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HAMILTONIAN EVOLUTION OF MONOKINETIC MEASURES

WITH ROUGH MOMENTUM PROFILE

CLAUDE BARDOS, FRANÇOIS GOLSE, PETER MARKOWICH, AND THIERRY PAUL

Abstract. Consider a monokinetic probability measure on the phase space
R

N
x × R

N
ξ
, i.e. µin = ρin(x)δ(ξ − U in(x)) where U in is a vector field on

RN and ρin a probability density on RN . Let Φt be a Hamiltonian flow on
RN × RN . In this paper, we study the structure of the transported measure
µ(t) := Φt#µin and of its integral in the ξ variable denoted ρ(t). In particular,
we give estimates on the number of folds in Φt( graph of U in), on which µ(t)
is concentrated. We explain how our results can be applied to investigate the
classical limit of the Schrödinger equation by using the formalism of Wigner
measures. Our formalism includes initial momentum profiles U in with much

lower regularity than required by the WKB method. Finally, we discuss a few
examples showing that our results are sharp.

1. Motivation

Consider the Cauchy problem for the Schrödinger equation in the case of a
quantistic particle whose motion is driven by a potential V ≡ V (x) ∈ R:

(1)

{
iǫ∂tψǫ = − 1

2ǫ
2∆xψǫ + V (x)ψǫ , x ∈ RN , t ∈ R ,

ψǫ(0, x) = ψin(x) .

The unknown is the particle’s wave function ψǫ ≡ ψǫ(t, x) ∈ C, while ψin designates
the initial datum. The dimensionless parameter ǫ > 0 is the ratio of the particle’s
de Broglie wave length (see [7] on p. 51) to some macroscopic observation length
scale.

We choose the initial datum ψin in the form of a WKB ansatz

(2) ψin(x) := ain(x)eiS
in(x)/ǫ ,

where ain and Sin are real-valued, measurable functions on RN such that
∫

RN

ain(x)2dx = 1 .

The classical limit of quantum mechanics for a particle subject to the potential V
corresponds with the asymptotic behavior of the wave function ψǫ as ǫ → 0+ (see
chapter VII in [7]).

Assume that V ∈ C∞(RN ) is such that − 1
2ǫ

2∆+ V has a self-adjoint extension

to L2(RN ) which is bounded from below, while

(3) V (x) = o(|x|) and ∂αV (x) = O(1) for each α ∈ NN as |x| → ∞ .
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Let Φt be the Hamiltonian flow

(x, ξ) 7→ Φt(x, ξ) = (Xt(x, ξ),Ξt(x, ξ))

defined by the function H(x, ξ) := 1
2 |ξ|2 + V (x) on the phase space RN

x × RN
ξ

equipped with the canonical symplectic 2-form dξ1 ∧ dx1 + . . . + dξN ∧ dxN . In
other words, t 7→ (Xt(x, ξ),Ξt(x, ξ)) is the integral curve of the Hamiltonian vector
field (X,Ξ) 7→ (Ξ,−∇V (X)) passing through (x, ξ) at time t = 0.

Assuming that Sin ∈ C2(R), consider the C1 map

Ft : R
N ∋ y 7→ Xt(y,∇Sin(y)) ∈ RN

for each t ∈ R, and set Jt(y) := | det(DFt(y))|.
Denote by Ct the set of critical values of Ft, which is Lebesgue negligible by

Sard’s theorem, and set C := {(t, x) |x ∈ Ct , t ∈ R}.
Under assumption (3) and provided that

(4) ∇Sin(y) = o(|y|) as |y| → ∞ ,

for each t ∈ R and each x ∈ RN \ Ct, the equation Ft(y) = x has finitely many
solutions denoted yj(t, x) for j = 1, . . . ,N (t, x).

The following result is based on global asymptotic methods developed by Maslov
[12] and stated without proof as Theorem 5.1 in [2].

Theorem 1.1. Let ain ∈ Cm
c (RN ) and Sin ∈ Cm+1(RN) with m > 6N + 4. For

all ǫ > 0 and all (t, x) ∈ R+ ×RN \ C, set

(5) Ψǫ(t, x) :=

N (t,x)∑

j=1

ain(yj(t, x))

Jt(yj(t, x))1/2
eiSj(t,x)/ǫeiπνj(t,x)/2 ,

where, for each j = 1, . . . ,N (t, x),

Sj(t, x) :=S
in(yj(t, x))+

∫ t

0

(
1
2 |Ξs(yj(t, x),∇Sin(yj(t, x)))|2−V (Fs(yj(t, x)))

)
ds

and νj(t, x) ∈ Z is the Morse index of the path [0, t] ∋ s 7→ Fs(yj(t, x)) ∈ RN .
Then the solution ψǫ of the Cauchy problem (1) satisfies

(6) ψǫ(t, x) = Ψǫ(t, x) +R1
ǫ(t, x) +R2

ǫ (t, x)

for all T > 0, where

sup
0≤t≤T

‖R1
ǫ‖L2(B(0,R)) + sup

(t,x)∈K

|R2
ǫ (t, x)| = O(ǫ)

for each R > 0 and each compact K ⊂ (R×RN ) \ C.

Notice that each phase function Sj is a solution of the Hamilton-Jacobi eikonal
equation

∂tSj(t, x) +
1
2 |∇xS(t, x)|2 + V (x) = 0

Theorem 1.1 shows that the single WKB ansatz (2) evolves under the dynamics
of the scaled Schrödinger equation (1) into a wave function ψǫ that is asymptotically
close to a locally finite sum of WKB ansatz for x /∈ Ct as ǫ→ 0+.
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There is a different approach to the classical limit of quantum mechanics, that
is based on the notion of Wigner transform [18]. The Wigner transform at scale
ǫ > 0 of a complex valued function φ ∈ L2(RN) is

Wǫ[φ](x, ξ) :=
1

(2π)N

∫

RN

φ(x+ 1
2ǫy)φ(x − 1

2ǫy)e
−iξ·ydy

Theorem IV.1 and Example III.5 in [8] are summarized in the following statement
— see also [4].

Theorem 1.2. Let ain ∈ L2(RN ) and Sin ∈ W 1,1
loc (R

N) with ‖ain‖L2(RN ) = 1.
Then

Wǫ

[
aineiS

in/ǫ
]
(x, ·) → |ain(x)|2δ∇Sin(x) in S ′(RN

x ×RN
ξ )

as ǫ→ 0.
Assume that V is such that − 1

2ǫ
2∆+ V has a self-adjoint extension to L2(RN )

which is bounded from below, and satisfies

V ∈ C1,1(RN ) and V (x) ≥ −C(1 + |x|2)

for some constant C > 0. Then the solution ψǫ of the Cauchy problem (1) with
initial datum (2) satisfies

Wǫ[ψǫ(t, ·)] → µ(t) in S ′(RN ×RN ) uniformly in t ∈ [0, T ]

for each T > 0 as ǫ→ 0, where µ ∈ Cb(R;w−P(RN ×RN )) is the solution of the
Cauchy problem for the Liouville equation of classical mechanics

{
∂tµ+ ξ · ∇xµ− divξ(µ∇xV (x)) = 0 , x, ξ ∈ RN , t ∈ R ,

µ(0, x, ·) = |ain(x)|2δ∇Sin(x) .

The initial datum in the Cauchy problem for the Liouville equation

µin(x, ·) := ain(x)2δ∇Sin(x)

is an example of a “monokinetic measure” on the phase space RN
x ×RN

ξ . According
to Theorem 1.2, the Wigner transform of the solution of the Cauchy problem for
the scaled Schrödinger equation (1) with WKB initial data (2) converges as ǫ→ 0+

to µ(t) = Φt#µ
in, the initial monokinetic measure transported along trajectories

of classical mechanics.
Comparing the assumptions in Theorems 1.1 and 1.2 shows that the approach of

the classical limit of quantum mechanics based on the Wigner transform requires
much less regularity on both the potential V and the initial amplitude ain and
phase Sin. On the other hand, Theorem 1.1 provides detailed information on the
structure of the evolved wave function ψǫ(t) for all t ∈ R. This suggests the
following question.

Problem A. To find the structure of µ(t) = Φt#µ
in, where µin is a monokinetic

measure and Φt a Hamiltonian flow on the phase space on RN
x ×RN

ξ . For instance,

is µ(t) a locally finite sum of monokinetic measures?

This last question is suggested by the following observation. According to Propo-
sition 1.5 in [5] and in view of Example III.5 in [8], for all a1, . . . , an ∈ L2(RN ) and
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all S1, . . . , Sn ∈W 1,1
loc (R

N ) such that∇S1(x), . . . ,∇xSn(x) are linearly independent
in RN for a.e. x ∈ RN , one has

(7) Wǫ

[
n∑

k=1

ake
iSk/ǫ

]
(x, ·) →

n∑

k=1

ak(x)
2δ∇Sj(x) in S ′(RN ×RN) as ǫ→ 0 .

However, one should not seek to apply Theorem 1.1 and the observation above to
answer Problem A, since the locally finite sum Ψǫ(t, ·) of WKB ansatz is known to
approximate the solution ψǫ(t, ·) of the Cauchy problem (1) away from the set Ct

only and not globally in the Euclidean space RN .
A preliminary, more formal study of the structure of Wigner measures evolving

from monokinetic measures associated to initial WKB wave functions can be found
in [16]. The main purpose of the present study is to go further in this direction, and
especially to answer the problems posed in this introduction under less stringent
regularity assumptions than those used in Theorem 1.1.

A related question, bearing on the role of the set Ct in Theorem 1.1, is the
following problem.

Problem B. To find the structure of the first marginal ρ(t) of the probability
measure µ(t) on RN

x ×RN
ξ .

Define Λin := {(x,∇Sin(x)) |x ∈ RN} and Λt := Φt(Λ
in). Under the same

assumptions as in Theorem 1.1, by definition of the functions N (t, x) and yj(t, x)
for j = 1, . . . ,N (t, x), one has

(8) Λt ∩ ((RN \Ct)×RN) =
⋃

j≥1

{(yj(t, x),∇Sin(yj(t, x))) |x is s.t. N (t, x) ≥ j} .

In other words, the number of WKB terms in the asymptotic formula Ψǫ for the
solution ψǫ of the Cauchy problem (1) in quantum mechanics with initial datum
(2) has a geometric interpretation in terms of the classical Hamiltonian Φt. The
previous equality shows that the function N measures the number of folds in Λt.
Notice that Λt can be defined for all t ∈ R under assumptions much weaker than
those in Theorem 1.1. (For instance, the Hamiltonian flow Φt is a continuous map
on RN

x × RN
ξ defined for all t ∈ R under the assumption on V in Theorem 1.2,

while Λin is the graph of a continuous map for Sin ∈ C1(RN ).) This observation
suggests the following question.

Problem C. To estimate the number of folds in Λt for all t ∈ R.

Notice that these problems bear exclusively on the propagation of monokinetic
measures under the dynamics defined by the Liouville equation of classical me-
chanics. Problems A-C can be formulated without any reference to the classical
limit of quantum mechanics — which nevertheless remains the main motivation for
studying these problems here.

As noticed above, the regularity assumptions on ain, Sin and V used in Theorem
1.2 are much weaker than those in the WKB method summarized in Theorem 1.1.
This suggests the idea of using the answers to problems A-C to study the classical
limit of quantum mechanics in cases where the assumptions of Theorem 1.1are not
satisfied.

Problem D. To study the propagation under the scaled Schrödinger equation (1)
of a WKB ansatz (2) in the classical limit ǫ→ 0+ under regularity assumptions on
ain, Sin and V weaker than the level of regularity assumed in Theorem 1.1.
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The paper is organized as follows: our main results are stated in sections 2 and 3.
Section 2 contains our answers to Problems A-D stated above. Section 3 presents
examples and counterexamples showing that the theorems in section 2 are sharp.
From the quantum mechanical point of view, these examples and counterexamples
correspond to wave functions whose Wigner measures are carried by highly singular
subsets of the phase space. The proofs of all the results in sections 2 are given in
sections 5-7, while the proofs of the statements in section 3 are deferred to section
8.

2. Main results I: Answering Problems A-D

2.1. Assumptions on the dynamics and on the initial data. First we specify
the assumptions on the classical Hamiltonian dynamics used throughout the present
paper.

Although the motivation of our study is the classical limit of the scaled Schrödin-
ger operator − 1

2ǫ
2∆+ V , it would have been equally legitimate to raise the same

questions in the case of the operatorH(x,−iǫ∂x) obtained by the Weyl quantization
rule from a smooth Hamiltonian H ≡ H(x, ξ) defined on RN ×RN . A first obvious
condition to be imposed on the function H in this case is that the resulting operator
H(x,−iǫ∂x) admits a self-adjoint extension to L2(RN ) for each ǫ > 0. Therefore
we do not restrict our attention to the only case where H(x, ξ) = 1

2 |ξ|2 + V (x).

Throughout the present paper, we assume thatH ≡ H(x, ξ) ∈ R is a C2 function
on RN ×RN satisfying the following conditions: there exists κ > 0, and a function
h ∈ C(R;R+) sublinear at infinity, i.e.

h(r)

r
→ 0 as r → +∞ ,

such that

(9)

|∇ξH(x, ξ)| ≤ κ(1 + |ξ|)
|∇xH(x, ξ)| ≤ h(|x|) + κ|ξ|
|∇2H(x, ξ)| ≤ κ

for all (x, ξ) ∈ RN ×RN .
By the Cauchy-Lipschitz theorem, the Hamiltonian H generates a unique, global

Hamiltonian flow denoted Φt on RN
x × RN

ξ for the canonical symplectic 2-form

dξ1∧dx1+ . . .+dξN ∧dxN . In other words, for each (x, ξ) ∈ RN ×RN , the integral
curve of the Hamiltonian vector field (DxH,−DξH) passing through (x, ξ) for t = 0
is t 7→ Φt(x, ξ). We systematically use the following notation for the flow Φt:

(10) Φt(x, ξ) = (Xt(x, ξ),Ξt(x, ξ)) , x, ξ ∈ RN , t ∈ R ,

Next we specify the assumptions on the initial data.

Definition 2.1. The monokinetic measure on RN
x × RN

ξ with momentum profile
U and density ρ is the positive Borel measure µ whose disintegration with respect
to the Lebesgue measure on RN

x and the canonical projection (x, ξ) 7→ x is

µ(x, ·) := ρ(x)δU(x) .
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Here U is a continuous vector field on RN and ρ a nonnegative element of L1(RN ).
In other words, for each test function φ ∈ Cc(R

N
x ×RN

ξ ), one has
∫∫

RN×RN

φ(x, ξ)µ(dxdξ) =

∫

RN

φ(x, U in(x))ρ(x)dx .

Notice that, at variance with the case considered in section 1, we treat the case
of monokinetic measures where the ξ-profile U in is not necessarily a gradient field.

Let U in ∈ C(RN ;RN) satisfy the following sublinearity condition at infinity

(11)
|U in(y)|

|y| → 0 as |y| → 0 .

Unless otherwise specified, we assume that its gradient (in the sense of distributions)
DU in satisfies the condition

(12) ∂lU
in
k

∣∣
Ω
∈ LN,1(Ω) for each bounded open Ω ⊂ RN ,

for all k, l = 1, . . . , N . We recall that a measurable function f : Ω → R belongs to
the Lorentz space LN,1(Ω) if

∫ ∞

0

(
L

N ({x ∈ Ω | |f(x)| ≥ λ})
)1/N

dλ <∞ .

By Theorem B in [6], the vector field U in is differentiable a.e. on RN . We hence-
forth denote by E the L N -negligible set defined as

(13) E := {y ∈ RN |U in is not differentiable at y} .
Along with the vector field U in, we consider the map

(14) Ft : R
N ∋ y 7→ Ft(y) := Xt(y, U

in(y)) ∈ RN .

By the chain rule, for each t ∈ R, the map Ft is differentiable on RN \ E. We
henceforth use the following elements of notation

(15) Jt(y) := | det(DFt(y))| for all y ∈ RN \ E and t ∈ R ,

and

(16)
Pt := {y ∈ RN \ E s.t. Jt(y) > 0} ,
Zt := {y ∈ RN \ E s.t. Jt(y) = 0} .

We generalize as follows the definition of the set Ct considered in section 1:

(17) Ct := {x ∈ RN s.t. F−1
t ({x}) ∩ (Zt ∪E) 6= ∅} ,

and define

(18) C := {(t, x) ∈ R×RN s.t. x ∈ Ct} .
The sets C and Ct are referred to as “the caustic” and “the caustic fiber” respec-
tively.

Finally, we designate by ρin a probability density on RN , and we consider the
monokinetic measure µin defined by

(19) µin(x, ·) = ρin(x)δUin(x) .

Our purpose is to study the structure of

(20) µ(t) := Φt#µ
in and ρ(t) := Π#µ(t) ,

where Π is the canonical projection RN ×RN ∋ (x, ξ) 7→ x ∈ RN .
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A few remarks on the definition (17) are in order.
First, if U in satisfies (12) but is not of class C1, the equation Ft(y) = x may

have infinitely many solutions although x is not a singular value of Ft, as shown by
the example below.

Example 2.2. Set N = 1 and H(x, ξ) = 1
2ξ

2, so that Ft(y) = y + tU in(y). Take

U in(z) := z sin(ln |z|) if z 6= 0 , while U in(0) = 0 .

so that U in ∈ Lip(R) \ C1(R) and the nondifferentiability set E = {0}. Then for
each t such that |t| > 1, the set F−1

t ({0}) ∩ [−L,L] is infinite for each L > 0.
Assume for instance that t < −1 while L = π; then

F−1
t ({0}) ∩ [−π, π] = {0} ∪ {±yn(t) |n ≥ 0} ∪ {±zn(t) |n ≥ 0} ,

where

yn(t) := exp(arcsin(−1/t)− 2πn) and zn(t) := exp(π − arcsin(−1/t)− 2πn) ,

for n ∈ N. On the other hand Ft(y) = 1 + t sin ln |y|+ t cos ln |y| so that

|F ′
t (yn(t))| = |F ′

t (zn(t))| =
√
t2 − 1 6= 0 .

Hence 0 is not a critical value of the restriction of Ft to [−π
2 ,

π
2 ].

In view of the observation following (4), this example suggests that the definition
of the caustic fiber for non C1 momentum profiles U in should indeed involve the
nondifferentiability set E, as in (17).

Yet there is a definite arbitrariness in the definition of Ct. For instance, the
nondifferentiability set E could be replaced by any other Lebesgue negligible set
E′ in the definition of Ct. Since the initial density ρin ∈ L1(RN ), the initial
monokinetic measure µin is obviously independent of E′. By uniqueness of the
solution of the Cauchy problem for the Liouville equation, the propagated measure
µ(t) and its first marginal ρ(t) are also independent of E′. Consistently with this
observation, we have chosen the minimal regularity requirements on the initial
momentum profile U in leading to a precise description of the structure of ρ(t) on
RN \Ct and for which Ct is Lebesgue negligible independently of the choice of the
Lebesgue negligible set E′ used in its definition. We refer to Example 3.1 and the
discussion thereafter for a further analysis of this issue.

Along with the probability measures µin and µ(t), we consider the sets

(21) Λin := {(x, U in(x)) |x ∈ RN} , and Λt := Φt(Λ
in) , t ∈ R .

In the context of the classical limit of quantum mechanics as in Theorem 1.1-1.2,
the initial momentum profile U in = ∇Sin is a gradient field with Sin of class C2

at least, so that Λt is a Lagrangian submanifold of the phase space for all t ∈ R.
However, the fact that Λt is a Lagrangian does not play any particular role in our
analysis, as all our results hold without assuming that U in is a gradient field.

2.2. Answering problem C: the equation Ft(y) = x and the set Λt. The
definition of the asymptotic solution in Theorem 1.1 shows the importance of the
equation Ft(y) = x for the unknown y, and especially of the number of solutions
of this equation whenever this number is finite. For each t ∈ R, each x ∈ RN and
each R > 0, set

(22) N (t, x) := #F−1
t ({x}) and NR(t, x) := #F−1

t ({x}) ∩B(0, R)
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whenever these sets are finite, and N (t, x) = +∞ or NR(t, x) = +∞ otherwise.

Our first main result in the present paper is the following theorem, which solves
Problem C and provides additional information on the equation Ft(y) = x. The
key new pieces of information are the estimates in statements (d) and (f) below.

Theorem 2.3. Assume that U in is a continuous vector field on RN satisfying (11).

a) For each t ∈ R, the map Ft is proper and onto, and satisfies the condition

sup
|t|≤T

|Ft(y)− y| = o(|y|) as |y| → ∞ .

Assume moreover that U in satisfies (12).

b) For each t ∈ R, the function Jt belongs to L1
loc(R

N ).

c) For each t ∈ R, the set F−1
t ({x}) is finite for a.e. x ∈ RN .

d) For each t ∈ R, each R > 0 and each n ∈ N, one has

L
N
(
{x ∈ RN s.t. NR(t, x) ≥ n}

)
≤ 1

n
eNκ|t|‖1 + |DU in| ‖NLN (B(0,R)) .

e) For each t ∈ R, the set Ct defined in (17) satisfies L N (Ct) = 0.
f) For each T > 0,

H
1({(t, y)∈ [−T, T ]×RN s.t. Ft(y)=x})<+∞ for a.e. x ∈ RN .

The estimate in statement (d) bears on the localized variant of the counting
function NR instead of N . With the additional information in statement (a), one
can show that N (t, x) = NR(t, x) for R large enough, by the following observation.

Corollary 2.4. Assume that U in is a continuous vector field on RN satisfying
(11) and (12), and define

MT (R) := sup
|y|≥R

sup
|t|≤T

|Ft(y)− y|
|y| for all T,R > 0 .

Let T > 0 and R∗
T > 0 be s.t. MT (R

∗
T ) <

1
2 .

a) For each t ∈ [−T, T ] and each R ≥ R∗
T , one has

N (t, x) = NR(t, x) for each x ∈ B(0, 12R) .

b) For each t ∈ [−T, T ] and each R ≥ R∗
T , one has

L
N
(
{x ∈ B(0, 12R) s.t. N (t, x) ≥ n}

)
≤ 1

n
eNκ|t|‖1 + |DU in| ‖NLN(B(0,R)) .

If the regularity condition (12) is replaced by the assumption that U in is of class
C1, one obtains additional information on the equation Ft(y) = x, especially on
the set of x’s for which this equation has finitely many solutions, on the number of
its solutions, and on the dependence of these solutions in t and x. This additional
information has been gathered in the next theorem for the sake of completeness.
While statements (a-d) are more or less classical consequences of the implicit func-
tion theorem, we believe that statement (e) is new.

Theorem 2.5. Assume that U in is a C1 vector field on RN satisfying (11) and
the condition

|DU in(y)| = O(|y|) as |y| → ∞ .

a) The set C is closed in R×RN .
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b) The set F−1
t ({x}) is finite for all (t, x) ∈ R×RN \C, and the counting function

N is constant in each connected component of R×RN \ C.
c) Let On be a connected component of R ×RN \ C s.t. N = n on On. For each
j = 1, . . . , n, there exists yj ∈ C1(On,R

N) s.t.

F−1
t ({x}) = {y1(t, x), . . . , yn(t, x)} for all (t, x) ∈ On .

d) There exists a < 0 < b such that C∩((a, b)×RN ) = ∅ and N = 1 on (a, b)×RN .
e) For each (t, x) ∈ R ×RN \ C, the positive integer N (t, x) is odd.

The relation of the equation Ft(y) = x for the unknown y to Λt is obvious:

(x, ξ) ∈ Λt ⇔ there exists y ∈ RN s.t. (x, ξ) = Φt(y, U
in(y)) .

Equivalently

(23) Λt = {(x, ξ) ∈ RN ×RN s.t. ξ = Ξt(y, U
in(y)) for some y ∈ F−1

t ({x})} .

Under the assumptions in Theorem 2.5 (c), one has a fairly precise description
of Λt in terms of the counting function N and of the solutions yj ≡ yj(t, x) of the
equation Ft(y) = x. Indeed, defining

Λ := {(t, x, ξ) | (x, ξ) ∈ Λt , t ∈ R} ,

one has

Λt ∩ (On ×RN ) =
n⋃

j=1

{(x,Ξt(yj(t, x), U
in(yj(t, x))) | (t, x) ∈ On} .

In the more general case where U in satisfies only the weaker assumptions in Theo-
rem 2.3, the equality (23) and statement (c) imply that, for a.e. x ∈ RN ,

(Λt)x := Λt ∩ ({x} ×RN) is finite and #(Λt)x ≤ N (t, x) .

Therefore, in both cases, the counting function N measures the number of folds in
the set Λt. The counting function N itself — or more precisely the distribution of
its values — is estimated by statement (d) in Theorem 2.3 and by statement (b) in
Corollary 2.4.

A last remark is in order: by Theorem 2.5 b, the equation Ft(y) = x has finitely
many solutions if x /∈ Ct. The converse is not true, in other words, it may happen
that the equation Ft(y) = x has finitely many solutions for x ∈ Ct, as shown by
the following elementary example.

Example 2.6. Set N = 1 and H(x, ξ) = 1
2ξ

2 so that Ft(y) = y+ tU in(y). Assume

that U in satisfies (11) and is real analytic on R. Then, for each t, x ∈ R, the set
F−1
t ({x}) is finite.

Indeed, the map Ft is proper because U
in satisfies (11), so that the set F−1

t ({x})
is compact for all x ∈ R. Since y 7→ Ft(y) − x is real analytic on R and not
identically 0, the set F−1

t ({x}) of its zeroes consists of isolated points. Then, the
Bolzano-Weierstrass theorem implies that F−1

t ({x}) is finite.



10 C. BARDOS, F. GOLSE, P. MARKOWICH, AND T. PAUL

2.3. Answering problems A-B: structure of µ(t) and ρ(t). Our main results
on the structure of the probability measures µ(t) and ρ(t) are summarized in the
following theorem.

Theorem 2.7. Let U in be a continuous vector field on RN satisfying (11) and
(12). Let t ∈ R, and let ρin be a probability distribution on RN . Let µin be the
monokinetic measure (19), let µ(t) and ρ(t) be the Borel probability measures in
(20).
a) The following three properties are equivalent:

ρ(t)(Ct) = 0 ⇔ ρ(t)(RN \ Ct) = 1 ⇔ ρin = 0 a.e. on Zt .

b) Under any one of the equivalent conditions in statement (a), one has ρ(t) ≪ L N

with Radon-Nikodym derivative

ρ(t, x) :=
dρ(t)

dL N
(x) =

∑

y∈F−1

t ({x})

ρin(y)

Jt(y)
for a.e. x ∈ RN .

c) Under any one of the equivalent conditions in statement (a), the Borel probability
measure µ(t) has a disintegration with respect to the Lebesgue measure L N on RN

x

and the canonical projection Π given by the formula

µ(t, x, ·) =
∑

y∈F−1

t ({x})

ρin(y)

Jt(y)
δΞt(y,Uin(y)) for a.e. x ∈ RN .

Much less is known on the structure of the probability measures µ(t) and ρ(t)
when the equivalent conditions in statement (a) are not satisfied. The available
information is summarized in the following theorem.

Theorem 2.8. Let U in be a continuous vector field on RN satisfying (11) and
(12). Let t ∈ R, and let ρin be a probability density on RN . Let µ(t) and ρ(t) be
the Borel probability measures in (20), and let Λt be the set defined in (21).

a) For each t ∈ R, one has supp(µ(t)) ⊂ Λt.
b) Let ρ(t) = ρa(t) + ρs(t) be the Lebesgue decomposition of ρ(t) with respect to the
Lebesgue measure L N on RN

x , with

ρa(t) ≪ L
N and ρs(t) ⊥ L

N .

Then ρs(t) is carried by Ct and

ρa(t) = Ft#(ρin1PtL
N ) , and ρs(t) = Ft#(ρin1ZtL

N ) .

Applying statement (b) in Theorem 2.7 shows that

ρa(t, x) :=
dρa(t)

dL N
(x) =

∑

y∈F−1

t ({x})

ρin(y)1Pt(y)

Jt(y)
for a.e. x ∈ RN .

Let µin
a be the monokinetic measure with momentum profile U in and density ρin1Pt ;

by statement (c) of Theorem 2.7, µa(t) := Φt#µ
in
a has a disintegration with respect

to the Lebesgue measure L N on RN
x and the canonical projection Π given by the

formula

µa(t, x, ·) =
∑

y∈F−1

t ({x})

ρin(y)1Pt(y)

Jt(y)
δΞt(y,Uin(y)) for a.e. x ∈ RN .
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While the structure of µa(t) is well understood, the singular part ρs(t) of the
probability measure ρ(t), and the phase space measure µs(t) = µ(t)−µa(t) are more
difficult to characterize. The following theorem discusses the existence of atoms for
the measure ρ(t).

Theorem 2.9. Let U in be a continuous vector field on RN satisfying (11) and
(12). For each t ∈ R, consider the set

At := {x ∈ RN s.t. L
N (F−1

t ({x}) ∩ Zt) > 0} .

a) For each t ∈ R, one has At ⊂ Ct.
b) Let ρin be a probability density on RN such that ρin > 0 a.e. on Zt. Then

ρ(t)({x}) > 0 ⇔ x ∈ At .

c) The set At is at most countable.

The singular part ρs(t) in the Lebesgue decomposition of the probability measure
ρ(t) with respect to the Lebesgue measure L N may indeed have atoms: see example
3.2 in the next section. It may also happen that ρs(t) is a nonzero diffuse measure:
see example 3.3 in section 3 below.

2.4. On the classical limit of Schrödinger’s equation (Problem D). In this
section, we return to the original motivation for the present work, i.e. the classical
limit of the Schrödinger equation. Specifically, we seek information on the solution
ψǫ of the Schrödinger equation (1) with WKB initial data (2), in cases where
Theorem 1.1 cannot be applied for lack of regularity of the initial amplitude ain

and phase function Sin. Although lowering the regularity requirements on the
potential V is not our main purpose in this paper, it is also worth noticing that the
regularity requirements on V in the theorem below are much less restrictive than
in Theorem 1.1.

We assume in this section that V ∈ C2(RN ) satisfies

(24) |V (x)|+ |∇V (x)| = o(|x|) and |∇2V (x)| = O(1) as |x| → ∞
Under this assumption, the Hamiltonian H(x, ξ) := 1

2 |ξ|2 + V (x) satisfies (9) and,
as explained above, generates a global flow Φt(x, ξ) = (Xt(x, ξ),Ξt(x, ξ)) for all
t ∈ R and x, ξ ∈ RN .

Assume further that

(25) sup
x∈RN

∫

RN

Γη(x− y)V −(y)dy → 0 as η → 0 if N ≥ 2

with

Γη(z) =

{
1[0,η](|z|)|z|2−N if N ≥ 3 ,

1[0,η](|z|) ln(1/|z|) if N = 2 ,

while

(26) sup
x∈RN

∫ x+1

x−1

V −(y)dy <∞ if N = 1 .

Theorem 2.10. Let ψǫ the solution of the Schrödinger equation (1) with initial
data (2). Assume that ain ∈ L2(RN ) satisfies the normalization ‖ain‖L2(RN ) = 1

and that Sin ∈ C1(RN ) is such that U in := ∇Sin satisfies (11) and the regularity
condition (12). Let t ∈ R.
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a) For each χ ∈ Cb(R
N ) s.t. χ(Ft(y))ρ

in(y) = 0 for a.e. y ∈ Zt, one has
∫

RN

χ(x)|ψǫ(t, x)|2dx→
∫

RN

χ(x)
∑

y∈F−1

t ({x})

|ain|21Pt

Jt
(y)dx

as ǫ→ 0.

b) For each χ ∈ Cb(R
N ) s.t. χ(Ξt(y,∇Sin(y))ρin(y) = 0 for a.e. y ∈ Zt, one has

∫

RN

χ(ξ)|Fǫψǫ(t, ξ)|2dξ →
∫

RN

∑

y∈F−1

t ({x})

χ(Ξt(y,∇Sin(y)))
|ain|21Pt

Jt
(y)dx

as ǫ→ 0, where the ǫ-Fourier transform Fǫ is defined as follows:

FǫΨ(ξ) :=
1

(2πǫ)N/2

∫

L2(RN )

Ψ(x)ei
xξ
ǫ dx .

In other words, even though the regularity assumptions on ain, Sin and V do
not allow us to apply Theorem 1.1, statements (a)-(b) in Theorem 2.10 provide
information on |ψǫ|2 and on |Fǫψǫ|2 which is consistent with the approximation (6)
by the WKB asymptotic solution (5) in view of (7).

Theorem 2.10 is a consequence of the Lions-Paul Theorem 1.2, and of our Theo-
rem 2.7 on the structure of the propagated Wigner measure. Whether more infor-
mation on ψǫ itself (instead of |ψǫ|2 and |Fǫψǫ|2) can be extracted from the approach
of the classical limit of quantum mechanics based on the Wigner transform seems
to be an interesting open question.

3. Main results II: Examples and counterexamples

This section gathers various examples showing that our results in the previous
section are sharp. All these examples are in space dimension 1, so that the initial
momentum profile U in is the gradient of the phase function

(27) Sin(x) =

∫ x

0

U in(z)dz .

3.1. On the regularity condition (12) on the momentum profile U in. The
regularity condition (12) on the initial momentum profile U in was chosen in order
to apply the area formula of geometric measure theory. This formula is the key
argument in the proof of statements (c)-(d)-(e)-(f) in Theorem 2.3, of statement
(b) in Corollary 2.4) and of statements (b)-(c) in Theorem 2.7.

If the Hamiltonian function H satisfies the assumptions (9), it generates a global,
C1 Hamiltonian flow Φt as explained in section 2.1. Let U in be a continuous vector
field on RN and ρin be a probability density on RN , and let µin be the monokinetic
measure with momentum profile U in and density ρin (see Definition 2.1). Then
µ(t) := Φt#µ

in is a well defined element of Cb(R;w − P(RN
x ×RN

ξ )), which is a
solution of the Liouville equation of classical mechanics:

∂tµ+ divx(µ∇ξH(x, ξ)) − divξ(µ∇xH(x, ξ)) = 0 .

This suggests the following questions: can one extend the validity of our Theorem
2.7 on the structure of µ(t) to cases where U in does not satisfy the regularity
assumption (12)? In other words, is is still true that the disintegration of µ(t)
is given by an a.e. finite sum of monokinetic measures in the complement of the
Lebesgue-negligible caustic fiber Ct?
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The example below answers these questions in the negative. In this example, the
Hamiltonian flow Φt is the free flow, the space dimension is 1, the initial momentum
profile is continuous with compact support, and even of bounded variation, but not
absolutely continuous. We prove that the caustic fiber Ct is not Lebesgue-negligible
for some instant of time t > 0.

Example 3.1. Let N = 1 and H(x, ξ) = 1
2ξ

2, so that Φt(x, ξ) = (x + tξ, ξ). Let
K ⊂ [0, 1] be the ternary Cantor set. We recall that K satisfies H s(K) = 1 with
s = ln 2/ ln 3. Set

U in(z) :=

{
0 if z /∈ [0, 1] ,

H
s([0, z] ∩K)− z , if z ∈ [0, 1] .

a) Then U in ∈ Cc(R) ∩ BV (R), but the signed measure (U in)′ is not an element
of L1,1(R) = L1(R), so that (12) is not satisfied.
b) At t = 1, the map F1 is the Cantor function, given by the formula

F1(y) :=

{
y if y /∈ [0, 1] ,

H
s([0, y] ∩K) , if y ∈ [0, 1] .

In particular, F1 ∈ C(R) and is increasing (and therefore F1 ∈ BVloc(R)).
c) The map F1 is differentiable on R \ K, with F ′

1(y) = 0 for all y ∈ [0, 1] \ K;
besides, F1 is not differentiable on K.
d) The caustic fiber at time t = 1 is C1 = [0, 1].

In other words, any initial wave function (2) for the free Schrödinger equation
with initial phase (27) leads to a caustic fiber of positive measure at time t = 1.

Notice that, in this example, the set Z1 = (F ′
1)

−1({0}) = [0, 1]\K is an open set
of (0, 1). As such, Z1 is a countable union of open intervals on which F1 is a constant,
and thus F1(Z1) is at most countable and therefore Lebesgue negligible. In other
words, the fact that C1 is of positive Lebesgue measure strongly depends upon the
inclusion of the nondifferentiability set E of F1 (here E = K) in the definition
(18) of the caustic fiber. If one seeks to extend our analysis of the propagation
of monokinetic measures to the case of momentum profiles U in less regular than
those considered in the present paper, the choice of the Lebesgue negligible set used
in the place of E in the definition of the caustic fiber becomes crucial in order to
avoid caustic fibers of positive Lebesgue measure. This choice however does not
have any effect on the measures µ(t) and ρ(t), as explained above. These issues will
be addressed elsewhere.

3.2. On the structure of the singular measure ρs(t). As explained above, the
singular part ρs(t) in the Lebesgue decomposition of the measure ρ(t) with respect
to the Lebesgue measure L N may have an atomic part, which can be constructed
easily following statement (b) in Theorem 2.9. Here is an example.

Example 3.2. Let N = 1 and H(x, ξ) = 1
2ξ

2, so that Φt(x, ξ) = (x + tξ, ξ). Let

U in ∈ C∞(R) be defined by the formula

U in(z) := −
∫ z

0

v(z)dz

where v ∈ C∞
c (R) is a bump function chosen so that

supp(v) ⊂ (−1, 1) , v(z) = 1 for |z| ≤ 1
2 , 0 < v(z) < 1 for |z| ∈ (12 , 1) .
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For each t ∈ R, the map Ft : R → R is given by the formula Ft(y) = y+tU in(y).
For t = 1, one has Z1 = [− 1

2 ,
1
2 ] and F1(Z1) = {0}. Therefore A1 = C1 = {0}.

Thus, if ρin ∈ C∞(R) is a probability density with supp(ρin) ⊂ (− 1
2 ,

1
2 ), one has

ρ(1) = F1#(ρinL
1) = δ0 .

Notice that the initial momentum profile U in and the initial density ρin can
be chosen as C∞ functions. In other words, the assumptions of Theorem 1.1 are
satisfied in this example (with potential V = 0). Not much information can be
gained from applying Theorem 1.1 in this case, since the asymptotic WKB wave
function Ψǫ in this case would satisfy Ψǫ(1, ·) = 0 on R \ C1. Yet, the solution
of the free Schrödinger equation for an initial wave function (2) with initial phase
function (27) and ρin = (ain)2 where ain is a C∞ function with support in (− 1

2 ,
1
2 ) is

a semiclassical Lagrangian distribution, and Example 3.2 can be formulated within
the formalism of Lagrangian distributions. (See for instance §2.2 and 4.2 in [13] for
an account of this theory.)

Showing that the singular part ρs(t) in the Lebesgue decomposition of the mea-
sure ρ(t) with respect to the Lebesgue measure L N may be a nontrivial diffuse
measure is less obvious.

Example 3.3. Let N = 1 and H(x, ξ) = 1
2ξ

2, so that Φt(x, ξ) = (x + tξ, ξ). Pick

K, a compact subset of (0, 1) \ Q such that L
1(K) ∈ (12 , 1]. For each k ≥ 1,

there exists U in ∈ Ck
b (R) such that the map Ft : R → R, defined by the formula

Ft(y) = y + tU in(y) satisfies the following conditions:

a) for t = 1, the map F1 is increasing on R and onto;
b) one has F ′

1(y) > 0 for all y < 0, all y > 1 and all y ∈ (0, 1) \K, while F ′
1(y) = 0

for all y ∈ K ∪ {0, 1}, so that the caustic fiber at time 1 is C1 = F1(K ∪ {0, 1}).
Then, for any probability density ρin on R such that ρin = 0 a.e. on R \ K

— for instance, ρin = 1
L 1(K)1K — the measure ρ(1) = F1#(ρinL 1) satisfies the

following properties

ρ(1)(R) = 1 , ρ(1) ⊥ L
1 = 0 , and ρ(1)({x}) = 0 for all x ∈ R .

Notice that the initial profile U in can be chosen as a Ck function with k arbitrar-
ily large. However the initial density ρin is not smooth in this example, so that the
regularity assumptions of Theorem 1.1 are not satisfied. In the language of wave
functions, this example corresponds to the propagation (under the dynamics of the
free Schrödinger equation) of a WKB ansatz (2) with initial phase function (27)
of class Ck with k arbitrarily large. Yet the usual tools of semiclassical analysis
(such as the formalism of Lagrangian distributions) do not apply to this case, as

the initial amplitude ain =
√
ρin cannot be smooth, or even continuous, in this

example.

3.3. On the Hausdorff dimensions of the caustic fiber and of the support
of ρs(t). The singular part ρs(t) in the Lebesgue decomposition of the probability
measure ρ(t) with respect to L N is carried by the caustic fiber Ct which is a
Lebesgue-negligible set. The next example shows that supp(ρ(t)) can be of arbitrary
Hausdorff dimension.

We briefly recall the following construction (see [3] on p. 15) which generalizes
the construction of the ternary Cantor set.
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Let θ ∈ (0, 12 ). Set E0 := [0, 1], let E1 := [0, θ]∩ [1− θ, 1], and obtain En+1 from
En by removing the open segment of proportion 1 − 2θ from the center of each
connected component in En. Therefore En is the union of 2n closed segments of
length θn. In other words,

[0, 1] \ En =
⋃

1≤k≤2m−1

1≤m≤n

Im,k

where

Im,k := (am,k − rm, am,k + rm) with rm := 1
2 (1− 2θ)θm−1 .

Then

K(θ) =
⋂

n≥0

En

is a compact subset of [0, 1] such that H s(K(θ)) = 1 with s = ln 2/ ln(1/θ).

Example 3.4. Let N = 1 and H(x, ξ) = 1
2ξ

2, so that Φt(x, ξ) = (x + tξ, ξ). Let

s ∈ (0, 1), and let θ = 2−1/s. Set

Ω(θ) :=
⋃

1≤k≤2m−1

m≥1

Jm,k

with

Jm,k := (am,k − θrm, am,k + θrm) ,

and let K̃(θ) = [0, 1]\Ω(θ). Define the initial momentum profile U in by the formula

U in(y) :=





1

θ
L

1(Ω(θ) ∩ (0, y))− y if y ∈ [0, 1] ,

0 if y /∈ [0, 1] ,

so that U in ∈ Lip(R) and supp(U in) ⊂ [0, 1]. Let Ft(y) = y + tU in(y) for all
t, y ∈ R. Then

a) for t = 1, the function F1 is increasing on (−∞, 0)∪Ω(θ)∪ (1,+∞) and nonde-
creasing on R;
b) for t = 1, one has F1((−∞, 0)∪Ω(θ)∪(1,+∞)) = R\K(θ) and F1(K̃(θ)) = K(θ);
c) for ρin = 1

1−θ1K̃(θ), let µ
in be the monokinetic measure with momentum profile

U in and density ρin, and let µ(t) = Φt#µ
in. Then

µ(1) =
1

1− θ

∑

m≥1

2m−1∑

k=1

(δam,k−rm ⊗ 1(−(1−θ)rm,0) + δam,k+rm ⊗ 1(0,(1−θ)rm)) ;

c) under the same assumptions as in statement (c),

ρ(1) = F1#ρ
in = Π#µ(1) = 1

2 (1− 2θ)
∑

m≥1

θm−1
2m−1∑

k=1

(δam,k−rm + δam,k+rm) ,

so that

ρ(1)(R) = 1 , supp(ρ(1)) = K(θ) , and ρ(1) ⊥ L
1 ;

e) for t = 1, one has C1 ∩ (0, 1) = K(θ)∩ (0, 1), so that H s(C1) = H s(K(θ)) = 1
with s = ln 2/ ln(1/θ).
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This example corresponds to the propagation (under the dynamics of the free
Schrödinger equation) of a WKB type initial wave function (2), with initial phase
(27), leading to a Wigner measure at time t = 1 which is carried by the set
(28)

⋃

m≥1

(
2m−1⋃

k=1

{am,k − rm}
)
×(−(1−θ)rm, 0)∪

⋃

m≥1

(
2m−1⋃

k=1

{am,k + rm}
)
×(0, (1−θ)rm).

Since the solution of the Cauchy problem for the free Schrödinger equation is given
by an explicit formula, this construction provides an example of a wave function
whose Wigner is concentrated precisely on the set (28) above.

Notice that ρs(1) is carried by the countable set

{am,k ± rm | 1 ≤ k ≤ 2m−1 , m ≥ 1}
even though supp(ρs(1)) = K(θ) is of Hausdorff dimension s = ln 2/ ln(1/θ).

Example 3.4 is vaguely reminiscent of Example 3.2: it corresponds to an infinite
accumulation of wave functions as in Example 3.2, except that the initial amplitude
cannot be chosen smooth, or even continuous. The concentration of the Wigner
measure on the set (28) at time t = 1 is produced by the combination of oscillations
in the WKB initial data (2)-(27) at the same scale as the characteristic scale ǫ of
the Wigner transform with the dynamics of the free Schrödinger equation. The
importance of fast oscillations in this concentration phenomenon can be seen in the
fact that the support of the Wigner measure at time t = 1 is not included in the
null section RN

x × {0} of the phase space RN
x ×RN

ξ .
At this point, we return to the remarks on our definition of caustic fiber following

(17) and Example 3.1. Examples 3.1 and (3.4) show that the regularity in assump-
tion (12) corresponds to a threshold in the size of the caustic fiber defined in (17),
at least in the case of space dimension 1. Indeed, if U in satisfies (12), the caustic
fiber is Lebesgue negligible, but can be of arbitrary Hausdorff dimension in (0, 1),
while if U in is of bounded variation but does not satisfy (12), the caustic fiber can
be of positive Lebesgue measure. Thus the definition (17) of the caustic fiber is
consistent with the regularity condition (12). Of course, as explained above, our
choice in the definition of the caustic fiber does not have any effect the propagation
of the monokinetic measure.

4. The Hamiltonian flow Φt

In this section, we have collected the properties of the Hamiltonian flow Φt

defined in (10) which are used throughout the paper.

Lemma 4.1. The map (t, x, ξ) 7→ Φt(x, ξ) is of class C1 on R ×RN ×RN . For
each η > 0, there exists Cη > 0 such that

sup
|t|≤T

|Xt(x, ξ) − x| ≤ Cη(1 + |ξ|) + η|x|

for each x, ξ ∈ RN . Moreover

|DΦt(x, ξ)− IdRN×RN | ≤ eκ|t| − 1

for all t ∈ R and each x, ξ ∈ RN .

Proof. The existence a,d regularity of the flow on its domain of definition follows
from the classical Cauchy-Lipschitz theory.
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By (9), one also has the following a priori estimates, with the notation (10).
First

|Xt(x, ξ) − x| ≤
∫ t

0

|∇ξH(Φs(x, ξ))|ds ≤ κt+ κ

∫ t

0

|Ξs(x, ξ)|ds

and

|Ξt(x, ξ)| ≤ |ξ|+
∫ t

0

|∇xH(Φs(x, ξ))|ds

≤ |ξ|+ κ

∫ t

0

|Ξs(x, ξ)|ds+
∫ t

0

h(Xs(x, ξ))ds .

By Gronwall’s inequality, for all 0 ≤ s ≤ t

(29) |Ξs(x, ξ)| ≤
(
|ξ|+

∫ t

0

h(Xτ (x, ξ))dτ

)
eκs ,

so that

|Xt(x, ξ) − x| ≤ κt+ κ

∫ t

0

eκsds

(
|ξ|+

∫ t

0

h(Xτ (x, ξ))dτ

)

≤ κt+ eκt
(
|ξ|+

∫ t

0

h(Xτ (x, ξ))dτ

)
.

Since h is sublinear at infinity, we have, for every R > 0

(30) h(r) ≤ 1[0,R](r) sup
0≤r≤R

h(r) + 1(R,+∞)(r)r sup
r>R

h(r)

r
η ≤MR + rmR ,

where

MR = sup
0≤r≤R

h(r) and mR = sup
r>R

h(r)

r
,

so that

mR → 0 as R→ +∞ .

Therefore

|Xt(x, ξ) − x| ≤ (κ+MRe
κt)t+ eκt|ξ|+mRe

κt

∫ t

0

|Xs(x, ξ)|ds

≤ (κ+MRe
κt)t+ eκt|ξ|+mRe

κt|x|+mRe
κt

∫ t

0

|Xs(x, ξ) − x|ds .

By Gronwall’s inequality,
(31)

|Xt(x, ξ)− x| ≤ ((κ+MRe
κt)t+ eκt|ξ|+mRe

κt|x|)etmReκt

≤ κtetmReκt

+MRte
t(κ+mReκt) + |ξ|et(κ+mReκt) +mR|x|et(κ+mReκt) .

The same estimates hold for −T ≤ t ≤ 0 after substituting |t| to t.
In view of (31)-(29), for each (x, ξ) ∈ RN ×RN , the trajectory (x, ξ) 7→ Φt(x, ξ)

cannot escape to infinity in finite time, and is therefore globally defined.
Besides, since mR → 0 as R → +∞, the estimate (31) obviously implies the first

inequality in the lemma with

η := mRe
T (κ+mReκT ) and Cη := (1 + κT +MRT )e

T (κ+mReκT ) .
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Since H ∈ C2(RN × RN), the map (t, x, ξ) 7→ Φt(x, ξ) is of class C1 on its
domain of definition R ×RN ×RN . Differentiating the Hamilton equations with
respect to the initial condition, one finds that

{
˙DXt = +∇2

x,ξH(Φt) ·DXt +∇2
ξ,ξH(Φt) ·DΞt ,

ḊΞt = −∇2
x,xH(Φt) ·DXt −∇2

x,ξH(Φt) ·DΞt ,

so that

|DΦt − IdRN×RN | ≤ κ

∫ |t|

0

|DΦs|ds .

The second inequality in the lemma follows from Gronwall’s inequality. �

5. Proofs of Theorems 2.3 and 2.5 and of Corollary 2.4

We shall need the following more or less classical topological argument.

Lemma 5.1. Let g : RN → RN be a continuous map satisfying the following
condition: for some R > 0

(g(x)|x) > 0 for all x ∈ RN such that |x| = R .

Then

a) there exists x ∈ RN such that |x| ≤ R and g(x) = 0;
b) if g is of class C1 on RN and 0 is a regular value of g, then g−1({0})∩B(0, R)
is finite and #(g−1({0}) ∩B(0, R)) is odd.

Proof. Consider the homotopy G ∈ C([0, 1]×RN ;RN ) defined by

G(t, x) = tx+ (1 − t)g(x) .

One has

G(t, x) 6= 0 whenever t ∈ [0, 1] and |x| = R .

Indeed, G(1, x) = x 6= 0 if |x| = R > 0; besides, if t ∈ [0, 1[ and G(t, x) = 0, one
has

g(x) = − t

1− t
x so that (g(x)|x) = − t

1− t
|x|2 = − t

1− t
R2 < 0

for all x ∈ RN such that |x| = R, which contradicts our assumption.
By the homotopy invariance of the degree (see Properties 7, 8 and Theorem 12.7

in chapter 12, §A of [15])

d(g,B(0, R), 0) = d(I, B(0, R), 0) = 1 .

This implies a).
Moreover, if g is of class C1 onRN and 0 is a regular value of g, all the elements of

g−1({0}) are isolated points by the implicit function theorem, so g−1({0})∩B(0, R)
is finite. Besides (see Property 2 in chapter 12, §A of [15])

d(g,B(0, R), 0) =
∑

x∈g−1({0})∩B(0,R)

sign(detDg(x)) = 1 .

Therefore, there exists an integer m ∈ N such that

#{x ∈ B(0, R) | g(x) = 0 and det(Dg(x)) > 0} = m+ 1

#{x ∈ B(0, R) | g(x) = 0 and det(Dg(x)) < 0} = m

so that #(g−1({0}) ∩B(0, R)) = 2m+ 1, which proves b). �
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5.1. Proof of Theorem 2.3. The map Ft is continuous, being the composition of
the continuous maps y 7→ (y, U in(y)) and (x, ξ) 7→ Xt(x, ξ). By the first inequality
in Lemma 4.1 and the condition (11) on U in, for each η > 0, one has

lim
|y|→+∞

sup
|t|≤T

|Ft(y)− y|
|y| ≤ η ,

which is precisely the estimate in statement (a).
This estimate implies

(32) (Ft(y)− x|y) = |y|2 + o(|y|2) as |y| → +∞ ,

so that Ft is onto by applying statement (a) in Lemma 5.1 to the map g : y 7→
Ft(y)− x.

It also implies

|Ft(y)| → +∞ as |y| → +∞
so that Ft is proper. This establishes statement (a).

By the second estimate in Lemma 4.1

(33) |DxXt(y, U
in(y)) +DξXt(y, U

in(y)) ·DU in(y)| ≤ eκ|t| + (eκ|t| − 1)|DU in(y)|
so that

(34)
Jt(y) = | det(DxXt(y, U

in(y)) +DξXt(y, U
in(y)) ·DU in(y))|

≤ eNκ|t|(1 + (1− e−κ|t|)|DU in(y)|)N

by Hadamard’s inequality. Since U in satisfies (12) and since LN,1(B(0, R)) ⊂
LN(B(0, R)) for each R > 0, this inequality implies statement (b).

Since the map Ft is proper by statement (a), the set Kt,m = F−1
t (B(0,m)) is

compact for each m ∈ N∗. Applying the area formula (Theorem 3.4 in [10] and
Theorem A in [6]), one has

∫

RN

#(F−1
t ({x}) ∩Kt,m)dx =

∫

Kt,m

Jt(y)dy < +∞ .

Therefore #F−1
t ({x}) <∞ for a.e. x ∈ B(0,m), i.e. for all x ∈ B(0,m) \Em with

L N (Em) = 0. Thus

#F−1
t ({x}) <∞ for all x ∈ RN \

⋃

m≥1

Em

and

L
N


 ⋃

m≥1

Em


 ≤

∑

m≥1

L
N (Em) = 0 ,

which is statement (c).
Next we prove statement (d). Let R > 0; applying again the area formula shows

that ∫

RN

NR(t, x)dx =

∫

B(0,R)

Jt(y)dy .

By the Bienaymé-Chebyshev inequality, for each n ≥ 1

L
N
(
{x ∈ RN s.t. NR(t, x) ≥ n}

)
≤ 1

n

∫

B(0,R)

Jt(y)dy .
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In view of (34), one has
∫

B(0,R)

Jt(y)dy ≤ eNκ|t|

∫

B(0,R)

(1 + (1− e−κ|t|)|DU in(y)|)Ndy

≤ eNκ|t|‖1 + |DU in(y)|‖NLN(B(0,R)) .

With the inequality above, this is precisely the estimate in statement (d).
Let m ∈ N∗ and Bt,m = (Zt ∪ E) ∩Kt,m with Zt as in (16) and Kt,m as in the

proof of statement (c). Thus the set Bt,m is measurable and bounded. Applying
the area formula as in the proof of statement (c) shows that

∫

RN

#(F−1
t ({x}) ∩Bt,m)dx =

∫

Bt,m

Jt(y)dy = 0

since Jt(y) = 0 for all y ∈ Bt,m \ E, i.e. for a.e. y ∈ Bt,m. By the Bienaymé-
Chebyshev inequality,

L
N ({x ∈ RN s.t. #(F−1

t ({x}) ∩Bt,m) ≥ 1}) = 0

and therefore

L
N (Ct) = L

N({x ∈ RN s.t. F−1
t ({x}) ∩ (Zt ∪ E) 6= ∅})

= L
N({x ∈ RN s.t. #(F−1

t ({x}) ∩ (Zt ∪ E)) ≥ 1})
≤
∑

m≥1

L
N ({x ∈ RN s.t. #(F−1

t ({x}) ∩Bt,m) ≥ 1}) ,

which is precisely statement (e).
Next consider the continuous map

F : [−T, T ]×RN ∋ (t, y) 7→ F (t, y) ∈ RN .

In view of statement (a), |F (t, y)| → ∞ as |y| → +∞ uniformly in t ∈ [−T, T ].
Therefore, the set Km := F−1(B(0,m)) is compact for each m ∈ N∗. Besides, for
each t ∈ [−T, T ] and each y ∈ RN \ E, the Jacobian DF (t, y) is the column-wise
partitioned matrix

DF (t, y) = [V (t, y) , M(t, y)] ,

with

V (t, y) = ∇ξH(Φt(y, U
in(y)))

and

M(t, y) := DxXt(y, U
in(y)) +DξXt(y, U

in(y))DU in(y) .

Therefore,

DF (t, y)DF (t, y)T = V (t, y)V (t, y)T +M(t, y)M(t, y)T

so that, by the co-area formula (Theorem 1.3 in [11])
∫

RN

H
1(F−1({x}) ∩Km)dx

=

∫

Km

√
det(V (t, y)V (t, y)T +M(t, y)M(t, y)T )dtdy .
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By Lemma 4.1, (t, x, ξ) 7→ Φt(x, ξ) is of class C
1 on R×RN ×RN , so that the map

(t, y) 7→ V (t, y) is continuous on R ×RN , and therefore bounded on the compact
Km. On the other hand, by (33)

sup
|t|≤T

|M(t, y)| ≤ eκT + (eκT − 1)|DU in(y)| ∈ LN
loc(R

N ) ,

since U in satisfies (12). Denoting

K ′
m := {y ∈ RN | there exists t ∈ [−T, T ] s.t. (t, y) ∈ Km}

which is compact in RN (being the projection of the compact Km on the second
factor in R×RN ), one has

‖V V T +MMT‖N/2

LN/2(KR)
≤ 2N/2−1‖V ‖NL∞(KR)L

N+1(KR) + 2N/2T ‖M‖NLN(K′
R)

<∞ .

Therefore, H 1(F−1({x})∩Km) < +∞ is finite for a.e. x ∈ B(0,m) for eachm ≥ 1,

i.e. for all x ∈ B(0,m) \ E′
m with L N (E′

m) = 0. Since this is true for all m ∈ N∗,
one concludes that

H
1(F−1({x})) < +∞ for all x ∈ RN \


 ⋃

m≥1

E′
m


 ,

and

L
N


 ⋃

m≥1

E′
m


 ≤

∑

m≥1

L
N (E′

m) = 0 ,

which is statement (f). The proof is complete.

5.2. Proof of Corollary 2.4. By statement (a) of Theorem 2.3, MT (R) → 0 as
R→ ∞. Therefore there exists R∗

T > 0 such that MT (R
∗
T ) <

1
2 . Since the function

MT is nonincreasing by construction, MT (R) ≤ 1
2 for all R ≥ R∗

T . Therefore, if
R ≥ R∗

T , then

|y| ≥ R⇒ ||Ft(y)| − |y|| ≤ |Ft(y)− y| ≤ 1
2 |y| ⇒ |Ft(y)| ≥ 1

2 |y|
for all t ∈ [−T, T ], so that

Ft(R
N \B(0, R)) ⊂ RN \B(0, 12R) .

In other words, if t ∈ [−T, T ] and if R ≥ R∗
T , then

F−1
t ({x}) ⊂ B(0, R) for all x ∈ B(0, 12R) ,

so that

|t| ≤ T and |x| ≤ 1
2R ⇒ N (t, x) = NR(t, x) .

This proves statement (a).
Thus, for each t ∈ [−T, T ],

L
N
(
{x ∈ B(0, 12R) s.t. N (t, x) ≥ n}

)

= L
N
(
{x ∈ B(0, 12R) s.t. NR(t, x) ≥ n}

)

≤ L
N
(
{x ∈ RN s.t. NR(t, x) ≥ n}

)
,

and we conclude by statement (d) in Theorem 2.3.
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5.3. Proof of Theorem 2.5. Since U in is of class C1 onRN , the map Ft is of class
C1 on RN for each t ∈ R, being the composition of the C1 maps (x, ξ) 7→ Xt(x, ξ)
and y 7→ (y, U in(y)). In particular, the nondifferentiability set in (13) is E = ∅ so
that the caustic fiber Ct reduces to

Ct = {x ∈ RN s.t. F−1
t ({x}) ∩ Zt 6= ∅} = Ft(Zt) .

Since Ft is of class C
1 on RN , the absolute value of its Jacobian determinant Jt is

continuous on RN , and therefore Zt = J−1
t ({0}) is closed in RN . By statement (a)

in Theorem 2.3, the continuous map Ft is proper; therefore Ct = Ft(Zt) is closed
in RN , being the image of a closed set by a continuous and proper map on RN .
This proves statement (a).

Let t ∈ R. For each x ∈ RN , the set F−1
t ({x}) is compact since Ft is proper. If

moreover x ∈ RN \ Ct, all the solutions of the equation Ft(y)− x = 0 are isolated
by the implicit function theorem. Therefore the set F−1

t ({x}) is finite for each
x ∈ RN \Ct. Besides, the implicit function theorem implies that the integer-valued
counting function N is a locally constant function of (t, x) ∈ R × RN \ C. Thus
the counting function N is constant on each connected component of R×RN \C.
This completes the proof of statement (b).

Let j ∈ N∗, and let Ω be a connected component of R × RN \ C such that
N (t, x) = n ≥ j for all (t, x) ∈ Ω. Then the implicit function theorem implies that,
for all (t, x) ∈ Ω, the set of solutions y of the equation Ft(y)−x = 0 takes the form
{yk(t, x) | 1 ≤ k ≤ n}, and one has yk ∈ C1(Ω) for all k = 1, . . . , n. This proves
statement (c).

Assume inf{t > 0 |Ct 6= ∅} = 0. Then, there exists (tn, xn, yn) such that

tn → 0+ , Ftn(yn) = xn , and Jtn(yn) = 0 .

Assume that some subsequence ynk
of the sequence yn is bounded. Up to further

extraction of a subsequence, one can assume that ynk
→ y, so that 0 = Jtnk

(ynk
) →

J0(y). But since F0 = IdRN , one has J0(y) = 1. Therefore |yn| → +∞. By the
second inequality in Lemma 4.1

|DxXtn(yn, U
in(yn))− IdRN | ≤ eκ|tn| − 1 ,

|DξXtn(yn, U
in(yn)) ·DU in(yn)| = O

(
eκ|tn| − 1

)
,

so that

0 = Jtn(yn) = | det(DxXtn(yn, U
in(yn)) +DξXtn(yn, U

in(yn)) ·DU in(yn))|
→ | det(IdRN )| = 1 as n→ ∞ .

Thus the assumption tn → 0 leads to a contradiction. Therefore,

inf{t > 0 |Ct 6= ∅} = b > 0 .

By the same token,

sup{t < 0 |Ct 6= ∅} = a < 0 .

Thus (a, b)×RN is contained in the connected component of {0}×RN inR×RN\C.
Since F0 = IdRN , one has N (0, x) = 1 for all x ∈ RN , and since N is constant
on each connected component of R × RN \ C, one concludes N = 1 on the strip
(a, b)×RN , which proves statement (d).

As for statement (e), it follows from the inequality (32) implied by statement
(a) in Theorem 2.3 and from statement (b) in Lemma 5.1 applied to the map
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g : y 7→ Ft(y)− x. Indeed, 0 is a regular value of this map since it is assumed that
x ∈ RN \ Ct. The proof is complete.

6. Proofs of Theorems 2.7, 2.8 and 2.9

6.1. Proof of Theorem 2.7. For each t ∈ R, the Borel measure ρ(t) is a proba-
bility measure on RN , so that ρ(t)(Ct) = 0 if and only if ρ(t)(RN \Ct) = 1. Next,
observe that

(35) ρ(t) = Π#µ(t) = Π#(Φt#µ
in) = Xt#µ

in = Ft#(ρinL
N )

since µin is a monokinetic measure with density ρin and momentum profile U in

while Ft(y) = Xt(y, U
in(y)). Thus

ρ(t)(Ct) = ρinL
N (F−1

t (Ct)) =

∫

Zt

ρin(y)dy = 0

if and only if ρin = 0 a.e. on Zt, which proves statement (a).
Assume that ρin = 0 a.e. on Zt, and consider the measurable function defined

a.e. on RN by the formula

(36) b(y) :=





ρin(y)

Jt(y)
for a.e. y ∈ Pt ,

0 for each y /∈ Pt .

With this definition, one has

ρinL
N = bJtL

N .

In particular ρinL N ≪ JtL
N , so that the class of the measurable function b

modulo equality JtL
N -a.e. is the unique element of L1(RN ; JtL

N ) such that the
equality above holds, by the Radon-Nikodym theorem (Theorem 6.10 in [14]).

Let χ ∈ Cc(R
N). By (35) and the area formula (see Theorem 3.4 in [10] and

Theorem A in [6])

〈ρ(t), χ〉 = 〈Ft#(ρinL
N ), χ〉 =

∫

RN

χ(Ft(y))ρ
in(y)dy

=

∫

RN

χ(Ft(y))b(y)Jt(y)dy

=

∫

RN


 ∑

y∈F−1

t ({x})

b(y)


χ(x)dx .

By Theorem 2.3 (c), the set F−1
t ({x}) is finite for a.e. x ∈ RN , so that the formula

β(x) :=
∑

y∈F−1

t ({x})

b(y)

gives a measurable function β defined a.e. on RN , and ρ(t) = βL N . In particular

ρ(t) ≪ L
N , and

dρ(t)

dL N
= β a.e. on RN .

In view of the formula giving b, this is precisely statement (b).
Let ψ ∈ Cc(R

N
x ×RN

ξ ). Then

〈µ(t), ψ〉 = 〈µin, ψ ◦ Φt〉 =
∫

RN

ψ(Ft(y),Ξt(y, U
in(y)))ρin(y)dy .
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In terms of the function b defined above, one has

〈µ(t), ψ〉 =
∫

RN

ψ(Ft(y),Ξt(y, U
in(y)))b(y)Jt(y)dy

and applying the area formula as above shows

〈µ(t), ψ〉 =
∫

RN


 ∑

y∈F−1

t ({x})

b(y)ψ(x,Ξt(y, U
in(y)))


 dx

=

∫

RN


 ∑

y∈F−1

t ({x})

b(y)〈δΞt(y,Uin(y)), ψ(x, ·)〉


 dx .

This shows that µ(t) has a disintegration with respect to the Lebesgue measure
L N

x on RN
x and the canonical projection Π given by

µ(t, x, ·) :=
∑

y∈F−1

t ({x})

b(y)δΞt(y,Uin(y)) for a.e. x ∈ RN .

(Notice that the set F−1
t ({x}) is finite for a.e. x ∈ RN by Theorem 2.3 (c).) In

view of the formula defining the measurable function b, this last equality is precisely
the conclusion in statement (c). The proof is complete.

6.2. Proof of Theorem 2.8. Let ψ ∈ Cc(R
N
x ×RN

ξ ) satisfy supp(ψ) ∩ Λt = ∅.
Then

〈µ(t), ψ〉 = 〈Φt#µ
in, ψ〉 = 〈µin, ψ ◦ Φt〉 =

∫

RN

ψ(Φt(y, U
in(y)))ρin(y)dy = 0 .

Indeed

supp(ψ) ∩ Λt = ∅ ⇒ ψ(Λt) = {0} ⇒ ψ ◦ Φt(Λ
in) = {0}

⇒ ψ(Φt(y, U
in(y))) = 0 for all y ∈ RN .

Since 〈µ(t), ψ〉 = 0 for each ψ ∈ Cc(R
N
x ×RN

ξ ) such that supp(ψ) ∩ Λt = ∅, one

concludes that supp(µ(t)) ⊂ Λt, which is statement (a).
Since L N (E) = 0, one has ρin = ρin1Pt + ρin1Zt a.e. in RN , and therefore

ρ(t) = ρa(t) + ρs(t) with ρa(t) := Ft#(ρin1PtL
N ) and ρs(t) := Ft#(ρin1ZtL

N ) .

By statement (b) in Theorem 2.7, one has ρa(t) ≪ L
N .

Let us check that ρs(t) is carried by Ct. Let A ⊂ RN ; then

A ∩ Ct = ∅ ⇒ F−1
t (A) ∩ Zt ⊂ F−1

t (A) ∩ (Zt ∪ E) = ∅ ,

and

ρs(t)(A) =

∫

F−1

t (A)∩Zt

ρin(y)dy = 0 .

Hence ρs(t) is carried by Ct, and since L N (Ct) = 0 by statement (e) in Theorem
2.3, we conclude that ρs(t) ⊥ L N . Thus, with ρa(t) and ρs(t) so defined, one has

ρa(t) ≪ L
N , ρs(t) ⊥ L

N , and ρ(t) = ρa(t) = ρs(t) .

Thus the pair (ρa(t), ρs(t)) is the Lebesgue decomposition of ρ(t) with respect
to L N , which is precisely statement (b). (For the uniqueness of the Lebesgue
decomposition, see Theorem 6.10 (a) in [14].) This completes the proof of Theorem
2.8.
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6.3. Proof of Theorem 2.9. If x ∈ At, then L N (F−1
t ({x}) ∩ Zt) > 0; hence

∅ 6= F−1
T ({x})∩Zt ⊂ F−1

T ({x})∩ (Zt ∪E) so that x ∈ Ct, which proves statement
(a).

Using (35) and the Lebesgue decomposition in statement (b) of Theorem 2.8
shows that, for each x ∈ RN

ρa(t)({x}) = 0 and therefore ρ(t)({x}) = ρs(t)({x}) = (ρin1ZtL
N )(F−1

t ({x})) .
In other words

ρ(t)({x}) =
∫

F−1

t ({x})∩Zt

ρin(y)dy

Hence

ρ(t)({x}) > 0 ⇒ L
N (F−1

t ({x}) ∩ Zt) > 0 ⇒ x ∈ At .

Conversely, assume that ρin > 0 a.e. on Zt. The expression above for ρ(t)({x})
shows that

0 = ρ(t)({x}) =
∫

Zt

ρin(y)1F−1

t ({x})(y)dy ⇒ 1F−1

t ({x})(y) = 0 for a.e. y ∈ Zt .

In other words, L N (F−1
t ({x}) ∩ Zt) = 0 and therefore x /∈ At. This proves state-

ment (b).
Let ρin be a probability density such that ρin > 0 a.e. on Zt. By statement (b),

At = {x ∈ RN | ρ(t)({x}) > 0} =
⋃

n≥1

{
x ∈ RN | ρ(t)({x}) ≥ 1

n

}
.

By the Bienaymé-Chebyshev theorem

#

{
x ∈ RN | ρ(t)({x}) ≥ 1

n

}
≤ nρ(t)(RN ) = n

so that At is countable, being a denumerable union of finite sets. This proves
statement (c) and concludes the proof of Theorem 2.9.

7. Proof of Theorem 2.10

Denote gǫ(x) := (πǫ)−N/2e−|x|2/ǫ and Gǫ(x, ξ) := gǫ(x)gǫ(ξ). Then, one has

Gǫ(x0 − x, ξ0 − ξ) =Wǫ[Ψ
x0,ξ0
ǫ ](x, ξ) ,

where

Ψx0,ξ0
ǫ (x) := (πǫ)−N/4e−|x−x0|

2/2ǫeiξ0·x/ǫ .

Along with the Wigner transform Wǫ[ψǫ(t, ·)], consider the Husimi transform

W̃ǫ[ψǫ(t, ·)] =Wǫ[ψǫ(t, ·)] ⋆x,ξ Gǫ .

A straightforward computation shows that, for each x0, ξ0 ∈ RN and each ǫ > 0,

W̃ǫ[ψǫ(t, ·)](x0, ξ0) =
∫∫

RN×RN

Wǫ[ψǫ(t, ·)](x, ξ)Wǫ[Ψ
x0,ξ0
ǫ ](x, ξ)dxdξ

=
1

(2πǫ)N
|〈Ψx0,ξ0

ǫ |ψǫ(t, ·)〉|2 ≥ 0 ,



26 C. BARDOS, F. GOLSE, P. MARKOWICH, AND T. PAUL

Therefore

(37)

∫

RN

W̃ǫ[ψǫ(t, ·)](x0, ξ0)dξ0 = (gǫ ⋆ |ψǫ(t, ·)|2)(x0) and
∫

RN

W̃ǫ[ψǫ(t, ·)](x0, ξ0)dx = (gǫ ⋆ |Fǫψǫ(t, ·)|2)(ξ0) ,

while

(38)

∫∫

RN×RN

W̃ǫ[ψǫ(t, ·)](x0, ξ0)dx0dξ0 =

∫∫

RN×RN

|〈Ψx0,ξ0
ǫ |ψǫ(t, ·)〉|2

dx0dξ0
(2πǫ)N

=

∫

RN

gǫ ⋆ |ψǫ(t, ·)|2(x0)dx0 = ‖gǫ‖L1(RN )‖ψǫ(t, ·)‖2L2(RN ) = 1 ,

where the penultimate equality follows from the conservation of the L2 norm under
the Schrödinger group.

On the other hand

(39)

∫∫

RN×RN

µ(t, dxdξ) =

∫∫

RN×RN

µ(0, dxdξ) = ‖ain‖L2(RN ) = 1

since µ(t) is the push-forward of the probability measure µ(0) under the Hamilton-
ian flow of 1

2 |ξ|2 + V (x).

Since W̃ǫ[ψǫ(t, ·)] ≥ 0 and

(40)

∫∫

RN×RN

W̃ǫ[ψǫ(t, ·)](x, ξ)χ(x, ξ)dxdξ →
∫∫

RN×RN

χ(x, ξ)µ(t, dxdξ)

for each χ ∈ Cc(R
N × RN ) by Theorem III.1 (1) in [8], we conclude from (38)-

(39) that the convergence (40) holds for each χ ∈ Cb(R
N ×RN ) (see for instance

Theorem 6.8 in chapter II of [9]).
On the other hand, for each χ ∈ C1

b (R
N )

∣∣∣∣
∫

RN

χ(x)(|ψǫ(t, x)|2 − |ψǫ(t, ·)|2 ⋆ gǫ(x))dx
∣∣∣∣

≤
∫

RN

|χ(x)− χ ⋆x gǫ(x)||ψǫ(t, x)|2dx

≤ √
ǫ‖∇χ‖L∞

∫

RN

|y|g1(y)dy → 0 ,

and likewise ∣∣∣∣
∫

RN

χ(ξ)(|Fǫψǫ(t, ξ)|2 − |Fǫψǫ(t, ·)|2 ⋆ gǫ(ξ))dξ
∣∣∣∣→ 0 .

We conclude from (37) and (40) that, for each χ ∈ C1
b (R

N)

(41)

∫

RN

χ(x)|ψǫ(t, x)|2dx→
∫∫

RN×RN

χ(x)µ(t, dxdξ)

∫

RN

χ(ξ)|Fǫψǫ(t, ξ)|2dξ →
∫∫

RN×RN

χ(ξ)µ(t, dxdξ)

as ǫ→ 0. On the other hand,

1 =

∫

RN

|ψǫ(t, x)|2dx =

∫

RN

|Fǫψǫ(t, ξ)|2dξ =
∫

RN×RN

µ(t, dxdξ)

so that (41) holds for each χ ∈ Cb(R
N ) by a standard density argument.
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If χ(Ft(y))ρ
in(y) = 0 for a.e. y ∈ Zt, one has

∫∫

RN×RN

χ(x)µ(t, dxdξ) =

∫

RN

χ(x)ρ(t, dx) =

∫

RN

χ(Ft(y))ρ
in(y)dy

=

∫

RN

χ(Ft(y))ρ
in(y)1Pt(y)dy =

∫

RN

χ(x)ρa(t, dx)

by Theorem 2.8. With the first convergence statement in (41) and Theorem 2.7
(b), this equality implies statement (a).

If χ(Ξt(y, U
in(y)))ρin(y) = 0 for a.e. y ∈ Zt, one has

∫∫

RN×RN

χ(ξ)µ(t, dxdξ) =

∫∫

RN×RN

χ(Ξt(y, η))µ
in(dydη)

=

∫

RN

χ(Ξt(y, U
in(y)))ρin(y)dy

=

∫

RN

χ(Ξt(y, U
in(y)))ρin(y)1Pt(y)dy .

With the second convergence statement in (41) and Theorem 2.7 (c), this equality
implies statement (b) and completes the proof of Theorem 2.10.

8. Discussion of the examples

In this section, we prove some of the statements in the examples presented in
section 3.

Example 3.1 is based on classical material on the Cantor function which can be
found for instance in Exercise 1.6.47 of [17]. Example 3.2 is based on a straightfor-
ward computation and therefore needs no further discussion.

Examples 3.3 and 3.4 are more involved and require detailed proofs.

8.1. Proof of the statements in Example 3.3. By regularity of the Lebesgue
measure L 1, there exists a compact set K ⊂ (0, 1) \Q such that 1

2 < L 1(K) ≤ 1.
Let Ω = (0, 1)\K; since Ω is open in (0, 1) and contains (0, 1)∩Q, it is a countably
infinite union of disjoint nonempty open intervals:

Ω =
⋃

n∈N

In , so that L
1(Ω) =

∑

n∈N

L
1(In) .

Besides L 1(In) > 0 for each n ∈ N (indeed each In is an open interval that contains
at least one rational), so that λ := L 1(Ω) > 0. For each n ≥ 1, we denote by an
and bn the endpoints of In, so that In = (an, bn).

Let χ ∈ C∞(R) satisfy the following properties:

supp(χ) ⊂ [−1, 1] , and χ(x) > 0 for all x ∈ (−1, 1) .

Let k ≥ 1; define

gn(z) := (bn − an)
kχ

(
2x− an − bn
bn − an

)
.
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Observe that, for each j = 1, . . . , k − 1, one has
∑

n≥0

‖g(j)n ‖L∞(R) = ‖χ(j)‖L∞(R)

∑

n≥0

2j(bn − an)
k−j

≤ 2j‖χ(j)‖L∞(R)

∑

n≥0

(bn − an)

= 2j‖χ(j)‖L∞(R)L
1(Ω) ≤ 2j‖χ(j)‖L∞(R) ,

so that

g :=
∑

n≥0

gn ∈ Ck−1
b (R) .

Pick h ∈ C∞(R) s.t.

h
∣∣
[0,1]

≡ 0 , h
∣∣
(−∞,−1]∪[2,+∞)

≡ 1 and h > 0 on R \ [0, 1] ,
and set f := g + h. Define

U in(y) :=

∫ y

0

f(z)dz − y for each y ∈ R .

By construction U in ∈ Ck(R), and one has

U in(y) :=





1−
∫ 0

−1

h(z)dz for y < −1 ,

∫ 2

1

h(z)dz +

∫ 1

0

g(z)dz − 2 for y > 2 ,

so that U in ∈ Ck
b (R) and therefore satisfies the sublinearity condition (11).

With H(x, ξ) = 1
2ξ

2 so that Φt(x, ξ) = (x+ tξ, ξ), one has Ft(y) := y + tU in(y)
so that, for t = 1,

F1(y) =

∫ y

0

f(z)dz for each y ∈ R .

8.1.1. Proof of statement (a). Observe that F1 ∈ Ck(R) and that F ′
1(y) = h(y) > 0

for each y ∈ (−∞, 0) ∪ (1,+∞). On the other hand, for each y1, y2 ∈ [0, 1] such
that y1 < y2, the nonempty open interval (y1, y2) ⊂ (0, 1) contains at least one
rational point. Therefore, (y1, y2) ∩ Ω 6= ∅. In particular, there exists a nonempty
open interval (α, β) ⊂ Ω ∩ (y1, y2). Therefore 0 < α < β < 1 and

F1(y2)− F1(y1) ≥
∫ β

α

g(y)dy > 0 .

Therefore F1 is increasing on R. In particular, F1 is one-to-one.
On the other hand F1(y) ∼ y as |y| → ∞ since U in is bounded on R. In

particular

F1(y) → −∞ as y → −∞ , and F1(y) → +∞ as y → +∞ .

Since F1 is continuous on R, it is onto by the intermediate values theorem.

8.1.2. Proof of statement (b). By construction F ′
1(y) = h(y) > 0 if y < 0 or if y > 1.

On the other hand, for each y ∈ [0, 1], one has F ′
1(y) = g(y), so that F ′

1(y) > 0 for
all y ∈ Ω, while F ′

1(y) = 0 whenever y ∈ K ∪ {0, 1}.
Since F1 is one-to-one, the set of critical values of F1, i.e. the caustic fiber C1 at

time t = 1 is C1 = F1(K ∪ {0, 1}).
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8.1.3. Conclusion. Set ρin = 1
1−λ1K and ρ(t) = Ft#(ρinL 1) for each t ∈ R. In

particular ρ(1) = F1#ρ
in and

1 = ρ(1)(R) ≥ ρ(1)(C1) = ‖ρin‖L1 =
1

1− λ
L

1(K) = 1 .

Since L 1(C1) = 0 by Sard’s theorem and ρ(1) is a probability measure supported
in C1, we conclude that

ρ(1) ⊥ L
N .

On the other hand, since F1 is one-to-one and onto, for each x ∈ R, one has
#F−1

1 ({x}) = 1. In particular, for each x ∈ C1 = F1(K), one has

F−1
1 ({x}) ⊂ (F ′

1)
−1({0})

so that

#(F−1
1 ({x}) ∩ (F ′

1)
−1({0})) = #F−1

1 ({x}) = 1 .

In particular, for each x ∈ C1,

(ρinL
1)(F−1

1 ({x}) ∩ (F ′
1)

−1({0})) = 0 ,

which means that x /∈ A1.
On the other hand, one has ρin > 0 on K and therefore a.e. on Z1 = K ∪{0, 1}.

By statement (b) in Theorem 2.9, one has

ρ(1)({x}) = 0 .

Hence ρ(1) ⊥ L 1 and is diffuse, with ρ(1)(C1) = 1.

8.2. Proof of the statements in Example 3.4. We begin with the following
lemma, which is the key in understanding how the map F1 acts on [0, 1]. Obviously

F1(y) = y + U in(y) =





y if y /∈ [0, 1] ,

1

θ
L

1(Ω(θ) ∩ (0, y)) if y ∈ (0, 1) .

Lemma 8.1. Consider the transformations

H : [0, 1] ∋ z 7→ θz ∈ [0, 1] , and S : [0, 1] ∋ z 7→ 1− z ∈ [0, 1] .

a) One has F1 ◦H = H ◦ F1 and F1 ◦ S = S ◦ F1 on [0, 1].

b) The sequence of interval centers am,k satisfies

F1(am,k) = am,k for all m ≥ 1 and k = 1, . . . , 2m−1 .

Proof of Lemma 8.1. Obviously [0, 1] \ E1 = (θ, 1 − θ) =: I1,1 so that

a1,1 = 1
2 .

The interval centers am,k satisfy the following induction relations
{
am+1,k = H(am,k) , 1 ≤ k ≤ 2m−1 ,

am+1,k = S(am+1,2m+1−k) , 2m−1 + 1 ≤ k ≤ 2m .

Therefore {
Im+1,k = H(Im,k) , 1 ≤ k ≤ 2m−1 ,

Im+1,k = S(Im+1,2m+1−k) , 2m−1 + 1 ≤ k ≤ 2m ,
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and {
Jm+1,k = H(Jm,k) , 1 ≤ k ≤ 2m−1 ,

Jm+1,k = S(Jm+1,2m+1−k) , 2m−1 + 1 ≤ k ≤ 2m .

In particular

Ω(θ) = H(Ω(θ)) ∪ S ◦H(Ω(θ)) , H(Ω(θ)) ∩ S ◦H(Ω(θ)) = ∅ .

Thus, for each z ∈ [0, 1], one has

Ω(θ) ∩ (0, H(z)) ⊂ [0, θ]

so that

Ω(θ) ∩ (0, H(z)) = H(Ω(θ)) ∩ (0, H(z)) = H(Ω(θ) ∩ (0, z)) ,

and therefore

F1(H(z)) =
1

θ
L

1(Ω(θ) ∩ (0, H(z))) =
1

θ
L

1(H(Ω(θ) ∩ (0, z)))

= L
1(Ω(θ) ∩ (0, z)) = θF1(z) = H(F1(z)) .

Likewise, for each z ∈ [0, 1],

Ω(θ) ∩ (S(z), 1) = Ω(θ) ∩ S(0, z) = S(Ω(θ)) ∩ S((0, z)) = S(Ω(θ) ∩ (0, z)) ,

so that

F1(S(z)) =
1

θ
L

1(Ω(θ) ∩ (0, S(z))) =
1

θ
L

1(Ω(θ)) − 1

θ
L

1(Ω(θ) ∩ [S(z), 1))

= 1− 1

θ
L

1(Ω(θ) ∩ (S(z), 1)) = 1− 1

θ
L

1(S(Ω(θ) ∩ (0, z)))

= 1− F1(z) = S(F1(z)) .

This proves statement (a).
As for statement (b), we first observe that a1,1 = 1

2 = S(12 ) = S(a1,1). Therefore

F (a1,1) = F (S(a1,1)) = 1− F (a1,1) so that F (a1,1) =
1
2 = a1,1 .

This observation, together with the induction relations on the sequence of am,k and
the commutation properties of F1 with H and S, implies that each interval center
am,k is a fixed point of F1. �

8.3. Proof of statement (a) in Example 3.4. The vector field U in is Lipschitz
continuous on [0, 1] (as the antiderivative of the bounded measurable function 1

θ1Ω−
1). Its extension by 0 to the R\[0, 1] is Lipschitz continuous on R since L

1(Ω) = θ.
The function F1 : R ∋ y 7→ y+U in(y) ∈ R is therefore Lipschitz continuous. It is

nondecreasing on R (as the antiderivative of the nonnegative measurable function
1(−∞,0)∪(1,+∞) +

1
θ1Ω(θ)). Since Ω(θ) is an open subset of (0, 1), the map F1 is

differentiable on (−∞, 0) ∪ Ω(θ) ∪ (1,+∞) and one has

F ′
1(y) =

{
1 if y ∈ (−∞, 0) ∪ (1,+∞) ,

1/θ if y ∈ Ω(θ) .

In particular, F ′
1 > 0 on (−∞, 0)∪Ω(θ) ∪ (1,+∞). Since we already know that F1

is nondecreasing on R, we infer that the map F1 is increasing on (−∞, 0) ∪Ω(θ) ∪
(1,+∞). This proves statement (a).
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8.4. Proof of statement (b) in Example 3.4. Observe that F1(am,k) = am,k

for all m ≥ 1 and all k = 1, . . . , 2m−1, while F ′
1(y) =

1
θ for all y ∈ Ω(θ). Therefore

F1(Jm,k) = Im,k, and

F1(Ω(θ)) =
⋃

1≤k≤2m−1

m≥1

Im,k = [0, 1] \K(θ) .

Since F1 coincides with the identity map on (−∞, 0) and on (1,+∞), we conclude

F1((−∞, 0) ∪Ω(θ) ∪ (1,+∞)) = R \K(θ) .

Since F1 is continuous and F1(y) → ±∞ as y → ±∞, we conclude that F1 is onto
by the intermediate values theorem. Therefore

F1(K̃(θ)) = K(θ)

which concludes the proof of statement (b).

8.5. Proof of statement (c) in Example 3.4. Set

O(θ) := [0, 1] \K(θ) =
⋃

1≤k≤2m−1

m≥1

Im,k

so that
⋃

1≤k≤2m−1

m≥1

((am,k − rm, am,k − θrm) ∪ (am,k + θrm, am,k + rm))

⊂ O(θ) \ Ω(θ) ⊂ [0, 1] \ Ω(θ) = K̃(θ) .

By Lemma 8.1, one has F1(am,k) = am,k for each m ≥ 1 and each k = 1, . . . , 2m−1;
besides,

y ∈ Jm,k ⊂ Ω(θ) ⇒ F ′
1(y) =

1

θ
, while y ∈ Im,k \ Jm,k ⊂ K̃(θ) ⇒ F ′

1(y) = 0 .

Hence
{
F ′
1(y) = F ′

1(am,k − θrm) = am,k − rm for all y ∈ (am,k − rm, am,k − θrm) ,

F ′
1(y) = F ′

1(am,k + θrm) = am,k + rm for all y ∈ (am,k + θrm, am,k + rm) .

Thus, for each φ ∈ Cc(R
N ×RN )

∫∫

RN×RN

φ(x, ξ)µ(1, dxdξ) =

∫∫

RN×RN

φ(y + ξ, ξ)µin(dxdξ)

=
1

1− θ

∫

K̃(θ)

φ(F1(y), U
in(y))dy

=
1

1− θ

∫

K̃(θ)

φ(F1(y), F1(y)− y)dy .
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If φ(x, ξ) ≥ 0 for all x, ξ ∈ RN , one has

∫∫

RN×RN

φ(x, ξ)µ(1, dxdξ) ≥ 1
1−θ

∑

m≥1

2m−1∑

k=1

∫ am,k−θrm

am,k−rm

φ(F1(y), F1(y)− y)dy

+ 1
1−θ

∑

m≥1

2m−1∑

k=1

∫ am,k+rm

am,k+θrm

φ(F1(y), F1(y)− y)dy

≥ 1
1−θ

∑

m≥1

2m−1∑

k=1

∫ am,k−θrm

am,k−rm

φ(am,k − rm, am,k − rm − y)dy

+ 1
1−θ

∑

m≥1

2m−1∑

k=1

∫ am,k+rm

am,k+θrm

φ(am,k + rm, am,k + rm − y)dy

= 1
1−θ

∑

m≥1

2m−1∑

k=1

(∫ 0

−(1−θ)rm

φ(am,k − rm, z)dz +

∫ (1−θ)rm

0

φ(am,k + rm, z)dz

)
.

Thus

µ(1) ≥ 1

1− θ

∑

m≥1

2m−1∑

k=1

(δam,k−rm ⊗ 1(−(1−θ)rm,0) + δam,k+rm ⊗ 1(0,(1−θ)rm)) .

On the other hand
〈

1

1− θ

∑

m≥1

2m−1∑

k=1

(δam,k−rm ⊗ 1(−(1−θ)rm,0) + δam,k+rm ⊗ 1(0,(1−θ)rm)), 1

〉

=
1

1− θ

∑

m≥1

2m−1∑

k=1

2(1− θ)rm =
∑

m≥1

2m−1∑

k=1

2rm =
∑

m≥1

2m−1∑

k=1

2 1
2 (1 − 2θ)θm−1

= (1− 2θ)
∑

m≥1

2m−1∑

k=1

θm−1 = (1− 2θ)
∑

m≥1

2m−1θm−1 = 1 .

Since ∫∫

RN×RN

µ(1, dxdξ) = 1 ,

the inequality above is in fact an equality, which is precisely statement (c).

8.6. Proof of statement (d) in Example 3.4. Observe that

ρ(1) = Π#µ(1) =
∑

m≥1

rm

2m−1∑

k=1

(δam,k−rm + δam,k+rm ,

which gives the first equality in statement (d), since rm = 1
2 (1 − 2θ)θm−1. Thus

ρ(1)(RN ) = µ(1)(RN ×RN ) = µin(RN ×RN ) =

∫

RN

ρin(y)dy = 1

and

supp(ρ(1)) = {am,k ± rm , |m ≥ 1 , k = 1, . . . , 2m−1} ⊂ K(θ) .

Since L
1(K(θ)) = 0, this implies that ρ(1)⊥L

1.
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It remains to prove that

K(θ) ⊂ {am,k ± rm , |m ≥ 1 , k = 1, . . . , 2m−1} .
Let z ∈ K(θ) and let ǫ > 0; pick n ≥ 1 large enough so that θn < ǫ. We recall that
K(θ) ⊂ En and that En is the union of 2n closed segments of length θn. The set
of endpoints of these segments is Pn ∪ {0, 1}, where

Pn := {am,k ± rm |m = 1, . . . , n and k = 1, . . . , 2m−1} .
Hence

dist(z, Pn) ≤ θn < ǫ ,

which shows that Pn is dense in K(θ), and concludes the proof.

8.7. Proof of statement (e) in Example 3.4. For each n ≥ 1, set

En := [0, 1] \
⋃

1≤k≤2m−1

1≤m≤n

Im,k .

Then

En =
⋃

1≤k≤2n

[αn,k, βn,k]

with

0 ≤ αn,1 < βn,1 < . . . < αn,2n < βn,2n = 1 , βn,k − αn,k = θn .

Obviously

{αn,k| 1 < k ≤ 2n}∪{βn,k| 1 ≤ k < 2n} = {am,k±rm | 1 ≤ k ≤ 2m−1 , 1 ≤ m ≤ n} .
By construction F1 is differentiable on Im,k \ Jm,k, and one has

F ′
1 = 0 on Im,k \ Jm,k = (am,k − rm, am,k − θrm) ∪ (am,k + θrm, am,k + rm) .

An elementary computation shows that rm = ρθm−1, so that

F ′
1 = 0 on (αn,k − ρθn−1, αn,k) ∪ (βn,k, βn,k + ρθn−1) .

Let x ∈ K(θ) \ {0, 1}. First, if x ∈ {αn,k| 1 < k ≤ 2n}∪ {βn,k| 1 ≤ k < 2n}, then
{x} = F1((αn,k − ρθn−1, αn,k)) if x = αn,k ,

{x} = F1((βn,k, βn,k + ρθn−1)) if x = βn,k ,

so that x ∈ F1(Z1), i.e. x is a critical value of F1.
Next, assume that

x ∈ K(θ) \ {αn,k, βn,k | 1 ≤ k ≤ 2n} .
Since

{αn,k, βn,k | 1 ≤ k ≤ 2n , n ≥ 1} is dense in K(θ)

and βn,k − αn,k = θn → 0 as n → ∞, there exists a sequence (kn)n≥1 such that
x ∈ (αn,kn , βn,kn).

Since F1 is continuous and F1(αn,kn) = αn,kn while F1(βn,kn) = βn,kn , there
exists y ∈ (αn,kn , βn,kn) such that F1(y) = x.

Assume that F1 is differentiable at y. For each n ≥ 1, pick ξn, ηn so that

ξn, ηn ∈ (αn,kn − ρθn−1, αn,kn) and ηn − ξn = ρθn .



34 C. BARDOS, F. GOLSE, P. MARKOWICH, AND T. PAUL

Then

0 =
F1(ηn)− F1(ξn)

ηn − ξn
=
F1(ηn)− F1(y)

ηn − y

ηn − y

ηn − ξn
+
F1(y)− F1(ξn)

y − ξn

y − ξn
ηn − ξn

= (F ′
1(y) + ω(ηn − y))

ηn − y

ηn − ξn
+ (F ′

1(y) + ω(y − ξn))
y − ξn
ηn − ξn

= F ′
1(y) + ω(ηn − y)

ηn − y

ηn − ξn
+ ω(y − ξn)

y − ξn
ηn − ξn

where ω(r) → 0 as r → 0. Observe that
∣∣∣∣
ηn − y

ηn − ξn

∣∣∣∣ ≤
|ηn − y|
ρθn

≤ ρθn−1 + θn

ρθn
≤ 1

θ
+

1

ρ
,

∣∣∣∣
y − ξn
ηn − ξn

∣∣∣∣ ≤
|y − ξn|
ρθn

≤ ρθn−1 + θn

ρθn
≤ 1

θ
+

1

ρ
,

so that

ω(ηn − y)
ηn − y

ηn − ξn
+ ω(y − ξn)

y − ξn
ηn − ξn

→ 0

as n→ ∞.
Thus, if F1 is differentiable at y, then F ′

1(y) = 0, so that x = F1(y) ∈ F1(Z1).
Otherwise y ∈ E, so that x = F1(y) ∈ F1(E).

In all cases, one has x ∈ C1, so that K(θ)\{0, 1} ⊂ C1. Since F1 is differentiable
and F ′

1 > 0 on (−∞, 0)∪Ω(θ)∪(1,∞) while F1((−∞, 0)∪Ω(θ)∪(1,∞)) = R\K(θ),
one has also C1 ⊂ K(θ).
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