
HAL Id: hal-00669806
https://polytechnique.hal.science/hal-00669806

Preprint submitted on 14 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for the universal decomposition algebra
Romain Lebreton, Éric Schost

To cite this version:
Romain Lebreton, Éric Schost. Algorithms for the universal decomposition algebra. 2012. �hal-
00669806�

https://polytechnique.hal.science/hal-00669806
https://hal.archives-ouvertes.fr


Algorithms for the universal decomposition algebra

Romain Lebreton
Équipe MAX

LIX, École polytechnique
Palaiseau, France

lebreton@lix.polytechnique.fr

Éric Schost
ORCCA and CS Department
University of Western Ontario

London, ON, Canada
eschost@uwo.ca

Abstract

Let k be a field and let f ∈ k [T ] be a polynomial of degree
n. The universal decomposition algebra A is the quotient
of k [X1, . . . , Xn] by the ideal of symmetric relations (those
polynomials that vanish on all permutations of the roots
of f). We show how to obtain efficient algorithms to com-
pute in A. We use a univariate representation of A, i.e.
an isomorphism of the form A ≃ k[T ]/Q(T ), since in this
representation, arithmetic operations in A are known to be
quasi-optimal. We give details for two related algorithms,
to find the isomorphism above, and to compute the charac-
teristic polynomial of any element of A.

1. INTRODUCTION
Let k be a field and let f = Xn +

∑n
i=1 (−1)i fiX

n−i

in k [X] be a degree n separable polynomial. We let R :=
{α1, . . . , αn} be the set of roots of f in an algebraic closure
of k. The ideal of symmetric relations Is is the ideal
{

P ∈ k [X1, . . . , Xn] |∀σ ∈ Sn, P
(

ασ(1), . . . , ασ(n)

)

= 0
}

.

It is is generated by (Ei − fi)i=1,...,n, where Ei is the ith
elementary symmetric function on X1, . . . , Xn. Finally, the
universal decomposition algebra is the quotient algebra A :=
k[X1, . . . , Xn]/Is, of dimension δ := n!. For all P ∈ A,
we denote by XP,A its characteristic polynomial in A, that
is, the characteristic polynomial of the multiplication-by-P
endomorphism of A. Stickelberger’s theorem shows that

XP,A (T ) =
∏

σ∈Sn

(

T − P
(

ασ(1), . . . , ασ(n)

))

∈ k [T ] . (1)

This polynomial is related to the absolute Lagrange resolvent

LP (T ) :=
∏

σ∈Sn// StabP

(

T − P
(

ασ(1), . . . , ασ(n)

))

∈ k [T ] ,

where Sn// StabP are the right cosets of the stabilizer of
P in the symmetric group Sn; indeed, these polynomials
satisfy the relation XP,A = L#StabP

P .
Computing Lagrange resolvents is a fundamental ques-

tion, motivated for instance by applications to Galois theory
or effective invariant theory. There exists an abundant liter-
ature on this question [27, 39, 41, 2, 3, 28, 43, 33, 4]; known
symbolic methods rely on techniques involving resultants,
symmetric functions, standard bases or invariants (we will
make use of some of these ingredients as well). However,
little is known about the complexity of these methods. As
it turns out, almost all algorithms have at least a quadratic
cost δ2 in the general case.

In some particular cases, though, it is known that resol-
vents can be computed in quasi-linear time [13]. Our goal
in this article is thus to shed some light on these questions,
from the complexity viewpoint: is it possible to give fast al-
gorithms (as close to quasi-linear time as possible) for gen-
eral P? What are some particular cases for which better
solutions exist? To answer these questions, we measure the
cost of our algorithms by the number of arithmetic opera-
tions in k they perform. Practically, this is well adapted to
cases where k is a finite field; over k = Q, a combination of
our results and modular techniques should be used.
The heart of the article, and the key to obtain better

algorithms, is the question of which representation should be
used for A. A commonly used representation is triangular.
The divided differences, also known as Cauchy modules [14,
33], are defined by C1(X1) := f(X1) and

Ci+1 :=
Ci (X1, . . . , Xi)− Ci (X1, . . . , Xi−1, Xi+1)

Xi −Xi+1
(2)

for 1 6 i < n. They form a triangular basis of Is, in the
sense that Ci is in k [X1, . . . , Xi], monic in Xi and reduced
with respect to (C1, . . . ,Ci−1). In particular, they define a
tower of intermediate algebras Ai for 1 6 i 6 n:

A1 := k [X1] /〈C1〉
...

Am := k [X1, . . . , Xm] /〈C1, . . . ,Cm〉
...

A = An := k [X1, . . . , Xn] /〈C1, . . . ,Cn〉.
In this approach, elements of A are represented by means of
multivariate polynomials reduced modulo (C1, . . . ,Cn). For
all m 6 n, Am has dimension δm := n!/(n−m)!; its elements
are represented as polynomials in X1, . . . , Xm.
Introducing these intermediate algebras makes it possi-

ble for us to refine our problem: we will also consider the
question of fast arithmetics, and in particular characteristic
polynomial computation for Am. The characteristic polyno-
mial of P ∈ Am will be written XP,Am

∈ k [T ]; it has degree
δm and admits the factorization

XP,Am
=

∏

α1,...,αm∈R pairwise distinct

(T −P (α1, . . . , αm)). (3)

Divided differences are inexpensive to compute via their re-
cursive formula, but it is difficult to make computations in
Am efficient with this representation. To review known re-
sults, it will be helpful to consider two extreme cases: when
m is small (typically, m is a constant), and when m is close
to n. Note that the first case covers some useful cases for
Galois theory (such as the computation of resolvents associ-
ated to simple polynomials of the form X1X2 +X3X4, . . . ).



When m is fixed (say m = 4 in the above example) and
n → ∞, δm = n!/(m− n)! is equivalent to nm. In this case,
there exist algorithms of cost O (̃δm) = O (̃nm) for multipli-
cation and inversion (when possible) in Am [17, 30]. Here,
and everywhere else in this paper, the O˜ notation indicates
the omission of logarithmic factors. For characteristic poly-
nomial computation, it is possible to deduce from [29] a cost
estimate of O (̃δmn2) = O (̃nm+2).

However, all these algorithms hide exponential factors in
m in their big-O, which makes them unsuitable for the case
m ≃ n. For the case m = n, the paper [7] gives a multiplica-
tion algorithm of cost O (̃δn), but this algorithm hides high
degree logarithmic terms in the big-O. There is no known
quasi-linear algorithm for inverting elements of An.

The second representation we discuss is univariate. For
m 6 n, an element P of Am will be called primitive if the
k-algebra k[P ] spanned by P is equal to Am itself. If Λ is
a primitive linear form in Am, a univariate representation
of Am consists of polynomials P = (Q,S1, . . . , Sm) in k[T ]
with Q = XP,Am

and deg(Si) < δm for all i 6 m such that
we have a k-algebra isomorphism

Am = k[X1, . . . , Xm]/〈C1, . . . ,Cm〉 → k[T ]/〈Q〉

X1, . . . , Xm 7→ S1, . . . , Sm

Λ 7→ T.

When using univariate representations, the elements of Am ≃
k[T ]/(Q) are then represented as univariate polynomials of
degree less than δm. As usual, we will thus denote by M(n)
the cost of polynomial multiplication for polynomials of de-
grees bounded by n, under the super-linearity assumptions
of [22]. One can takeM (n) = O (n log (n) log (log (n))) using
Fast Fourier Transform [36, 12].

Then, multiplications and inversions (when possible) in
Am can be performed in respective times O(M(δm)) and
O(M(δm) log(δm)). For characteristic polynomial, the sit-
uation is not as good, as no quasi-linear algorithm is known:

the best known result [38] is O(M(δm)δ
1/2
m +δ

(ω+1)/2
m ). Here,

ω is so that we can multiply n×nmatrices within O(nω) ring
operations on any ring R. The best known bound on ω is
ω 6 2.3727 [16, 40, 42], resulting in a O(δ1.69m ) characteristic
polynomial algorithm.

Computing a univariate representation for Am is expen-
sive: for m = n, starting from the defining equations of Is,
it takes time O (̃δ2n) with the geometric resolution algorithm
[23]. Starting from the divided differences, the RUR algo-
rithm [34] or the FGLM algorithm [20] take time O(δ3n); a
recent improvement of the latter [21] could reduce the ex-
ponent using sparse linear algebra techniques. Some other
algorithms are specifically designed to take as input a tri-
angular set (such as the divided differences) and convert it
to a univariate representation, such as [10] or [32]; the lat-
ter performs the conversion for any m in subquadratic time

O (̃M(δm)δ
1/2
m + δ

(ω+1)/2
m ), which is O (̃δ1.69m ).

Thus, the triangular representation for Am is easy to com-
pute but leads to rather inefficient algorithms to compute in
Am. On the other hand, computing a univariate represen-
tation is not straightforward, but once it is known, some
computations in Am become faster. Our main contribution
in this paper is to show how to circumvent the downsides of
univariate representations, by providing fast algorithms for
their construction (for An itself, or for each Am) in many
cases. We also show how to use fast univariate arithmetics

in Am to compute characteristic polynomials efficiently.
We give two kinds of estimates, depending on whetherm is

fixed or not. In the first case, we are interested in what hap-
pens when n → ∞; the big-O estimates may hide constants
depending on m. In the second case, when both m and n can
vary, a statement of the form f(m,n) = O(g(m,n)) means
that there exists K such that f(m,n) 6 Kg(m,n) holds for
all m,n. For univariate representations, our algorithms are
Las Vegas: we give expected running times.

Theorem 1. Let m 6 n and suppose that the character-
istic of k is zero, or at least 2δ2m. Then we can compute
characteristic polynomials and univariate representations in
Am with costs as specified in the following table.

XP,Am

univ. representation
(expected time)

m fixed
O(M(δm))

O(M(δm) log(n))
for P linear

m ≤ n/2
O(nmM(δm))

O(nm2M(δm))
for P linear

any m O(n(ω+1)/2mM(δm)) O(n(ω+1)/2mM(δm))

In particular, when m is fixed, we have optimal algorithms
(up to logarithmic factors) for characteristic polynomials of
linear forms. For arbitrary P , the results in the last item
are not optimal: when m is fixed, the running time of our
algorithm is O (̃nm+1.69), for an output of size nm. For small
values of m, say m = 2, 3, 4, this is a significant overhead.
However, these results do improve on the state-of-the-art.

We propose two approaches; both of them rely on classical
ideas. The first one (in Section 3) computes characteristic
polynomials by means of their Newton sums, following previ-
ous work of [41, 2, 13], but is limited to simple polynomials,
such as linear forms; this will establish the first two items in
the theorem. The second one (in Section 4) relies on iterated
resultants [27, 39, 28, 33] and provides the last statements
in the theorem. The last section gives experimental results.

In addition to the general results given in the theorem
above, the following sections also mention other examples
for which our techniques, or slight extensions thereof, yield
quasi-linear results – as of now, we do not have a complete
classification of all examples for which this is the case.

In all the paper, our focus is on computing characteristic
polynomials rather than resolvents. From this, one can de-
duce resolvents by root extraction, but it is of course prefer-
able to compute the resolvent directly, by cleaning multiplic-
ities as early as possible. The basic ideas we use are known
to make this possible: we mention it in the next section
for the Newton sums approach and [28, 33, 5] discuss the
resultant-based approach. However, quantifying the com-
plexity gains of this improvement is beyond the scope of
this paper. Note also that for cases where P is fixed, such
as P := X1X2+X3X4, and n → ∞, we can save only a con-
stant factor in the running time with such considerations.

2. PRELIMINARIES

2.1 The Newton representation
Let g be monic of degree n in k[X], and let β1, . . . , βn its

roots in an algebraic closure of k. For i ∈ N, we let Si(g) ∈ k
be the ith Newton sum of g, defined by Si(g) :=

∑n
ℓ=1 β

i
ℓ,

and for m ∈ N we write S(g,m) := (Si(g))06i6m.



The conversion from coefficients to the Newton represen-
tation S(g,m) and back can be done by the Newton-Girard
formulas, but this takes quadratic time in m. To achieve a
quasi-linear complexity, we recall a result first due to Schön-
hage [35]; see [6] for references and a more detailed exposi-
tion, including the proofs of the results we state below.

Lemma 2. Let g be a monic polynomial of degree n in
k[X]. Then, for m ∈ N, one can compute S(g,m) in time
O(M(m)). If the characteristic of k is either zero or greater
than n, one can recover g from S(g, n) in time O(M(n)).

In particular, knowing S(g, n), we can compute S(g, n′) for
any n′

> n in time O(M(n′)).
The Newton representation is useful to speed up certain

polynomial operations, such as multiplication and exact di-
vision, since Si(gh) = Si(g) + Si(h) for all i ∈ N. Other
improved operations include the composed sum and com-
posed product of g and another polynomial h, with roots
γ1, . . . , γm; they are defined by

g ⊕ h :=
∏

i=1...n,j=1...m

(X − (βi + γj)) ,

g ⊗ h :=
∏

i=1...n,j=1...m

(X − (βiγj)) .

Lemma 3. Let g, h be monic polynomials in k[X], and
suppose that S(g, r) and S(h, r) are known. Then one can
compute S(g ⊗ h, r) in time O(r); if the characteristic of k
is either zero or greater than r, one can compute S(g⊕h, r)
in time O(M(r)).

We write ⊗NS(S(g, r), S(h, r), r) and ⊕NS(S(g, r), S(h, r), r)
for these algorithms; the subscript NS shows that the inputs
and outputs are in the Newton representation.

2.2 Univariate representations
We recall a few facts on univariate representations. Let us

fix m 6 n. Then, a linear form Λ is primitive for Am if and
only if it takes distinct values on the points of the variety
defined by Is∩k[X1, . . . , Xm]. This is the case if and only if
the minimal polynomial of Λ coincides with its characteristic
polynomial XΛ,Am

, if and only if XΛ,Am
is squarefree. For

instance when m = n, Λ is primitive in An if and only if the
values Λ

(

ασ(1), . . . , ασ(n)

)

are all distinct for σ ∈ Sn.
By Zippel-Schwartz lemma [44, 37], for K ∈ N>0, a ran-

dom linear form Λ will be primitive for Am with probability
greater than 1−1/(2K) if its coefficients are taken in a set of
cardinality Kδ2m; this still holds if we set λ1 := 1. One can
find primitive linear forms for Am in a (non-uniform) deter-
ministic manner, but with a cost polynomial in δm [15].

When Λ is primitive, in the univariate representation
P = (Q,S1, . . . , Sn) corresponding to Λ, we obtain Q as
Q = XΛ,Am

. The polynomials Si are called parametriza-
tions because they are the images of the variables Xi by
the isomorphism Am ≃ k[T ]/Q. We will now argue that any
“reasonable” algorithm that computes Q will also give us the
parametrizations for a moderate overhead.

Let us extend the base field k to k′ := k(L1, . . . , Lm),
where Li are new indeterminates. Let A′

m := Am ⊗k k′ be
obtained by adding L1, . . . , Lm to the ground field in Am,
and let finally XL,A′

m
∈ k′[T ] be the characteristic polyno-

mial of L := L1X1+ · · ·+LnXm. Then, the following holds:

Si = −
∂XL,A′

m

∂Li
/
∂XL,A′

m

∂T
modXL,A′

m

∣

∣

∣

∣

L1,...,Lm=λ1,...,λm

;

see for instance [26, 25, 31, 24, 23, 19].
We can avoid working with m-variate rational function

coefficients, as the formula above implies that we can obtain
Si as follows. Let kε := k[ε]/〈ε2〉. For a given Λ, and for i 6
m, let XΛi

be the characteristic polynomial of Λi := Λ+εXi,
computed over kε. Then, XΛi

takes the form XΛi
= XΛ,Am

+
εRi, and we obtain Si as Si = Ri/X

′
Λ,Am

mod XΛ,Am
.

We will require that the algorithm computing XΛ,Am
per-

forms no zero-test or division (other than by constants in
k, since those can be seen as multiplications by constants).
Since any ring operation (+,×) in kε costs at most 3 op-
erations in k, given such an algorithm that computes the
characteristic polynomial of any linear form in Am in time
C, we can deduce an algorithm that computes each Si in
time O(C), and S1, . . . , Sm in time O(mC).

3. NEWTON SUMS TECHNIQUES
In this section, we give our first algorithm for computing

characteristic polynomials in Am. This approach is based on
the following proposition and as such applies only to poly-
nomials satisfying certain assumptions; the main result in
this section is in Proposition 5 below. Our approach relies
on Newton sums computations, following [27, 41, 2, 13]; an
analogue of the following result can be found in [13] for the
special cases P = X1 + · · · + Xm and P = X1 · · ·Xm. See
also [8] for similar considerations in the bivariate case.

Proposition 4. Let P ∈ Am be of the form

P (X1, . . . , Xm) := Q(X1, . . . , Xm−1) +R(Xm),

with Q in Am−1. For 1 6 i 6 m− 1, define

Pi := Q(X1, . . . , Xm−1) +R(Xi) ∈ Am−1,

and let R1 := r(X1) ∈ A1. Then the following equality holds:

XP,Am
=

XQ,Am−1
⊕XR1,A1

∏m−1
i=1 XPi,Am−1

. (4)

Proof. Let R = {α1, . . . , αn} be the roots of f and note
that XR1,A1

=
∏n

i=1 (T −R(αi)). We rewrite (3) as

XQ,Am−1
=

∏

α1,...,αm−1∈R pairwise distinct

(T −Q(α1, . . . , αm−1)) .

Thus, XQ,Am−1
⊕XR1,A1

equals
∏

α1, . . . , αm−1 ∈ R pairwise distinct, αm ∈ R

(T −P (α1, . . . , αm)).

This product contains parasite factors compared to XP,Am
,

corresponding to cases where αm = αi for some i between 1
and m− 1. For a given i, the factor due to αm = αi is

∏

α1, . . . , αm−1 ∈ R pairwise distinct

(T −P (α1, . . . , αm−1, αi)),

that is, XPi,Am−1
. Formula (4) follows. �

This result can lead to a recursive algorithm, provided
all recursive calls are well-defined (not all polynomials P
satisfy the assumptions of this proposition). We will con-
sider a convenient particular case, when the input polyno-
mial is linear. In this case, we can continue the recursion
all the way down, remarking that for m = 1, the character-
istic polynomial of λX1 is f(λT ). We deduce our recursive
algorithm CharNSRec, together with the top-level function
CharNS; they compute XΛ,Am

, for Λ = λ1X1 + · · ·+ λmXm.



The algorithm CharNSRec uses the Newton sums repre-
sentation for all polynomials involved; the only conversions
are done in the top-level function CharNS. The algorithm
thus takes as an extra argument the precision ℓ, that is, the
number of Newton sums we need. As in the previous propo-
sition, we write Λ0 := λ1X1 + · · · + λm−1Xm−1 and, for
i 6 m, Λi := λ1X1 + · · ·+ λm−1Xm−1 + λmXi.

Algorithm CharNSRec

Input: S(f, n), m, Λ, the precision ℓ.
Output: S(XΛ,Am

, ℓ).
1. ℓ′ := min(ℓ, δm)
2. if (m = 1) then out := (Si(f)λ

i
1)06i6n else

a. out := CharNSRec(S(f, n),m− 1,Λ0, ℓ
′)

b. out := ⊕NS(out,CharNSRec(S(f, n), 1, λmX1, ℓ
′), ℓ′)

c. for i from 1 to m− 1
out := out−CharNSRec(S(f, n),m− 1,Λi, ℓ

′)
3. if (ℓ′ < ℓ) then Extend the series “out” up to precision ℓ
4. return out

The main algorithm follows; it uses a trick in the case m = n
to reduce the depth of the recursion by one unit.

Algorithm CharNS

Input: f , m, Λ.
Output: XΛ,Am

.
1. if (m = n) then

a. Λ̄ := (λ1 − λn)X1 + · · ·+ (λn−1 − λn)Xn−1

b. return CharNS(f, n− 1, Λ̄)⊕ (X − λnf1)
2. Compute the Newton representation S(f, n)
3. S(XΛ,Am

, δm) := CharNSRec(S(f, n),m,Λ, δm)
4. Recover XΛ,Am

from S(XΛ,Am
, δm)

5. return XΛ,Am

Proposition 5. Let m 6 n and suppose that the char-
acteristic k is either zero or greater than δm. Then Al-
gorithm CharNS computes the characteristic polynomials of
linear forms in Am in time O(M(δm)) if m is bounded,
O(mnM(δm)) if m 6 n/2 and O(2nM(δm)) in general.
Proof. Let be C(m, ℓ) be the cost of CharNSRec on input
Λ ∈ Am and precision ℓ. We use the abbreviation C(m) :=
C(m, δm), so that C(1) = O(n). For 2 6 m 6 n−1, Lemma 2
gives C(m, ℓ) = C(m) +O(M(ℓ)) for ℓ > δm, so we get

C(m) = mC(m− 1, δm) + C(1, δm) +O(mM(δm))

= m(C(m− 1) +O(M(δm))) +O(mM(δm))

6 mC(m− 1) +O(mM(δm)).

Then, by unrolling the recurrence and using the super-
linearity of the function M, we deduce

C(m)

M(δm)
6 O

(

m+m(m− 1)
δm−1

δm
+ · · ·+m!

δ1
δm

)

6 O

(

m
∑

i=1

m!

(i− 1)!

(n−m)!

(n− i)!

)

6 O

(

n
(

n
m

)

m
∑

i=1

(

n− 1

i− 1

))

.

When m is bounded, the sum is bounded. If m 6 n/2, we
derive the bound C(m) = O(mnM(δm)) from the remark
(

n−1
i−1

)

6
(

n
i

)

6
(

n
m

)

for 1 6 i 6 m. For arbitrary m 6

n− 1, we get the cruder bound C(m) = O(2nM(δm)). In all

these cases, the cost of Algorithm CharNS is the same, up
to O(M(δm)) for conversions. For m = n, let Λ̄ := (λ1 −
λn)X1 + · · ·+ (λn−1 − λn)Xn−1. Then, f1 =

∑

i αi implies
XΛ,An

= XΛ̄,An−1
⊕ (X − λnf1) ; the cost for m = n is thus

the same as for m = n−1, up to O(M(δn)) for the composed
sum. �

This proves the left-hand columns of the first two rows in
Theorem 1. Using the discussion in Subsection 2.2, we
can also compute a univariate representation of Am. Af-
ter computing XΛ,Am

, we test whether Λ is primitive for
Am, by testing whether XΛ,Am

is squarefree; this takes time
O(M(δm) log(δm)), which is O(mM(δm) log(n)). If the char-
acteristic of k is either zero, or at least equal to 2δ2m, we
expect to try finitely many Λ before finding a primitive one.
When this is the case, we can apply the procedure of Sub-
section 2.2 to obtain all parametrizations; this costs m times
as much as computing XΛ,Am

. Considering the cases m con-
stant and m ≤ n/2, this completes the proof of the first two
points in our main theorem.

To conclude this section, we mention (without proof) some
extensions.

First, it is possible to adapt this algorithm to exploit sym-
metries of P , since they are known to create multiplicities
in XP,Am

: we can accordingly reduce the number of Newton
sums we need (thus, one can compute resolvents directly in
this manner). This is useful in practice, but we were not
able to quantify the gains in terms of complexity.
Another remark is that an analogue to Proposition 4 holds

for P (X1, . . . , Xm) := Q(X1, . . . , Xm−1)×R(Xm), replacing
the operation ⊕ by ⊗. As an application, consider the case
P := X1X2X3 + X4, so that Q := X1X2X3 and R := X4.
To compute XP,A4

, we are led to deal with Q, P1 := (1 +
X2X3)X1, P2 := (1+X1X3)X2 and P3 := (1+X1X2)X3 in
A3. By symmetry, it is enough to consider Q and P3. For Q,
we can continue the recursion all the way down to univariate
polynomials, using the multiplicative version of the previous
proposition. For P1, however, we cannot. Writing P3 as
(1 +X1X2)×X3, the recursive call lead us in particular to
compute the characteristic polynomial of (1 +X1X2)×X2,
which does not satisfy the assumptions of the proposition.
Similar (but slightly more complicated) results hold

as well when P can be written as P (X1, . . . , Xm) :=
Q(X1, . . . , Xℓ) op R(Xℓ+1, . . . , Xm), with op ∈ {+,×}.
Taking for instance P := X1X2 + X3X4, we are led recur-
sively to compute the characteristic polynomials of X1X2

and P1 := X1(X2 +X3). However, the case of P1 reduces to
that of X2(X2+X3), which does not satisfy the assumptions
of the proposition. We will discuss these examples again in
the next section.

4. RESULTANT TECHNIQUES
Resultant methods to compute characteristic polynomials

in Am go back to Lagrange’s elimination method (similar to
today’s resultant) to compute resolvents [27]. This idea was
developed in [39, 28, 33].
The basic idea is simple. Let again C1, . . . ,Cn be the

divided differences associated to f . For P ∈ k [X1, . . . , Xm],
define recursively the resultants

Gm := T − P (X1, . . . , Xm) ∈ k [X1, . . . , Xm, T ] ,

Gi := ResXi+1
(Ci+1, Gi+1) ∈ k [X1, . . . , Xi, T ] ,

for i = m−1, . . . , 0, so that XP,Am
= G0 ∈ k [T ]. In order to



avoid an exponential growth of the degrees in the interme-
diate Gi’s, we need to compute the resultant ResXi

(Ci, Gi)
over the coefficient ring Ai−1[T ].

However, we mentioned that arithmetic in Ai−1 is rather
slow; univariate computations are faster. We give below a
general framework that relies on both triangular and univari-
ate representations to compute efficiently such resultants.
Recall that a family of polynomials T = (T1, . . . , Tm) in
k[X1, . . . , Xm] is a triangular set if the following holds for
all i 6 m: Ti is in k[X1, . . . , Xi], Ti is monic in Xi and Ti is
reduced with respect to (T1, . . . , Ti−1). Our main idea holds
for general triangular families of polynomials, but it is only
for the special case of divided difference that it will lead to
an efficient algorithm (see Corollary 11 below).

4.1 General algorithms
In this section, we describe a general approach to compute

characteristic polynomials modulo a triangular set. Follow-
ing [18, 32], our main idea is to introduce mixed representa-
tions, that allow one to convert from triangular to bivariate
representations, and back, one variable at a time.

Let T = (T1, . . . , Tm) be a triangular set in k[X1, . . . , Xm].
For i 6 m, let di := deg(Ti, Xi), µi := d1 · · · di and µ′

i :=
di+1 · · · dm. We write RT := k[X1, . . . , Xm]/〈T1, . . . , Tm〉;
this is a k-algebra of dimension µm = d1 · · · dm. More gener-
ally, for i 6 m, we write RT ,i := k [X1, . . . , Xi] /〈T1, . . . , Ti〉;
this is a k-algebra of dimension µi.

Generalizing the notation used up to now, for P in RT ,
we write XP,RT

for its characteristic polynomial in RT , that
is, the characteristic polynomial of the multiplication-by-P
endomorphism of RT . To compute XP,RT

, we will use the
“iterated resultant” techniques sketched in the preamble.

Since computing modulo triangular sets is difficult, our
workaround is to introduce a family of univariate repre-
sentations P1, . . . ,Pm−1 of respectively RT ,1, . . . , RT ,m−1;
in the introduction, we only defined univariate represen-
tations for the algebras Ai, but the definition carries over
unchanged to this slightly more general context [23, 32].
For i 6 m − 1, Pi has the form Pi = (Qi, Si,1, . . . , Si,i),
with all polynomials in k[Zi] and with associated linear form
Λi := λi,1X1 + · · · + λi,iXi. For i = 1, we add w.l.o.g. the
mild restriction that Λ1 = X1, so that Q1 = T1.

We first show how to use these objects to perform con-
versions between multivariate and bivariate representations,
going one variable at a time. For i 6 m−1, we know that Qi

has degree µi and that we have the k-algebra isomorphism

ϕi :
RT ,i → k[Zi]/〈Qi〉

X1, . . . , Xi 7→ Si,1, . . . , Si,i

Λi 7→ Zi.

We extend ϕi to another isomorphism

Φi : RT ,i [Xi+1, . . . , Xm] → k[Zi]/〈Qi〉[Xi+1, . . . , Xm],

where ϕi acts coefficientwise, and we define Qi,j = Φi (Tj)
for i+ 1 6 j 6 m..
Let us seeQi,i+1, . . . , Qi,m in k [Zi, Xi+1, . . . , Xm], by tak-

ing their canonical preimages. Then, (Qi, Qi,i+1, . . . , Qi,m)
form a triangular set in k[Zi, Xi+1, . . . , Xm], such that
deg(Qi,j , Xj) = deg(Tj , Xj) for i+1 6 j 6 m. For i 6 m−1
and i 6 j 6 m, we will write

Ri,j = k[Zi, Xi+1, . . . , Xj ]/〈Qi, Qi,i+1, . . . , Qi,j〉.

Then, still acting coefficientwise in Xi+1, . . . , Xj , ϕi extends
to an isomorphism Φi,j : RT ,j → Ri,j .
Two operations will be needed to convert between the

various induced representations: lift-up and push-down [18,
32]. For i 6 m − 2 and i + 1 6 j 6 m, we call lift-up
the change of basis upi,j := Φi+1,j ◦ Φ−1

i,j . This is thus an
isomorphism Ri,j → Ri+1,j , with

Ri,j = k[Zi, Xi+1, . . . , Xj ]/〈Qi, Qi,i+1, . . . , Qi,j〉,

Ri+1,j = k[Zi+1, Xi+2, . . . , Xj ]/〈Qi+1, Qi+1,i+2, . . . , Qi+1,j〉.

In particular, with j = i+1, we write upi instead of upi,i+1;
thus, it is the bivariate-to-univariate conversion given by

upi :

Ri,i+1 = k[Zi, Xi+1]/〈Qi, Qi,i+1〉

↓

Ri+1,i+1 = k[Zi+1]/〈Qi+1〉.

Conversely, we call push-down the inverse change of basis;
as above, for j = i + 1, we write downi = downi,i+1. The
operations upi and downi are crucial, since all upi,j (resp.
downi,j), for j > i + 2, are obtained by applying upi (resp.
downi) coefficientwise. We do not discuss here how to imple-
ment them in general (see [32]); we will give a better solution
in the case of divided differences below. For the moment,
we simply record the following straightforward result.

Lemma 6. For i 6 m−2, suppose that one can apply upi
(resp. downi) using ui (resp. vi) operations in k. Then, one
can apply upi,m using uiµ

′
i+1 operations in k (resp. one can

apply downi,m using viµ
′
i+1 operations in k).

Finally, we define Upm = upm−2,m◦· · ·◦up1,m and Downm =

Up−1 so that we have

Rm−1,m = k[Zm−1, Zm]/〈Qm−1, Qm−1,m〉
Down ↓ ↑Up

RT = k[X1, . . . , Xm]/〈T1, . . . , Tm〉.

We could want to go all the way down to univariate polyno-
mials instead of bivariate, but it would not be useful: the al-
gorithm below uses bivariate polynomials. In terms of com-
plexity, the following is a direct consequence of Lemma 6.

Lemma 7. For i 6 m−2, suppose that one can apply upi
(resp. downi) using ui (resp. vi) operations in k. Then one
can apply Upm (resp. Downm) in respective times

∑m−2
i=1 uiµ

′
i+1 and

∑m−2
i=1 viµ

′
i+1.

Now we explain how to compute G := XP,RT
∈ k[Y ] for any

P in RT . Let k′ := k[Y ]; then, T is also a triangular set in
k′[X1, . . . , Xm], and we define, for i 6 m,

R′

T ,i := k′[X1, . . . , Xi]/〈T1, . . . , Ti〉 = RT ,i[Y ].

As explained in the preamble of this section, we start by
defining Gm := Y − P ∈ R′

T ,m. For i = m − 1, . . . , 0,
suppose that we know Gi+1 ∈ R′

T ,i+1. Seeing R′
T ,i+1 as

R′
T ,i+1 = R′

T ,i[Xi+1]/〈Ti+1〉, we define

Gi := ResXi+1
(Ti+1, Gi+1) ∈ R′

T ,i.

Standard properties of resultants (see e.g. [11, § 12.2]) show
that G0 = G. By induction, we prove that deg(Gi, Y ) = µ′

i;
in particular, deg(G0, Y ) = µ, as it should be.
We are going to compute Gm−1, . . . , G0 assuming that we

know the univariate representations P1, . . . ,Pm−1, and use



univariate arithmetic as much as possible. For 1 6 i 6 m−1
and i 6 j 6 m, R′

i,j is well defined and isomorphic to R′
T ,j

because R′
i,j = Ri,j [Y ] and R′

T ,j = RT ,j [Y ]. Besides, lift-up
and push-down are still defined; they are written respec-
tively up′i : R

′
i,i+1 → R′

i+1,i+1 and down′i.

Lemma 8. For i 6 m−2, suppose that one can apply upi
(resp. downi) using ui (resp. vi) operations in k. Then, for
F in R′

i,i+1, with d := deg (F, Y ), we can compute up′i (F ) ∈
R′

i+1,i+1 using O (dui) operations in k. For F in R′
i+1,i+1,

with d := deg (F, Y ), we can compute down′i (F ) ∈ R′
i,i+1

using O (dvi) operations in k.

This leads to our algorithm for characteristic polynomials.
For convenience, we let R0,1 := R1, and we let down′0 be the
identity map. For the moment, we assume that all polyno-
mials Qi,i+1 needed below are already known.

Algorithm CharResultant

Input: P in RT .
Output: XP,RT

.
1. P ′ := Upm (P ) P ′ ∈ Rm−1,m

2. Gm := Y − P ′ G′
m ∈ R′

m−1,m

3. for i = m− 1, . . . , 1 do

a. G′
i := ResXi+1

(Qi,i+1, Gi+1) G′
i ∈ R′

i,i

b. Gi := down′i−1 (G
′
i) Gi ∈ R′

i−1,i

4. return G0 = ResX1
(G1, Q1). G0 ∈ R′

To analyze this algorithm, we remark that over any ring R,
resultants of polynomials of degree d in R[X] can be com-

puted in O(d(ω+1)/2) ring operations, provided one of these
polynomials is monic, and 1, . . . , d are units in R. Indeed,
the resultant ResX(A,B), with A monic of degree d and
deg(B,X) < d is the constant term of the characteristic
polynomial of B modulo A. This whole polynomial can be
computed in time O(d(ω+1)/2) by an algorithm of Shoup [38]
which performs no zero-test and only divisions by 1, . . . , d.

Proposition 9. Suppose that one can apply upi (resp.
downi) using ui (resp. vi) operations in k, and that k has
characteristic either zero, or at least µm. Then Algorithm
CharResultant computes XP,RT

in time

O

(

m−2
∑

i=1

(ui + vi)µ
′

i+1 +

m−1
∑

i=0

d
(ω+1)/2
i+1 M(µm)

)

.

Proof. We have seen that Step 1 takes time
∑m−2

i=1 uiµ
′
i+1.

For i = m − 1, . . . , 1, G′
i has degree µ′

i in Y , so Step 3.b
takes time vi−1µ

′
i by Lemma 8.

In Step 3.a, we compute Gi by evaluation / interpola-
tion in the variable Y , using evaluation points in geomet-
ric progression [9]; such points exist by assumption on the
characteristic of k. Both Gi+1 and Qi,i+1 have degree at
most di+1 in Xi+1, and deg(G′

i, Y ) = µ′
i. Thus, the cost is

O(di+1M(µ′
i)) operations in Ri,i for all evaluations / inter-

polations, since all points are in geometric progression [9].
Since the evaluation points are in k, evaluation and inter-
polation are k-linear operations, so each of them uses µi

operations in k.

The cost for all individual resultants is O(µ′
id

(ω+1)/2
i+1 ) ring

operations in Ri,i, each of which takes O(M(µi)) opera-
tions in k. The conclusion follows using the inequalities
µiM(µ′

i) ≤ M(µm) and M(µi)µ
′
i ≤ M(µm). �

4.2 The case of divided differences
We now apply the former results to the triangular set

of divided differences. Fix m ∈ N such that m 6 n, and
take T = (C1, . . . ,Cm) in k [X1, . . . , Xm]. Note that di :=
deg(Ci, Xi) is equal to n+1− i 6 n, and that RT ,i becomes
Ai for 1 6 i 6 m. We also have µi = δi and µ′

i = δm/δi.
We are going to study lift-up and push-down for divided

differences, with the objective to give estimates on the quan-
tities ui and vi defined above. Thus, we start from univari-
ate representations P1, . . . ,Pm−1 for A1, . . . ,Am−1; for the
moment, they are part of the input.
We impose a further restriction on P1, . . . ,Pm−1 , assum-

ing that for all i < m−1, Λi+1 = Λi+λi+1Xi+1 for some λi+1

in k. When this is the case, we callP1, . . . ,Pm−1 compatible.
Then, we have Λi = X1+λ2X2+· · ·+λiXi, since by assump-
tion Λ1 = X1. Thus, compatible univariate representations
are associated to a (m−2)-uple (λ2, . . . , λm−1) ∈ km−2, with
the condition that every X1 + λ2X2 + · · ·+ λiXi is a prim-
itive element of Ai for all i 6 m − 1. Under this condition,
we now study the cost of lift-up and push-down. Indeed, in
this case, we can deduce the explicit form of upi:

k[Zi, Xi+1]/〈Qi, Qi,i+1〉 → k[Zi+1]/〈Qi+1〉
upi : Zi 7→ Zi+1 − λi+1Si+1,i+1

Xi+1 7→ Si+1,i+1

Zi + λi+1Xi+1 7→ Zi+1.

The key for the following algorithms is then the remark that
f(Xi+1) = 0 in Ai+1; we will exploit the fact that the poly-
nomial f is a small degree, univariate polynomial. To an-
alyze its cost, we will use the following bounds: for ℓ > 1,
consider the sum S(m,n, ℓ) :=

∑

16i6m iℓM(δi). Then we
claim that the following holds:

S(m,n, ℓ) 6 exp(1)mℓ
M(δm) = O(mℓ

M(δm)).

Indeed,the super-linearity of the function M implies

S(m,n, ℓ)

M(δm)
6

∑

16i6m

iℓ
δi
δm

6 mℓ
∑

16i6m

δi
δm

6
∑

i∈◆

1

n!
.

Proposition 10. Suppose that P1, . . . ,Pm−1 are known
and compatible. If the characteristic of k is either zero or
at least δm−1, then for 1 6 i 6 m − 2, upi and downi
can be computed in time ui = O(M(n)M(δi+1)) and vi =
O(M(n)M(δi+1)).

Proof. First, we study the following simplified problem:
given λ ∈ k, some polynomials A ∈ k [Z], B ∈ k[Z,X]
monic in X, and W,S in k[Z], compute the mapping

up :

k[Z,X]/〈A,B〉 → k[Z]/〈W 〉
Z 7→ Z − λS
X 7→ S

Z + λX 7→ Z,

and its inverse down, assuming up is well-defined and in-
vertible. We write a := deg(A) and b := deg(B,X), so
that deg(W ) = ab. We also assume that f(X) = 0 in
k[Z,X]/〈A,B〉, for some monic polynomial f ∈ k[X] of de-
gree n > b. Finally, the characteristic of k is supposed to be
either 0 or at least ab. Then, we show that both directions
take time O(M(n)M(ab)).

Computing up. Given H ∈ k[Z,X]/〈A,B〉, we first show
how to compute G := up(H). Let H⋆ be the canonical
preimage of H in k[Z,X], so that G = H⋆(Z − λS, S) mod
W . Then, we obtain G as follows:



1. Compute H⋆(Z − λX,X) modulo f using the shift algo-
rithm of [1] (which is possible under our assumption on the
characteristic of k) with coefficients in k[X]/〈f〉.

2. Evaluate previous result at X = S using Horner scheme.

Step 1 takes time O(M(n)M(a)); the next step uses n mul-
tiplications modulo W , for a total of O(nM(ab)).

Computing down. Conversely, for G ∈ k[Z]/〈W 〉, we show
how to compute H := down(G). Let G⋆ be the canonical
preimage of G in k[Z], so that H = G(Z+λX) mod 〈A,B〉.
We obtain H as follows:

1. Compute G(Z + λX) modulo f , using again the shift
algorithm of [1] with coefficients in k[X]/〈f〉.

2. Reduce previous result modulo 〈A,B〉.

Step 1 takes time O(M(n)M(ab)), then the reduction takes
time O(M(n)M(ab)) by fast Euclidean division.

Conclusion. By the former discussion, given A = Qi, B =
Qi,i+1 and W = Qi+1, upi and downi can be computed in
time ui = O(M(n)M(δi+1)).

First, though, we have to compute Qi,i+1. Supposing that
Qi−1,i is known, we can compute Qi,i+1 by adjusting For-
mula (2), writing

Qi,i+1 = upi−1,i+1

(

Qi−1,i (Zi−1, Xi+1)−Qi−1,i (Zi−1, Xi)

Xi+1 −Xi

)

.

The quotient can be computed in O(δi−1d
2
i+1). Next we

apply upi−1 coefficientwise on a polynomial of degree di+1 in
Zi+1 — this is possible, since we know Qi−1,i, so this costs
O(M(n)M(δi)di+1). To summarize, we can compute Qi,i+1

from Qi−1,i in time O(M(n)M(δi+1)). By the discussion on
the function S(m,n, ℓ), with here ℓ = 0, the total cost from
Q0,1 = Q1 to Qi,i+1 is O(M(n)M(δi+1)). �

Corollary 11. Suppose that P1, . . . ,Pm−1 are known
and compatible. If the characteristic of k is either 0 or at
least δm, then for any P ∈ Am, we can compute XP,Am

in

time O(n(ω+1)/2mM(δm)).
If P = Λ is a primitive linear form in Am, compatible

with the previous ones, we can compute the corresponding
parametrizations in the same expected amount of time.

Proof. The first part is obvious, as the dominant term from
Proposition 9 comes from Step 3.a.

When P = Λ is primitive, we will write as usual Qm in-
stead of XP,Am

. Using the discussion in Subsection 2.2, we
can compute Qm and the last parametrization Sm,m of Pm

in the same cost. The other parametrizations are obtained
from Pm−1by Sm,j = upm−1 (Sm−1,j) for j < m. This is
done using Proposition 10, since all that is required for al-
gorithm upm−1 are Qm and Sm,m. So all other parametriza-
tions cost O(mM(n)M(δm))), which is not dominant. �

Proof of Theorem 1. We will give here the complexity
estimate for computing P1, . . . ,Pm – once they are known,
computing the characteristic polynomial of an arbitrary P
is done using the corollary above.

We need to pick Λ := 1 + λ2X2 + · · · + λmXm ∈ Am

primitive such that its restrictions Λi := 1+λ2X2+· · ·+λiXi

to fewer variables are still primitive. As per the assumption
on the characteristic of k, we pick the coefficients λ2, . . . , λm

in
{

1, . . . , 2δ2m
}

. By the remark in Subsection 2.2, for 2 6

i 6 m, Λi is not primitive for Ai with probability at most
δ2i /4δ

2
m. Because of the inequality

∑

26i6m

δ2i
δ2m

6
∑

i∈N

1

(n!)2
= 2.5,

the probability of all Λi being primitive is at least 0.375.
Thus, on average, we have to pick a finite number of Λ.
Our algorithm first picks Λ as explained above. We as-

sumed in Subsection 4.2 that the representation P1 ought
to be associated to Λ1 = X1, so that P1 = (f(Z1), Z1).
Assume now that P1, . . . ,Pi−1 are known. Using the first
point in the previous corollary, we compute XΛi,Ai

and we
test whether this polynomial is squarefree. If not, we start
all over from a new Λ. Otherwise, we continue with the
second point in the corollary, to deduce Pi.

The dominant cost comes from applying the corollary.
Since we expect to pick finitely many Λ, the expected cost
is O(

∑

i6m n(ω+1)/2iM(δi)). This is O(n(ω+1)/2mM(δm)), in

view of our discussion on the function S(m,n, ℓ), with here
ℓ = 1. This concludes the proof of our main theorem. �

Improvements given in [28, 33] to take into account pre-
dictable multiplicities in the successive resultants can be
applied here as well; however, it is unclear to us how they
would impact the complexity analysis.

Our last remark concerns examples from the previous sec-
tion. We mentioned there some issues with the application
of Proposition 4 (and its multiplicative version) to the poly-
nomial X1X2X3 +X4, as we could not apply that proposi-
tion recursively to the polynomial (1 + X1X2) × X2. The
result above shows that we can compute the characteristic
polynomial of (1+X1X2)×X2 in time O(n(ω+1)/2M(δ2)) =
O(M(δ4)). As a result, we are thus able to complete the
whole computation for P in quasi-linear time O(M(δ4)) as
well. The same holds for X1X2 +X3X4.

5. IMPLEMENTATION AND TIMINGS
Our algorithms were implemented in Magma 2.17.1; we

report here on some experiments dedicated to computations
in the case m = n, that is, in An. Timings were measured
on a Intel Xeon 16 cores at 2.27GHz with 74Gb RAM.

When m = n, although the complexity of CharNS is not
quasi-linear (due to a 2n overhead), it usually does better
than algorithm CharResultant. A first reason is that for the
former, the constant in the big-O is mild (we do only a few
multiplications at each step). Besides, some other ideas are
used in our code. Different recursive calls have often compu-
tations in common, so we use memoization. We also make
use of symmetries: if Λ has a large stabilizer, as explained
in Section 2, we can reduce the number of Newton sums
we need to compute its characteristic polynomial. We usu-
ally attempt to pick favorable Λ: a good strategy is to take
Λ =

∑

16i6n−1 iXn−i, for which the linear forms over An−2

(which are the most expensive) have repeated coefficients.
In the following table, we take k = Fp, with p a 28 bit

prime; we give timings to compute a univariate represen-
tation of An. We are not aware of other available imple-
mentations for this problem in Magma, so we compared our
algorithm with the Magma Gröbner basis functions. Our al-
gorithm is tailored for computations in An, so it is at an ad-
vantage compared to generalist functions; on the other hand,
Magma’s Gröbner basis functions use highly optimized C
code. Despite an extra 2n factor in the cost analysis, algo-
rithm CharNS performs very well for this computation.



n 4 5 6 7 8

Time Gröbner 0.001 0.03 5.8 1500 >6h

(sec) CharNS 0.005 0.05 0.52 6.8 100

Next, we discuss the cost of basic arithmetic in An, compar-
ing in particular univariate operations to arithmetic modulo
the Cauchy modules. Several Magma constructions exist
for this purpose; we report on the most efficient solutions
we found. As a conclusion, for an operation such as inver-
sion, even with the overhead of lift-up and push-down, it
pays off to convert to a univariate representation.

n 5 6 7 8

Up 0.008 0.1 2 40

Down 0.01 0.1 1.4 25

Univ. × 40µs 0.0005 0.006 0.06

Time Univ. ÷ 0.002 0.028 0.29 4.5

(sec) Magma × 0.003 0.085 4 170

Magma ÷ 0.1 28 >30min >6h

Finally, we focus computing XP,An
, for a generic polynomial

P . The best alternative we could find comes from [38] and is
written “Shoup” in the table. This algorithm uses univariate
arithmetic; for it to be applicable, we must already know a
univariate representation of An, and the input must be writ-
ten on the corresponding univariate basis. The complexity
of that algorithm higher than that of CharResultant, but the
algorithm is simpler and relies on fast built-in Magma code;
as a result, it outperforms CharResultant. If the input P is
a linear form in X1, . . . , Xn, CharNS is actually faster than
both, as showed in the first table.

n 4 5 6 7 8

Time Shoup 0.001 0.01 0.23 6.8 200

(sec) CharResultant 0.03 0.24 2.6 45 1100

6. REFERENCES
[1] A. V. Aho, K. Steiglitz, and J. D. Ullman. Evaluating polyno-

mials at fixed sets of points. SIAM J. Comput., 4:533-539, 1975.

[2] J.-M. Arnaudiès and A. Valibouze. Calculs de résolvantes.
Rapport LITP 94.46, 1994.

[3] J.-M. Arnaudiès and A. Valibouze. Lagrange resolvents. J. P.
Appl. Alg., 117/118:23–40, 1997.

[4] P. Aubry and A. Valibouze. Using Galois ideals for computing
relative resolvents. J. Symb. Comp., 30(6):635–651, 2000.

[5] P. Aubry and A. Valibouze. Algebraic computation of
resolvents without extraneous powers. European Journal of
Combinatorics, 2012. To appear.

[6] A. Bostan. Algorithmique efficace pour des opérations de base

en Calcul formel. PhD thesis, École Polytechnique, 2003.

[7] A. Bostan, M. F. I. Chowdhury, J. van der Hoeven, and

É. Schost. Homotopy methods for multiplication modulo
triangular sets. J. Symb. Comp., 2011. To appear.

[8] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast computa-
tion of special resultants. J. Symb. Comp., 41:1-29, 2006.

[9] A. Bostan and É. Schost. Polynomial evaluation and interpo-
lation on special sets of points. J. Complex., 21:420-446, 2005.

[10] F. Boulier, F. Lemaire, and M. Moreno Maza. Pardi! In
ISSAC’01, pp. 38–47. ACM, 2001.

[11] N. Bourbaki. Éléments de mathématique, Fasc. XXIII.
Hermann, Paris, 1973. Livre II: Algèbre. Chapitre 8.

[12] D. G. Cantor and E. Kaltofen. On fast multiplication of
polynomials over arbitrary algebras. Acta Inform., 28:693-701,
1991.

[13] D. Casperson and J. McKay. Symmetric functions, m-sets, and
Galois groups. Math. Comp., 63(208):749–757, 1994.

[14] N. Chebotarev. Grundzüge des Galois’shen Theorie. P.
Noordhoff, 1950.

[15] A. Colin and M. Giusti. Efficient computation of squarefree
Lagrange resolvents. 2010.

[16] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. J. Symb. Comp., 9(3):251–280, 1990.

[17] X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the
complexity of the D5 principle. In TC’06, pp. 149–168, 2006.

[18] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier
towers over finite fields. In ISSAC’09, pp. 127–134. ACM, 2009.

[19] C. Durvye and G. Lecerf. A concise proof of the Kronecker
polynomial system solver from scratch. Expo. Math.,
26:101-139, 2008.

[20] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient
computation of zero-dimensional Gröbner bases by change of
ordering. J. Symb. Comp., 16:329-344, 1993.

[21] J.-C. Faugère and C. Mou. Fast algorithm for change of
ordering of zero-dimensional Gröbner bases with sparse
multiplication matrices. In ISSAC’11, pp. 115–122. ACM, 2011.

[22] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.
Cambridge University Press, Cambridge, second edition, 2003.

[23] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner-free alternative
for polynomial system solving. J. Complex., 17:154-211, 2001.

[24] J. Heintz, T. Krick, S. Puddu, J. Sabia, and A. Waissbein.
Deformation techniques for efficient polynomial equation
solving. J. Complex., 16(1):70–109, 2000.

[25] J. König. Aus dem Ungarischen übertragen vom Verfasser. B.
G. Teubner, Leipzig, 1903.

[26] L. Kronecker. Grundzüge einer arithmetischen theorie des
algebraischen grössen. J. reine angew. Math., 92:1–122, 1882.

[27] J.-L. Lagrange. Réflexions sur la résolution algébrique des
équations. Mémoires de l’Académie de Berlin, 1770.

[28] F. Lehobey. Resolvent computations by resultants without
extraneous powers. In ISSAC’97, pp. 85–92. ACM, 1997.

[29] X. Li, M. Moreno Maza, and W. Pan. Computations modulo
regular chains. In ISSAC’09, pp. 239–246. ACM, 2009.

[30] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for
triangular sets: from theory to practice. J. Symb. Comp.,
44(7):891–907, 2009.

[31] F. S. Macaulay. The algebraic theory of modular systems.
Cambridge University Press, 1994.

[32] A. Poteaux and É. Schost. On the complexity of computing
with zero-dimensional triangular sets. Submitted, 2011.

[33] N. Rennert and A. Valibouze. Calcul de résolvantes avec les
modules de Cauchy. Exp. Math., 8(4):351–366, 1999.

[34] F. Rouillier. Solving zero-dimensional systems through the
rational univariate representation. Appl. Alg. Engrg. Comm.
Comput., 9(5):433–461, 1999.

[35] A. Schönhage. The fundamental theorem of algebra in terms of
computational complexity. Technical report, U. Tübingen, 1982.

[36] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser
Zahlen. Computing, 7:281–292, 1971.

[37] J. T. Schwartz. Fast probabilistic algorithms for verification of
polynomial identities. J. ACM, 27(4):701–717, 1980.

[38] V. Shoup. Fast construction of irreducible polynomials over
finite fields. J. Symb. Comp., 17(5):371–391, 1994.

[39] L. Soicher. The computation of the Galois groups. PhD thesis,
Concordia University, Montreal, Quebec, Canada, 1981.

[40] A. Stothers. On the Complexity of Matrix Multiplication. PhD
thesis, University of Edinburgh, 2010.

[41] A. Valibouze. Fonctions symétriques et changements de bases.
In EUROCAL’87, vol. 378 of LNCS, pp. 323–332, 1989.

[42] V. Vassilevska Williams. Breaking the Coppersmith-Winograd
barrier. 2011.

[43] K. Yokoyama. A modular method for computing the Galois
groups of polynomials. J. P. Appl. Alg., 117/118:617-636, 1997.

[44] R. Zippel. Probabilistic algorithms for sparse polynomials. In
EUROSAM’79, vol. 72 of LNCS, pp. 216–226. Springer, 1979.


	Introduction
	Preliminaries
	The Newton representation
	Univariate representations

	Newton sums techniques
	Resultant techniques
	General algorithms
	The case of divided differences

	Implementation and timings
	References

