k[T] with Q = X P,Am and deg(Si) < δm for all i m such that we have a k-algebra isomorphism

Am = k[X1, . . . , Xm]/ C1, . . . , Cm → k[T]/ Q X1, . . . , Xm → S1, . . . , Sm Λ → T.
When using univariate representations, the elements of Am ≃ k[T]/(Q) are then represented as univariate polynomials of degree less than δm. As usual, we will thus denote by M(n) the cost of polynomial multiplication for polynomials of degrees bounded by n, under the super-linearity assumptions of [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]. One can take M (n) = O (n log (n) log (log (n))) using Fast Fourier Transform [START_REF] Schönhage | Schnelle Multiplikation grosser Zahlen[END_REF][START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF]. Then, multiplications and inversions (when possible) in Am can be performed in respective times O(M(δm)) and O(M(δm) log(δm)). For characteristic polynomial, the situation is not as good, as no quasi-linear algorithm is known: the best known result [START_REF] Shoup | Fast construction of irreducible polynomials over finite fields[END_REF] is O(M(δm)δ

1/2 m +δ (ω+1)/2 m
). Here, ω is so that we can multiply n×n matrices within O(n ω) ring operations on any ring R. The best known bound on ω is ω 2.3727 [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF][START_REF] Stothers | On the Complexity of Matrix Multiplication[END_REF][START_REF] Williams | Breaking the Coppersmith-Winograd barrier[END_REF], resulting in a O(δ 1.69 m) characteristic polynomial algorithm.

Computing a univariate representation for Am is expensive: for m = n, starting from the defining equations of Is, it takes time O˜(δ 2 n) with the geometric resolution algorithm [START_REF] Giusti | A Gröbner-free alternative for polynomial system solving[END_REF]. Starting from the divided differences, the RUR algorithm [START_REF] Rouillier | Solving zero-dimensional systems through the rational univariate representation[END_REF] or the FGLM algorithm [START_REF] Faugère | Efficient computation of zero-dimensional Gröbner bases by change of ordering[END_REF] take time O(δ 3 n); a recent improvement of the latter [START_REF] Faugère | Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices[END_REF] could reduce the exponent using sparse linear algebra techniques. Some other algorithms are specifically designed to take as input a triangular set (such as the divided differences) and convert it to a univariate representation, such as [START_REF] Boulier | Pardi! In ISSAC'01[END_REF] or [START_REF] Poteaux | On the complexity of computing with zero-dimensional triangular sets[END_REF]; the latter performs the conversion for any m in subquadratic time O˜(M(δm)δ

1/2 m + δ (ω+1)/2 m
), which is O˜(δ 1.69 m). Thus, the triangular representation for Am is easy to compute but leads to rather inefficient algorithms to compute in Am. On the other hand, computing a univariate representation is not straightforward, but once it is known, some computations in Am become faster. Our main contribution in this paper is to show how to circumvent the downsides of univariate representations, by providing fast algorithms for their construction (for An itself, or for each Am) in many cases. We also show how to use fast univariate arithmetics in Am to compute characteristic polynomials efficiently.

We give two kinds of estimates, depending on whether m is fixed or not. In the first case, we are interested in what happens when n → ∞; the big-O estimates may hide constants depending on m. In the second case, when both m and n can vary, a statement of the form f (m, n) = O(g(m, n)) means that there exists K such that f (m, n) Kg(m, n) holds for all m, n. For univariate representations, our algorithms are Las Vegas: we give expected running times. In particular, when m is fixed, we have optimal algorithms (up to logarithmic factors) for characteristic polynomials of linear forms. For arbitrary P , the results in the last item are not optimal: when m is fixed, the running time of our algorithm is O˜(n m+1.69), for an output of size n m . For small values of m, say m = 2, 3, 4, this is a significant overhead. However, these results do improve on the state-of-the-art. We propose two approaches; both of them rely on classical ideas. The first one (in Section 3) computes characteristic polynomials by means of their Newton sums, following previous work of [START_REF] Valibouze | Fonctions symétriques et changements de bases[END_REF]2,[START_REF] Casperson | Symmetric functions, m-sets, and Galois groups[END_REF], but is limited to simple polynomials, such as linear forms; this will establish the first two items in the theorem. The second one (in Section 4) relies on iterated resultants [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF][START_REF] Soicher | The computation of the Galois groups[END_REF][START_REF] Lehobey | Resolvent computations by resultants without extraneous powers[END_REF][START_REF] Rennert | Calcul de résolvantes avec les modules de Cauchy[END_REF] and provides the last statements in the theorem. The last section gives experimental results.

In addition to the general results given in the theorem above, the following sections also mention other examples for which our techniques, or slight extensions thereof, yield quasi-linear results -as of now, we do not have a complete classification of all examples for which this is the case.

In all the paper, our focus is on computing characteristic polynomials rather than resolvents. From this, one can deduce resolvents by root extraction, but it is of course preferable to compute the resolvent directly, by cleaning multiplicities as early as possible. The basic ideas we use are known to make this possible: we mention it in the next section for the Newton sums approach and [START_REF] Lehobey | Resolvent computations by resultants without extraneous powers[END_REF][START_REF] Rennert | Calcul de résolvantes avec les modules de Cauchy[END_REF][START_REF] Aubry | Algebraic computation of resolvents without extraneous powers[END_REF] discuss the resultant-based approach. However, quantifying the complexity gains of this improvement is beyond the scope of this paper. Note also that for cases where P is fixed, such as P := X1X2 + X3X4, and n → ∞, we can save only a constant factor in the running time with such considerations.

PRELIMINARIES

The Newton representation

Let g be monic of degree n in k[X], and let β1, . . . , βn its roots in an algebraic closure of k. For i ∈ N, we let Si(g) ∈ k be the ith Newton sum of g, defined by Si(g) := n ℓ=1 β i ℓ , and for m ∈ N we write S(g, m) := (Si(g)) 0 i m .

The conversion from coefficients to the Newton representation S(g, m) and back can be done by the Newton-Girard formulas, but this takes quadratic time in m. To achieve a quasi-linear complexity, we recall a result first due to Schönhage [START_REF] Schönhage | The fundamental theorem of algebra in terms of computational complexity[END_REF]; see [START_REF] Bostan | Algorithmique efficace pour des opérations de base en Calcul formel[END_REF] for references and a more detailed exposition, including the proofs of the results we state below.

Lemma 2. Let g be a monic polynomial of degree n in k[X]. Then, for m ∈ N, one can compute S(g, m) in time O(M(m)). If the characteristic of k is either zero or greater than n, one can recover g from S(g, n) in time O(M(n)).

In particular, knowing S(g, n), we can compute S(g, n ′) for any n ′ n in time O(M(n ′)).

The Newton representation is useful to speed up certain polynomial operations, such as multiplication and exact division, since Si(gh) = Si(g) + Si(h) for all i ∈ N. Other improved operations include the composed sum and composed product of g and another polynomial h, with roots γ1, . . . , γm; they are defined by

g ⊕ h := i=1...n,j=1...m (X -(βi + γj)) , g ⊗ h := i=1...n,j=1...m (X -(βiγj)) .
Lemma 3. Let g, h be monic polynomials in k[X], and suppose that S(g, r) and S(h, r) are known. Then one can compute S(g ⊗ h, r) in time O(r); if the characteristic of k is either zero or greater than r, one can compute S(g ⊕ h, r) in time O(M(r)).

We write ⊗NS(S(g, r), S(h, r), r) and ⊕NS(S(g, r), S(h, r), r) for these algorithms; the subscript NS shows that the inputs and outputs are in the Newton representation.

Univariate representations

We recall a few facts on univariate representations. Let us fix m n. Then, a linear form Λ is primitive for Am if and only if it takes distinct values on the points of the variety defined by Is ∩ k[X1, . . . , Xm]. This is the case if and only if the minimal polynomial of Λ coincides with its characteristic polynomial X Λ,Am , if and only if X Λ,Am is squarefree. For instance when m = n, Λ is primitive in An if and only if the values Λ α σ(1) , . . . , α σ(n) are all distinct for σ ∈ Sn.

By Zippel-Schwartz lemma [START_REF] Zippel | Probabilistic algorithms for sparse polynomials[END_REF][START_REF] Schwartz | Fast probabilistic algorithms for verification of polynomial identities[END_REF], for K ∈ N>0, a random linear form Λ will be primitive for Am with probability greater than 1-1/(2K) if its coefficients are taken in a set of cardinality Kδ 2 m ; this still holds if we set λ1 := 1. One can find primitive linear forms for Am in a (non-uniform) deterministic manner, but with a cost polynomial in δm [START_REF] Colin | Efficient computation of squarefree Lagrange resolvents[END_REF].

When Λ is primitive, in the univariate representation P = (Q, S1, . . . , Sn) corresponding to Λ, we obtain Q as Q = X Λ,Am . The polynomials Si are called parametrizations because they are the images of the variables Xi by the isomorphism Am ≃ k[T]/Q. We will now argue that any "reasonable" algorithm that computes Q will also give us the parametrizations for a moderate overhead.

Let us extend the base field k to k ′ := k(L1, . . . , Lm), where Li are new indeterminates. Let A ′ m := Am ⊗ k k ′ be obtained by adding L1, . . . , Lm to the ground field in Am, and let finally

X L,A ′ m ∈ k ′ [T] be the characteristic polyno- mial of L := L1X1 + • • • + LnXm.
Then, the following holds:

Si = - ∂X L,A ′ m ∂Li / ∂X L,A ′ m ∂T mod X L,A ′ m L 1 ,...,Lm=λ 1 ,...,λm
; see for instance [START_REF] Kronecker | Grundzüge einer arithmetischen theorie des algebraischen grössen[END_REF][START_REF] König | Aus dem Ungarischen übertragen vom Verfasser[END_REF][START_REF] Macaulay | The algebraic theory of modular systems[END_REF][START_REF] Heintz | Deformation techniques for efficient polynomial equation solving[END_REF][START_REF] Giusti | A Gröbner-free alternative for polynomial system solving[END_REF][START_REF] Durvye | A concise proof of the Kronecker polynomial system solver from scratch[END_REF].

We can avoid working with m-variate rational function coefficients, as the formula above implies that we can obtain Si as follows. Let kε := k[ε]/ ε 2 . For a given Λ, and for i m, let XΛ i be the characteristic polynomial of Λi := Λ+εXi, computed over kε. Then, XΛ i takes the form XΛ i = X Λ,Am + εRi, and we obtain Si as Si = Ri/X ′ Λ,Am mod X Λ,Am . We will require that the algorithm computing X Λ,Am performs no zero-test or division (other than by constants in k, since those can be seen as multiplications by constants). Since any ring operation (+, ×) in kε costs at most 3 operations in k, given such an algorithm that computes the characteristic polynomial of any linear form in Am in time C, we can deduce an algorithm that computes each Si in time O(C), and S1, . . . , Sm in time O(mC).

NEWTON SUMS TECHNIQUES

In this section, we give our first algorithm for computing characteristic polynomials in Am. This approach is based on the following proposition and as such applies only to polynomials satisfying certain assumptions; the main result in this section is in Proposition 5 below. Our approach relies on Newton sums computations, following [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF][START_REF] Valibouze | Fonctions symétriques et changements de bases[END_REF]2,[START_REF] Casperson | Symmetric functions, m-sets, and Galois groups[END_REF]; an analogue of the following result can be found in [START_REF] Casperson | Symmetric functions, m-sets, and Galois groups[END_REF] for the special cases P = X1 + • • • + Xm and P = X1 • • • Xm. See also [START_REF] Bostan | Fast computation of special resultants[END_REF] for similar considerations in the bivariate case.

Proposition 4. Let P ∈ Am be of the form

P (X1, . . . , Xm) := Q(X1, . . . , Xm-1) + R(Xm), with Q in Am-1. For 1 i m -1, define Pi := Q(X1, . . . , Xm-1) + R(Xi) ∈ Am-1,
and let R1 := r(X1) ∈ A1. Then the following equality holds:

X P,Am = X Q,A m-1 ⊕ X R 1 ,A 1 m-1 i=1 X P i ,A m-1 . (4)
Proof. Let R = {α1, . . . , αn} be the roots of f and note that X R 1 ,A 1 = n i=1 (T -R(αi)). We rewrite (3) as

X Q,A m-1 = α 1 ,...,α m-1 ∈R pairwise distinct (T -Q(α1, . . . , αm-1)) . Thus, X Q,A m-1 ⊕ X R 1 ,A 1 equals α1, . . . , αm-1 ∈ R pairwise distinct, αm ∈ R (T -P (α1, . . . , αm)).
This product contains parasite factors compared to X P,Am , corresponding to cases where αm = αi for some i between 1 and m -1. For a given i, the factor due to αm = αi is

α1, . . . , αm-1 ∈ R pairwise distinct (T -P (α1, . . . , αm-1, αi)),
that is, X P i ,A m-1 . Formula (4) follows. This result can lead to a recursive algorithm, provided all recursive calls are well-defined (not all polynomials P satisfy the assumptions of this proposition). We will consider a convenient particular case, when the input polynomial is linear. In this case, we can continue the recursion all the way down, remarking that for m = 1, the characteristic polynomial of λX1 is f (λT). We deduce our recursive algorithm CharNSRec, together with the top-level function CharNS; they compute X Λ,Am , for Λ = λ1X1

+ • • • + λmXm.
The algorithm CharNSRec uses the Newton sums representation for all polynomials involved; the only conversions are done in the top-level function CharNS. The algorithm thus takes as an extra argument the precision ℓ, that is, the number of Newton sums we need. As in the previous proposition, we write Λ0 := λ1X1 + • • • + λm-1Xm-1 and, for i m, Λi := λ1X1 + • • • + λm-1Xm-1 + λmXi.

Algorithm CharNSRec

Input: S(f, n), m, Λ, the precision ℓ. Output: S(X Λ,Am , ℓ).

1. ℓ ′ := min(ℓ, δm) 2. if (m = 1) then out := (Si(f)λ i 1) 0 i n else a. out := CharNSRec(S(f, n), m -1, Λ0, ℓ ′) b. out := ⊕NS(out, CharNSRec(S(f, n), 1, λmX1, ℓ ′), ℓ ′) c. for i from 1 to m -1 out := out -CharNSRec(S(f, n), m -1, Λi, ℓ ′) 3. if (ℓ ′ < ℓ)
then Extend the series "out" up to precision ℓ 4. return out The main algorithm follows; it uses a trick in the case m = n to reduce the depth of the recursion by one unit.

Algorithm CharNS

Input: f , m, Λ. Output: X Λ,Am . 1. if (m = n) then a. Λ := (λ1 -λn) X1 + • • • + (λn-1 -λn) Xn-1 b. return CharNS(f, n -1, Λ) ⊕ (X -λnf1) 2. Compute the Newton representation S(f, n) 3. S(X Λ,Am , δm) := CharNSRec(S(f, n), m, Λ, δm) 4. Recover X Λ,Am from S(X Λ,Am , δm) 5. return X Λ,Am
C(m) = mC(m -1, δm) + C(1, δm) + O(mM(δm)) = m(C(m -1) + O(M(δm))) + O(mM(δm)) mC(m -1) + O(mM(δm)).
Then, by unrolling the recurrence and using the superlinearity of the function M, we deduce

C(m) M(δm) O m + m(m -1) δm-1 δm + • • • + m! δ1 δm O m i=1 m! (i -1)! (n -m)! (n -i)! O n n m m i=1 n -1 i -1 .
When m is bounded, the sum is bounded. If m n/2, we derive the bound C(m) = O(mnM(δm)) from the remark

n-1 i-1 n i n m for 1 i m.
For arbitrary m n -1, we get the cruder bound C(m) = O(2 n M(δm)). In all these cases, the cost of Algorithm CharNS is the same, up to O(M(δm)) for conversions. For m = n, let Λ := (λ1λn)X1 + • • • + (λn-1 -λn)Xn-1. Then, f1 = i αi implies X Λ,An = XΛ ,A n-1 ⊕ (X -λnf1) ; the cost for m = n is thus the same as for m = n-1, up to O(M(δn)) for the composed sum.

This proves the left-hand columns of the first two rows in Theorem 1. Using the discussion in Subsection 2.2, we can also compute a univariate representation of Am. After computing X Λ,Am , we test whether Λ is primitive for Am, by testing whether X Λ,Am is squarefree; this takes time O(M(δm) log(δm)), which is O(mM(δm) log(n)). If the characteristic of k is either zero, or at least equal to 2δ 2 m , we expect to try finitely many Λ before finding a primitive one. When this is the case, we can apply the procedure of Subsection 2.2 to obtain all parametrizations; this costs m times as much as computing X Λ,Am . Considering the cases m constant and m ≤ n/2, this completes the proof of the first two points in our main theorem.

To conclude this section, we mention (without proof) some extensions.

First, it is possible to adapt this algorithm to exploit symmetries of P , since they are known to create multiplicities in X P,Am : we can accordingly reduce the number of Newton sums we need (thus, one can compute resolvents directly in this manner). This is useful in practice, but we were not able to quantify the gains in terms of complexity.

Another remark is that an analogue to Proposition 4 holds for P (X1, . . . , Xm) := Q(X1, . . . , Xm-1)×R(Xm), replacing the operation ⊕ by ⊗. As an application, consider the case P := X1X2X3 + X4, so that Q := X1X2X3 and R := X4. To compute X P,A 4 , we are led to deal with Q, P1 := (1 + X2X3)X1, P2 := (1 + X1X3)X2 and P3 := (1 + X1X2)X3 in A3. By symmetry, it is enough to consider Q and P3. For Q, we can continue the recursion all the way down to univariate polynomials, using the multiplicative version of the previous proposition. For P1, however, we cannot. Writing P3 as (1 + X1X2) × X3, the recursive call lead us in particular to compute the characteristic polynomial of (1 + X1X2) × X2, which does not satisfy the assumptions of the proposition.

Similar (but slightly more complicated) results hold as well when P can be written as P (X1, . . . , Xm) := Q(X1, . . . , X ℓ) op R(X ℓ+1 , . . . , Xm), with op ∈ {+, ×}. Taking for instance P := X1X2 + X3X4, we are led recursively to compute the characteristic polynomials of X1X2 and P1 := X1(X2 + X3). However, the case of P1 reduces to that of X2(X2 +X3), which does not satisfy the assumptions of the proposition. We will discuss these examples again in the next section.

RESULTANT TECHNIQUES

Resultant methods to compute characteristic polynomials in Am go back to Lagrange's elimination method (similar to today's resultant) to compute resolvents [START_REF] Lagrange | Réflexions sur la résolution algébrique des équations[END_REF]. This idea was developed in [START_REF] Soicher | The computation of the Galois groups[END_REF][START_REF] Lehobey | Resolvent computations by resultants without extraneous powers[END_REF][START_REF] Rennert | Calcul de résolvantes avec les modules de Cauchy[END_REF].

The basic idea is simple. Let again C1, . . . , Cn be the divided differences associated to f . For P ∈ k [X1, . . . , Xm], define recursively the resultants

Gm := T -P (X1, . . . , Xm) ∈ k [X1, . . . , Xm, T] , Gi := ResX i+1 (Ci+1, Gi+1) ∈ k [X1, . . . , Xi, T] ,
for i = m -1, . . . , 0, so that X P,Am = G0 ∈ k [T]. In order to avoid an exponential growth of the degrees in the intermediate Gi's, we need to compute the resultant ResX i (Ci, Gi) over the coefficient ring Ai-1[T].

However, we mentioned that arithmetic in Ai-1 is rather slow; univariate computations are faster. We give below a general framework that relies on both triangular and univariate representations to compute efficiently such resultants. Recall that a family of polynomials T = (T1, . . . , Tm) in k[X1, . . . , Xm] is a triangular set if the following holds for all i m: Ti is in k[X1, . . . , Xi], Ti is monic in Xi and Ti is reduced with respect to (T1, . . . , Ti-1). Our main idea holds for general triangular families of polynomials, but it is only for the special case of divided difference that it will lead to an efficient algorithm (see Corollary 11 below).

General algorithms

In this section, we describe a general approach to compute characteristic polynomials modulo a triangular set. Following [START_REF] Feo | Fast arithmetics in Artin-Schreier towers over finite fields[END_REF][START_REF] Poteaux | On the complexity of computing with zero-dimensional triangular sets[END_REF], our main idea is to introduce mixed representations, that allow one to convert from triangular to bivariate representations, and back, one variable at a time.

Let T = (T1, . . . , Tm) be a triangular set in k[X1, . . . , Xm].

For i m, let di := deg(Ti, Xi), µi := d1 • • • di and µ ′ i := di+1 • • • dm.
We write R T := k[X1, . . . , Xm]/ T1, . . . , Tm ; this is a k-algebra of dimension µm = d1 • • • dm. More generally, for i m, we write R T ,i := k [X1, . . . , Xi] / T1, . . . , Ti ; this is a k-algebra of dimension µi.

Generalizing the notation used up to now, for P in R T , we write XP,R T for its characteristic polynomial in R T , that is, the characteristic polynomial of the multiplication-by-P endomorphism of R T . To compute XP,R T , we will use the "iterated resultant" techniques sketched in the preamble.

Since computing modulo triangular sets is difficult, our workaround is to introduce a family of univariate representations P1, . . . , Pm-1 of respectively R T ,1 , . . . , R T ,m-1 ; in the introduction, we only defined univariate representations for the algebras Ai, but the definition carries over unchanged to this slightly more general context [START_REF] Giusti | A Gröbner-free alternative for polynomial system solving[END_REF][START_REF] Poteaux | On the complexity of computing with zero-dimensional triangular sets[END_REF]. For i m -1, Pi has the form Pi = (Qi, Si,1, . . . , Si,i), with all polynomials in k[Zi] and with associated linear form Λi := λi,1X1 + • • • + λi,iXi. For i = 1, we add w.l.o.g. the mild restriction that Λ1 = X1, so that Q1 = T1.

We first show how to use these objects to perform conversions between multivariate and bivariate representations, going one variable at a time. For i m-1, we know that Qi has degree µi and that we have the k-algebra isomorphism ϕi :

R T ,i → k[Zi]/ Qi X1, . . . , Xi → Si,1, . . . , Si,i Λi → Zi.
We extend ϕi to another isomorphism

Φi : R T ,i [Xi+1, . . . , Xm] → k[Zi]/ Qi [Xi+1, . . . , Xm],
where ϕi acts coefficientwise, and we define Qi,j = Φi (Tj) for i + 1 j m.. Let us see Qi,i+1, . . . , Qi,m in k [Zi, Xi+1, . . . , Xm], by taking their canonical preimages. Then, (Qi, Qi,i+1, . . . , Qi,m) form a triangular set in k[Zi, Xi+1, . . . , Xm], such that deg(Qi,j, Xj) = deg(Tj, Xj) for i+1 j m. For i m-1 and i j m, we will write Ri,j = k[Zi, Xi+1, . . . , Xj]/ Qi, Qi,i+1, . . . , Qi,j .

Then, still acting coefficientwise in Xi+1, . . . , Xj, ϕi extends to an isomorphism Φi,j : R T ,j → Ri,j.

Two operations will be needed to convert between the various induced representations: lift-up and push-down [START_REF] Feo | Fast arithmetics in Artin-Schreier towers over finite fields[END_REF][START_REF] Poteaux | On the complexity of computing with zero-dimensional triangular sets[END_REF]. For i m -2 and i + 1 j m, we call lift-up the change of basis up i,j := Φi+1,j • Φ -1 i,j . This is thus an isomorphism Ri,j → Ri+1,j, with Ri,j = k[Zi, Xi+1, . . . , Xj]/ Qi, Qi,i+1, . . . , Qi,j , Ri+1,j = k[Zi+1, Xi+2, . . . , Xj]/ Qi+1, Qi+1,i+2, . . . , Qi+1,j .

In particular, with j = i + 1, we write up i instead of up i,i+1 ; thus, it is the bivariate-to-univariate conversion given by

up i : Ri,i+1 = k[Zi, Xi+1]/ Qi, Qi,i+1 ↓ Ri+1,i+1 = k[Zi+1]/ Qi+1 .
Conversely, we call push-down the inverse change of basis; as above, for j = i + 1, we write downi = downi,i+1. The operations up i and downi are crucial, since all up i,j (resp. downi,j), for j i + 2, are obtained by applying up i (resp. downi) coefficientwise. We do not discuss here how to implement them in general (see [START_REF] Poteaux | On the complexity of computing with zero-dimensional triangular sets[END_REF]); we will give a better solution in the case of divided differences below. For the moment, we simply record the following straightforward result. Lemma 6. For i m -2, suppose that one can apply up i (resp. downi) using ui (resp. vi) operations in k. Then, one can apply up i,m using uiµ ′ i+1 operations in k (resp. one can apply downi,m using viµ ′ i+1 operations in k).

Finally, we define Up

m = up m-2,m •• • ••up 1,m and Downm = Up -1 so that we have Rm-1,m = k[Zm-1, Zm]/ Qm-1, Qm-1,m Down ↓ ↑ Up R T = k[X1, .
. . , Xm]/ T1, . . . , Tm .

We could want to go all the way down to univariate polynomials instead of bivariate, but it would not be useful: the algorithm below uses bivariate polynomials. In terms of complexity, the following is a direct consequence of Lemma 6.

Lemma 7. For i m -2, suppose that one can apply up i (resp. downi) using ui (resp. vi) operations in k. Then one can apply Up m (resp. Downm) in respective times

m-2 i=1 uiµ ′ i+1 and m-2 i=1 viµ ′ i+1 . Now we explain how to compute G := XP,R T ∈ k[Y] for any P in R T . Let k ′ := k[Y]; then, T is also a triangular set in k ′ [X1, . . . , Xm], and we define, for i m, R ′ T ,i := k ′ [X1, . . . , Xi]/ T1, . . . , Ti = R T ,i [Y].
As explained in the preamble of this section, we start by defining Gm :

= Y -P ∈ R ′ T ,m . For i = m -1, . . . , 0, suppose that we know Gi+1 ∈ R ′ T ,i+1 . Seeing R ′ T ,i+1 as R ′ T ,i+1 = R ′ T ,i [Xi+1]/ Ti+1 , we define Gi := ResX i+1 (Ti+1, Gi+1) ∈ R ′ T ,i .
Standard properties of resultants (see e.g. [11, § 12.2]) show that G0 = G. By induction, we prove that deg(Gi, Y) = µ ′ i ; in particular, deg(G0, Y) = µ, as it should be.

We are going to compute Gm-1, . . . , G0 assuming that we know the univariate representations P1, . . . , Pm-1, and use univariate arithmetic as much as possible. For 1 i m-1 and i j m, R ′ i,j is well defined and isomorphic to

R ′ T ,j because R ′ i,j = Ri,j[Y] and R ′ T ,j = R T ,j [Y]
. Besides, lift-up and push-down are still defined; they are written respectively up ′ i : R ′ i,i+1 → R ′ i+1,i+1 and down ′ i .

Lemma 8. For i m -2, suppose that one can apply up i (resp. downi) using ui (resp. vi) operations in k. Then, for

F in R ′ i,i+1 , with d := deg (F, Y), we can compute up ′ i (F) ∈ R ′ i+1,i+1 using O (dui) operations in k. For F in R ′ i+1,i+1 , with d := deg (F, Y), we can compute down ′ i (F) ∈ R ′ i,i+1
using O (dvi) operations in k.

This leads to our algorithm for characteristic polynomials.

For convenience, we let R0,1 := R1, and we let down ′ 0 be the identity map. For the moment, we assume that all polynomials Qi,i+1 needed below are already known.

Algorithm CharResultant

Input: P in R T . Output: XP,R T . 1. P ′ := Up m (P) P ′ ∈ Rm-1,m 2. Gm := Y -P ′ G ′ m ∈ R ′ m-1,m 3. for i = m -1, . . . , 1 do a. G ′ i := ResX i+1 (Qi,i+1, Gi+1) G ′ i ∈ R ′ i,i b. Gi := down ′ i-1 (G ′ i) Gi ∈ R ′ i-1,i 4. return G0 = ResX 1 (G1, Q1). G0 ∈ R ′
To analyze this algorithm, we remark that over any ring R, resultants of polynomials of degree d in R[X] can be computed in O(d (ω+1)/2) ring operations, provided one of these polynomials is monic, and 1, . . . , d are units in R. Indeed, the resultant ResX (A, B), with A monic of degree d and deg(B, X) < d is the constant term of the characteristic polynomial of B modulo A. This whole polynomial can be computed in time O(d (ω+1)/2) by an algorithm of Shoup [START_REF] Shoup | Fast construction of irreducible polynomials over finite fields[END_REF] which performs no zero-test and only divisions by 1, . . . , d.

Proposition 9. Suppose that one can apply up i (resp. downi) using ui (resp. vi) operations in k, and that k has characteristic either zero, or at least µm. Then Algorithm

CharResultant computes XP,R T in time O m-2 i=1 (ui + vi) µ ′ i+1 + m-1 i=0 d (ω+1)/2 i+1
M(µm) .

Proof. We have seen that Step 1 takes time m-2 i=1 uiµ ′ i+1 . For i = m -1, . . . , 1, G ′ i has degree µ ′ i in Y , so Step 3.b takes time vi-1µ ′ i by Lemma 8. In Step 3.a, we compute Gi by evaluation / interpolation in the variable Y , using evaluation points in geometric progression [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF]; such points exist by assumption on the characteristic of k. Both Gi+1 and Qi,i+1 have degree at most di+1 in Xi+1, and deg(

G ′ i , Y) = µ ′ i . Thus, the cost is O(di+1M(µ ′ i))
operations in Ri,i for all evaluations / interpolations, since all points are in geometric progression [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF]. Since the evaluation points are in k, evaluation and interpolation are k-linear operations, so each of them uses µi operations in k.

The cost for all individual resultants is O(µ ′ i d

(ω+1)/2 i+1
) ring operations in Ri,i, each of which takes O(M(µi)) operations in k. The conclusion follows using the inequalities µiM(µ ′ i) ≤ M(µm) and M(µi)µ ′ i ≤ M(µm).

The case of divided differences

We now apply the former results to the triangular set of divided differences. Fix m ∈ N such that m n, and take T = (C1, . . . , Cm) in k [X1, . . . , Xm]. Note that di := deg(Ci, Xi) is equal to n + 1 -i n, and that R T ,i becomes Ai for 1 i m. We also have µi = δi and µ ′ i = δm/δi. We are going to study lift-up and push-down for divided differences, with the objective to give estimates on the quantities ui and vi defined above. Thus, we start from univariate representations P1, . . . , Pm-1 for A1, . . . , Am-1; for the moment, they are part of the input.

We impose a further restriction on P1, . . . , Pm-1 , assuming that for all i < m-1, Λi+1 = Λi+λi+1Xi+1 for some λi+1 in k. When this is the case, we call P1, . . . , Pm-1 compatible. Then, we have Λi = X1+λ2X2+• • •+λiXi, since by assumption Λ1 = X1. Thus, compatible univariate representations are associated to a (m-2)-uple (λ2, . . . , λm-1) ∈ k m-2 , with the condition that every X1 + λ2X2 + • • • + λiXi is a primitive element of Ai for all i m -1. Under this condition, we now study the cost of lift-up and push-down. Indeed, in this case, we can deduce the explicit form of up i :

k[Zi, Xi+1]/ Qi, Qi,i+1 → k[Zi+1]/ Qi+1 up i : Zi → Zi+1 -λi+1Si+1,i+1 Xi+1 → Si+1,i+1 Zi + λi+1Xi+1 → Zi+1.
The key for the following algorithms is then the remark that f (Xi+1) = 0 in Ai+1; we will exploit the fact that the polynomial f is a small degree, univariate polynomial. To analyze its cost, we will use the following bounds: for ℓ 1, consider the sum S(m, n, ℓ) := 1 i m i ℓ M(δi). Then we claim that the following holds:

S(m, n, ℓ) exp(1)m ℓ M(δm) = O(m ℓ M(δm)).
Indeed,the super-linearity of the function M implies S(m, n, ℓ) M(δm)

1 i m i ℓ δi δm m ℓ 1 i m δi δm i∈◆ 1 n! .
Proposition 10. Suppose that P1, . . . , Pm-1 are known and compatible. If the characteristic of k is either zero or at least δm-1, then for 1 i m -2, up i and downi can be computed in time ui = O(M(n)M(δi+1)) and vi = O(M(n)M(δi+1)).

Proof. First, we study the following simplified problem:

given λ ∈ k, some polynomials A ∈ k [Z], B ∈ k[Z, X] monic in X, and W, S in k[Z], compute the mapping up : k[Z, X]/ A, B → k[Z]/ W Z → Z -λS X → S Z + λX → Z,
and its inverse down, assuming up is well-defined and invertible. We write a := deg(A) and b := deg(B, X), so that deg(W) = ab. We also assume that f (X) = 0 in k[Z, X]/ A, B , for some monic polynomial f ∈ k[X] of degree n b. Finally, the characteristic of k is supposed to be either 0 or at least ab. Then, we show that both directions take time O(M(n)M(ab)).

Computing up. Given H ∈ k[Z, X]/ A, B , we first show how to compute G := up(H). Let H ⋆ be the canonical preimage of H in k[Z, X], so that G = H ⋆ (Z -λS, S) mod W . Then, we obtain G as follows:

Corollary 11. Suppose that P1, . . . , Pm-1 are known and compatible. If the characteristic of k is either 0 or at least δm, then for any P ∈ Am, we can compute X P,Am in time O(n (ω+1)/2 mM(δm)).

If P = Λ is a primitive linear form in Am, compatible with the previous ones, we can compute the corresponding parametrizations in the same expected amount of time.

Proof. The first part is obvious, as the dominant term from Proposition 9 comes from Step 3.a.

When P = Λ is primitive, we will write as usual Qm instead of X P,Am . Using the discussion in Subsection 2.2, we can compute Qm and the last parametrization Sm,m of Pm in the same cost. The other parametrizations are obtained from Pm-1by Sm,j = up m-1 (Sm-1,j) for j < m. This is done using Proposition 10, since all that is required for algorithm up m-1 are Qm and Sm,m. So all other parametrizations cost O(mM(n)M(δm))), which is not dominant.

Proof of Theorem 1. We will give here the complexity estimate for computing P1, . . . , Pm -once they are known, computing the characteristic polynomial of an arbitrary P is done using the corollary above.

We need to pick Λ := 1 + λ2X2 + • • • + λmXm ∈ Am primitive such that its restrictions Λi := 1+λ2X2+

δ 2 i δ 2 m i∈N 1 (n!) 2 = 2.5,
the probability of all Λi being primitive is at least 0.375. Thus, on average, we have to pick a finite number of Λ.

Our algorithm first picks Λ as explained above. We assumed in Subsection 4.2 that the representation P1 ought to be associated to Λ1 = X1, so that P1 = (f (Z1), Z1). Assume now that P1, . . . , Pi-1 are known. Using the first point in the previous corollary, we compute X Λ i ,A i and we test whether this polynomial is squarefree. If not, we start all over from a new Λ. Otherwise, we continue with the second point in the corollary, to deduce Pi.

The dominant cost comes from applying the corollary. Since we expect to pick finitely many Λ, the expected cost is O(i m n (ω+1)/2 iM(δi)). This is O(n (ω+1)/2 mM(δm)), in view of our discussion on the function S(m, n, ℓ), with here ℓ = 1. This concludes the proof of our main theorem.

Improvements given in [START_REF] Lehobey | Resolvent computations by resultants without extraneous powers[END_REF][START_REF] Rennert | Calcul de résolvantes avec les modules de Cauchy[END_REF] to take into account predictable multiplicities in the successive resultants can be applied here as well; however, it is unclear to us how they would impact the complexity analysis.

Our last remark concerns examples from the previous section. We mentioned there some issues with the application of Proposition 4 (and its multiplicative version) to the polynomial X1X2X3 + X4, as we could not apply that proposition recursively to the polynomial (1 + X1X2) × X2. The result above shows that we can compute the characteristic polynomial of (1 + X1X2) × X2 in time O(n (ω+1)/2 M(δ2)) = O(M(δ4)). As a result, we are thus able to complete the whole computation for P in quasi-linear time O(M(δ4)) as well. The same holds for X1X2 + X3X4.

IMPLEMENTATION AND TIMINGS

Our algorithms were implemented in Magma 2.17.1; we report here on some experiments dedicated to computations in the case m = n, that is, in An. Timings were measured on a Intel Xeon 16 cores at 2.27GHz with 74Gb RAM.

When m = n, although the complexity of CharNS is not quasi-linear (due to a 2 n overhead), it usually does better than algorithm CharResultant. A first reason is that for the former, the constant in the big-O is mild (we do only a few multiplications at each step). Besides, some other ideas are used in our code. Different recursive calls have often computations in common, so we use memoization. We also make use of symmetries: if Λ has a large stabilizer, as explained in Section 2, we can reduce the number of Newton sums we need to compute its characteristic polynomial. We usually attempt to pick favorable Λ: a good strategy is to take Λ = 1 i n-1 iXn-i, for which the linear forms over An-2 (which are the most expensive) have repeated coefficients.

In the following table, we take k = Fp, with p a 28 bit prime; we give timings to compute a univariate representation of An. We are not aware of other available implementations for this problem in Magma, so we compared our algorithm with the Magma Gröbner basis functions. Our algorithm is tailored for computations in An, so it is at an advantage compared to generalist functions; on the other hand, Magma's Gröbner basis functions use highly optimized C code. Despite an extra 2 n factor in the cost analysis, algorithm CharNS performs very well for this computation. Next, we discuss the cost of basic arithmetic in An, comparing in particular univariate operations to arithmetic modulo the Cauchy modules. Several Magma constructions exist for this purpose; we report on the most efficient solutions we found. As a conclusion, for an operation such as inversion, even with the overhead of lift-up and push-down, it pays off to convert to a univariate representation.

n

X

 P,A (T) = σ∈Sn T -P α σ(1) , . . . , α σ(n) ∈ k [T] . (1)This polynomial is related to the absolute Lagrange resolventLP (T) := σ∈Sn// Stab P T -P α σ(1) , . . . , α σ(n) ∈ k [T] ,

Proposition 5 .

 5 Let m n and suppose that the characteristic k is either zero or greater than δm. Then Algorithm CharNS computes the characteristic polynomials of linear forms in Am in time O(M(δm)) if m is bounded, O(mnM(δm)) if m n/2 and O(2 n M(δm)) in general. Proof. Let be C(m, ℓ) be the cost of CharNSRec on input Λ ∈ Am and precision ℓ. We use the abbreviation C(m) := C(m, δm), so that C(1) = O(n). For 2 m n-1, Lemma 2 gives C(m, ℓ) = C(m) + O(M(ℓ)) for ℓ δm, so we get

 Finally, we focus computing X P,An , for a generic polynomial P . The best alternative we could find comes from[START_REF] Shoup | Fast construction of irreducible polynomials over finite fields[END_REF] and is written "Shoup" in the table. This algorithm uses univariate arithmetic; for it to be applicable, we must already know a univariate representation of An, and the input must be written on the corresponding univariate basis. The complexity of that algorithm higher than that of CharResultant, but the algorithm is simpler and relies on fast built-in Magma code; as a result, it outperforms CharResultant. If the input P is a linear form in X1, . . . , Xn, CharNS is actually faster than both, as showed in the first table.

			5	6	7		8
		Up	0.008	0.1	2		40
		Down	0.01	0.1	1.4		25
		Univ. ×	40µs 0.0005	0.006	0.06
	Time	Univ. ÷	0.002	0.028	0.29		4.5
	(sec) Magma × 0.003	0.085	4		170
		Magma ÷	0.1	28	>30min >6h
	n		4	5	6	7	8
	Time	Shoup	0.001 0.01 0.23 6.8	200
	(sec) CharResultant	0.03	0.24	2.6	45 1100