
HAL Id: hal-00706180
https://polytechnique.hal.science/hal-00706180v1

Preprint submitted on 9 Jun 2012 (v1), last revised 26 Apr 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hamiltonian Evolution of Monokinetic Measures with
Rough Momentum Profile

Claude Bardos, François Golse, Peter Markowich, Thierry Paul

To cite this version:
Claude Bardos, François Golse, Peter Markowich, Thierry Paul. Hamiltonian Evolution of Monokinetic
Measures with Rough Momentum Profile. 2012. �hal-00706180v1�

https://polytechnique.hal.science/hal-00706180v1
https://hal.archives-ouvertes.fr


HAMILTONIAN EVOLUTION OF MONOKINETIC MEASURES

WITH ROUGH MOMENTUM PROFILE

CLAUDE BARDOS, FRANÇOIS GOLSE, PETER MARKOWICH, AND THIERRY PAUL

Abstract. Consider in the phase space RN
x ×RN

ξ
a probability density carried

by the graph of a vector field U in on R
N , i.e. a Radon measure of the form

µin = ρin(x)δ(ξ − U in(x)). Let Φt be a Hamiltonian flow on RN × R
N .

In this paper, we study the structure of the transported measure µ(t) :=
Φt#µin and of its integral in the ξ variable denoted ρ(t). In particular, we (a)
provide estimates on the number of folds in supp(µ(t)) = Φt( graph of U in),
(b) establish a decomposition of µ(t) into a “regular” component whose integral
in the ξ variable is absolutely continuous with respect to the Lebesgue measure
L N , (c) discuss the possibility of atoms for the measure ρ(t) and (d) construct
an example in which ρ(t) is singular with respect to L N and diffuse. We
conclude our study by explaining how our results can be applied to the classical
limit of the Schrödinger equation by using the formalism of Wigner measures.
Our results hold for initial momentum profiles U in less regular than C1, for
which the usual notion of caustic is not relevant. The proofs of these results
is based on the area formula of geometric measure theory.

1. Introduction

The subject of this article is the propagation of a certain class of positive Radon
measures by Hamiltonian flows.

Let H ≡ H(x, ξ) be a Hamiltonian of class C2 on T ∗RN = RN
x ×RN

ξ . Assume
that the system of Hamilton’s equations

(1)

{
Ẋt = ∇ξH(Xt,Ξt) , X0(x, ξ) = x ,

Ξ̇t = −∇xH(Xt,Ξt) , Ξ0(x, ξ) = ξ ,

generates a global flow

(2) Φt(x, ξ) = (Xt(x, ξ),Ξt(x, ξ)) .

Let µin be a monokinetic measure on RN
x ×RN

ξ i.e. a Radon measure of the form

(3) µin(x, ξ) = ρin(x)δUin(x)(ξ)

where U in is a vector field on RN and ρin ∈ L1(RN ). Define

(4) µ(t) = Φt#µ
in
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the push-forward of µin under Φt. Equivalently, µ(t) ∈ Cb(R+;w−M(RN ×RN))
is the unique weak solution of the Liouville equation

(5)

{
∂tµ+ {H,µ} = 0 ,

µ
∣∣
t=0

= µin ,

where {·, ·} designates the Poisson bracket

{f, g} = ∇ξf · ∇xg −∇xf · ∇ξg .

Our purpose is to study the structure of µ(t) and to deduce from it some information
on its support

supp(µ(t)) ⊂ Λt := Φt({(y, U in(y)) | y ∈ RN}) .
While Λt is the image under Φt of the graph of U in, it is not in general the graph
of a vector field on RN for all values of t.

When U in = ∇Sin is a smooth gradient field on RN , then Λt is the union of
graphs of x 7→ ∇xSj(t, x), where Sj is a solution of the Hamilton-Jacobi equation

(6) ∂tS(t, x) +H(x,∇xS(t, x)) = 0

defined on some open set of Rt × RN . The graphs of ∇xSj are glued along sub-
manifolds of Λt where the restriction of the canonical projection

Π : T ∗RN = RN
x ×RN

ξ ∋ (x, ξ) 7→ x ∈ RN

is not smooth: see §8 in [4] and §46-47 in [5]. A natural question is to compute,
or at least estimate, the number of solutions Sj of the Hamilton-Jacobi equation
needed to obtain Λt.

Equivalently, the restriction to Λt of the canonical projection Π is in general not
one-to-one for all t. The question above reduces to estimating the number N (t, x)
of points in Λt whose image under Π is x. Thus, the function N describes the
number of folds in Λt induced by the Hamiltonian dynamics Φt on the graph of U in

— even when U in is not a gradient field.
Another natural question is to study the structure of the push-forward ρ(t) of

µ(t) under the canonical projection Π — equivalently, of the first marginal of the
measure µ(t) in the product space RN

x ×RN
ξ . As we shall see, both questions are

intimately related.
The mathematical problem described above appears in a great variety of con-

texts. It appeared first in the theory of geometric optics, in the works of Fermat
and Huygens: see for instance chapter VII in [14], chapter III in [10] and chapter 12
§2 in [12]. It appears in the classical limit of quantum mechanics: see for instance
chapter VII in [15] or [22]— we shall give more details on this case below.

In both examples above, the fact that U in is a gradient field is important. There
are however other types of physical models leading to the same mathematical prob-
lem even when U in is not a gradient field. Indeed, the Maxwell distribution with
density ρ, bulk velocity U and temperature θ, i.e.

ρ(x)

(2πθ)N/2
e−|ξ−U(x)|2/2θ

converges weakly to the monokinetic measure ρ(x)δU(x)(ξ) as θ → 0+. The propa-
gation of this class of measures by the flow Φt generated by the free Hamiltonian
H(x, ξ) := 1

2 |ξ|2, i.e. Φt(x, ξ) = (x + tξ, ξ) can be viewed as the kinetic theory of
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pressureless gases, and appears for instance in a cosmological model due to Zel-
dovich [24, 8, 7, 6]. When U in is a gradient field, the Liouville equation (5) can
therefore be viewed as a kinetic formulation of the Hamilton-Jacobi equation (6).

While the classical mathematical theory of geometric optics or of the semi-
classical limit of quantum mechanics is centered on the geometry of Λt in the case
where both the Hamiltonian H and U in = ∇Sin are smooth, our approach of the
mathematical problem stated above is centered on the propagation of the monoki-
netic measure ρ(x)δUin(x)(ξ) by the Hamiltonian flow. Besides, our analysis on the
propagation problem is focussed on mathematical methods and results in which
the initial momentum profile U in is not required to be everywhere differentiable
— so that Λt is not even a C1-manifold. Likewise, the Hamiltonian nature of the
dynamics is of limited importance in our analysis, and there is no need for the mo-
mentum profile U in to be a gradient — or, equivalently, for Λt to be a Lagrangian
submanifold of T ∗RN .

However, we assume that the vector field generating the dynamics is at least
of class C1 — or equivalently that the Hamiltonian H is at least of class C2 on
RN

x ×RN
ξ — so that the existence, uniqueness and regularity of the flow Φt results

from the classical Cauchy-Lipschitz theory. The classical limit of quantum dynam-
ics with rough potentials, for which the existence and uniqueness of the classical
Hamiltonian flow does not follow from the Cauchy-Lipschitz theory, has been re-
cently studied in [1]. Our viewpoint in the present paper is different and in some
sense complementary: we focus our attention to the special class of monokinetic
measures and to their propagation by smooth Hamiltonian flows, but obtain de-
tailed information on the structure of the propagated measure µ(t) even for rough
initial momentum profiles U in.

The outline of the paper is as follows. In section 2 are gathered our assumptions
on the Hamiltonian H with some elementary estimates on the flow Φt that are
crucial in the sequel. Section 3 is focussed on the problem of estimating the number
of folds in the support Λt of the propagated measure µ(t), while the structure of
µ(t) itself is studied in section 5. Section 4 gathers together a few examples showing
that the results in section 3 are sharp. In section 6, we study different exceptional
sets that appear naturally in connection with the structure of the projected measure
ρ(t) := Π#µ(t), and explain how these sets are related to the traditional notion
of “caustic” —- introduced by Tschirnhaus in the 17th century in the context of
geometric optics). Section 7 discusses various applications of the theory presented
in sections 3-5, with an emphasis on the classical limit of quantum mechanics.

2. On the Hamiltonian flow

Let H ≡ H(x, ξ) ∈ R be a C2 function on RN × RN satisfying the following
assumptions: there exists κ > 0, and a function h ∈ C(R;R+) that is sublinear at
infinity, i.e.

h(r)

r
→ 0 as r → +∞

such that

(7)

|∇ξH(x, ξ)| ≤ κ(1 + |ξ|)
|∇xH(x, ξ)| ≤ h(|x|) + κ|ξ|
|∇2H(x, ξ)| ≤ κ
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for all (x, ξ) ∈ RN ×RN .

Lemma 2.1. Any Hamiltonian H ∈ C2(RN×RN) satisfying (7) generates a global
Hamiltonian flow Φt on RN ×RN . The map

R×RN ×RN ∋ (t, x, ξ) 7→ Φt(x, ξ) ∈ RN ×RN

is of class C1. Moreover, for each η > 0, there exists Cη > 0 such that

sup
|t|≤T

|Xt(x, ξ) − x| ≤ Cη(1 + |ξ|) + η|x|

for each x, ξ ∈ RN , and

|DΦt(x, ξ)− IdRN×RN | ≤ eκ|t| − 1

for all t ∈ R.

Proof. By (7), one has the following a priori estimates, with the notation (2).
First

|Xt(x, ξ) − x| ≤
∫ t

0

|∇ξH(Φs(x, ξ))|ds ≤ κt+ κ

∫ t

0

|Ξs(x, ξ)|ds

and

|Ξt(x, ξ)| ≤ |ξ|+
∫ t

0

|∇xH(Φs(x, ξ))|ds

≤ |ξ|+ κ

∫ t

0

|Ξs(x, ξ)|ds+
∫ t

0

h(Xs(x, ξ))ds .

By Gronwall’s inequality, for all 0 ≤ s ≤ t

(8) |Ξs(x, ξ)| ≤
(
|ξ|+

∫ t

0

h(Xτ (x, ξ))dτ

)
eκs ,

so that

|Xt(x, ξ) − x| ≤ κt+ κ

∫ t

0

eκsds

(
|ξ|+

∫ t

0

h(Xτ (x, ξ))dτ

)

≤ κt+ eκt
(
|ξ|+

∫ t

0

h(Xτ (x, ξ))dτ

)
.

Since h is sublinear at infinity, we have, for every R > 0

(9) h(r) ≤ 1[0,R](r) sup
0≤r≤R

h(r) + 1(R,+∞)(r)r sup
r>R

h(r)

r
η ≤MR + rmR ,

where

MR = sup
0≤r≤R

h(r) and mR = sup
r>R

h(r)

r
,

so that

mR → 0 as R→ +∞ .

Therefore

|Xt(x, ξ) − x| ≤ (κ+MRe
κt)t+ eκt|ξ|+mRe

κt

∫ t

0

|Xs(x, ξ)|ds

≤ (κ+MRe
κt)t+ eκt|ξ|+mRe

κt|x|+mRe
κt

∫ t

0

|Xs(x, ξ) − x|ds .
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By Gronwall’s inequality,
(10)

|Xt(x, ξ)− x| ≤ ((κ+MRe
κt)t+ eκt|ξ|+mRe

κt|x|)etmReκt

≤ κtetmReκt

+MRte
t(κ+mReκt) + |ξ|et(κ+mReκt) +mR|x|et(κ+mReκt) .

The same estimates hold for −T ≤ t ≤ 0 after substituting |t| to t.
In view of (10)-(8), for each (x, ξ) ∈ RN ×RN , the trajectory (x, ξ) 7→ Φt(x, ξ)

cannot escape to infinity in finite time, and is therefore globally defined.
Besides, since mR → 0 as R → +∞, the estimate (10) obviously implies the first

inequality in the lemma with

η := mRe
T (κ+mReκT ) and Cη := (1 + κT +MRT )e

T (κ+mReκT ) .

Since H ∈ C2(RN × RN), the map (t, x, ξ) 7→ Φt(x, ξ) is of class C1 on its
domain of definition R × RN × RN . Differentiating the Hamilton equations (1)
with respect to the initial condition, one finds that

{
˙DXt = +∇2

x,ξH(Φt) ·DXt +∇2
ξ,ξH(Φt) ·DΞt ,

ḊΞt = −∇2
x,xH(Φt) ·DXt −∇2

x,ξH(Φt) ·DΞt ,

so that

|DΦt − IdRN×RN | ≤ κ

∫ |t|

0

|DΦs|ds .

The second inequality in the lemma follows from Gronwall’s inequality. �

3. On the number of folds in Λt

Let U in ∈ C(RN ;RN) satisfy the condition

(11)
|U in(y)|

|y| → 0 as |y| → 0 .

The present section is focussed on the structure of the set Λt in the introduction,
defined as

(12) Λt := Φt({(y, U in(y)) | y ∈ RN}) , t ∈ R .

Consider the map

(13) Ft : R
N ∋ y 7→ Ft(y) = Xt(y, U

in(y)) ∈ RN .

Whenever U in is differentiable at y, the map Ft is also differentiable at y by the
chain rule; for any such y, define absolute value of the Jacobian determinant

(14) Jt(y) = | det(DFt(y))| .
We also introduce the set

(15)
C := {(t, x) ∈ R ×RN |F−1

t ({x}) ∩ J−1
t ({0}) 6= ∅} ,

Ct := {x ∈ RN | (t, x) ∈ C} .
For want of a better terminology and by analogy with geometric optics, C will be
referred to as the “caustic” set.
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Proposition 3.1. Under the conditions above, for each t ∈ R, the map Ft is proper
and onto. Moreover

(16) sup
|t|≤T

|Ft(y)− y|
|y| → 0 as |y| → ∞ .

The proof of this proposition and the next one will use the following topological
argument.

Lemma 3.2. Let g : RN → RN be a continuous map satisfying the following
condition: for some R > 0

(g(x)|x) > 0 for all x ∈ RN such that |x| = R .

Then

a) there exists x ∈ RN such that |x| ≤ R and g(x) = 0;
b) if g is of class C1 on RN and 0 is a regular value of g, then g−1({0})∩B(0, R)
is finite and #(g−1({0}) ∩B(0, R)) is odd.

Proof. Consider the homotopy G ∈ C([0, 1]×RN ;RN ) defined by

G(t, x) = tx+ (1 − t)g(x) .

One has
G(t, x) 6= 0 whenever t ∈ [0, 1] and |x| = R .

Indeed, G(1, x) = x 6= 0 if |x| = R > 0; besides, if t ∈ [0, 1[ and G(t, x) = 0, one
has

g(x) = − t

1− t
x so that (g(x)|x) = − t

1− t
|x|2 = − t

1− t
R2 < 0

for all x ∈ RN such that |x| = R, which contradicts our assumption.
By the homotopy invariance of the degree (see Properties 7, 8 and Theorem 12.7

in chapter 12, §A of [21])

d(g,B(0, R), 0) = d(I, B(0, R), 0) = 1 .

This implies a). Moreover, if g is of class C1 on RN and 0 is a regular value of g,
all the elements of g−1({0}) are isolated points by the implicit function theorem,

so g−1({0}) ∩B(0, R) is finite. Besides (see Property 2 in chapter 12, §A of [21])

d(g,B(0, R), 0) =
∑

x∈g−1({0})∩B(0,R)

sign(detDg(x)) = 1 .

Therefore, there exists an integer m ∈ N such that

#{x ∈ B(0, R) | g(x) = 0 and det(Dg(x)) > 0} = m+ 1

#{x ∈ B(0, R) | g(x) = 0 and det(Dg(x)) < 0} = m

so that #(g−1({0}) ∩B(0, R)) = 2m+ 1, which proves b). �

Proof of Proposition 3.1. By the first inequality in Lemma 2.1 and the condition
(11 on U in, for each η > 0, one has

lim
|y|→+∞

sup
|t|≤T

|Ft(y)− y|
|y| ≤ η ,

so that (16) holds.
Because of (16), the continuous map Ft satisfies

(17) (Ft(y)− x|y) = |y|2 + o(|y|2) as |y| → +∞
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so that Ft is onto by applying Lemma 3.2 to the map g : y 7→ Ft(y) − x. On the
other hand

|Ft(y)| → +∞ as |y| → +∞
so that Ft is proper. �

By Proposition 3.1, we know that, for each (t, x) ∈ R × RN , the equation
Ft(y) = x has at least one solution y ∈ RN when U in is a continuous vector field
sublinear at infinity, i.e. satisfying (11). In the next proposition, we study the
number N (t, x) of solutions of this equation in the case where U in is of class C1 at
least. Equivalently, N (t, x) is the number of intersections of the manifold Λt with
T ∗
xR

N ≃ {x}×RN . Therefore, the integer-valued function N measures the number
of folds in the manifold Λt resulting from the interaction of the Hamiltonian flow
Φt with the initial profile U in.

Proposition 3.3. [Smooth case] Assume that (11) holds for U in ∈ C1(RN ,RN)
and that

|DU in(y)| = O(1) as |y| → +∞ .

a) For each t ∈ R, one has L N (Ct) = 0.
b) The set C is closed in R×RN .
c) For each (t, x) ∈ R×RN \C, the set F−1

t ({x}) is finite, and henceforth denoted
by

{yj(t, x) , j = 1, . . . ,N (t, x)} .
The integer N is a constant function of (t, x) in each connected component of
R × RN \ C and, for each j ≥ 1, the map yj is of class C1 on each connected
component of R×RN \ C where N ≥ j.
d) There exists a < 0 < b such that C∩((a, b)×RN ) = ∅ and N = 1 on (a, b)×RN .
e) N (t, x) is odd for each (t, x) ∈ R×RN \ C.
Proof. If U in ∈ C1(RN ), the map Ft is of class C

1 from RN to RN , being the com-
position of C1 maps. Since Ct is the set of critical values of Ft, one has L N (Ct) = 0
by Sard’s Theorem (in the equal dimension case), which proves a).

Pick any sequence (tn, xn) ∈ C such that (tn, xn) → (t, x) in R×RN as n→ ∞.
By definition of C, there exists yn such that Ftn(yn) = xn. Since the sequences
tn and xn converge, they are both bounded. Let T = supn |tn|; assume that the
sequence yn is unbounded; if so there exists a subsequence ynl

such that |ynl
| → ∞.

By (16)

|xnl
− ynl

| = |Ftnl
(ynl

)− ynl
| ≤ sup

|t|≤T

|Ft(ynl
)− ynl

| = o(|ynl
|)

so that |xnl
| ∼ |ynl

| as nl → +∞. Since this contradicts the fact that the sequence
xn is bounded, we conclude that the sequence yn is bounded. Therefore, there
exists a convergent subsequence ynk

of yn; call y its limit as nk → +∞. Passing to
the limit in both relations

Ftnk
(ynk

) = xnk
and Jtnk

(ynk
) = | det(∇Ftnk

(ynk
))| = 0 ,

we conclude that (t, x, y) satisfies

Ft(y) = x and Jt(y) = 0

and therefore that (t, x) ∈ C, which proves b).
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For (t, x) ∈ R × RN \ C, all the solutions of the equation Ft(y) − x = 0 are
isolated by the implicit function theorem. The set of all such points, F−1

t ({x}), is
therefore compact since Ft is proper. By the implicit function theorem, the integer
N is a locally constant function of (t, x) ∈ R×RN \C, and is therefore constant on
each connected component of R ×RN \ C. Let j ∈ N∗, and let Ω be a connected
component of R × RN \ C; by the implicit function theorem yj ∈ C1(Ω). This
proves c).

Assume inf{t > 0 |Ct 6= ∅} = 0. Then, there exists (tn, xn, yn) such that

tn → 0+ , Ftn(yn) = xn , and Jtn(yn) = 0 .

Assume that a subsequence ynk
of the sequence yn is bounded. Up to extraction

of a subsequence, one can assume that ynk
→ y, so that 0 = Jtnk

(ynk
) → J0(y).

But since Ft = IdRN , one has J0(y) = 1. Therefore |yn| → +∞. By the second
inequality in Lemma 2.1

|DxXtn(yn, U
in(yn))− IdRN | ≤ eκ|tn| − 1 ,

|DξXtn(yn, U
in(yn)) ·DU in(yn)| = O

(
eκ|tn| − 1

)
,

so that

0 = Jtn(yn) = | det(DxXtn(yn, U
in(yn)) +DξXtn(yn, U

in(yn)) ·DU in(yn))|
→ | det(IdRN )| = 1 as n→ ∞ .

Thus the assumption tn → 0 leads to a contradiction. Therefore,

inf{t > 0 |Ct 6= ∅} = b > 0 .

By the same token,

sup{t < 0 |Ct 6= ∅} = a < 0 .

Thus (a, b)×RN is contained in the connected component of {0}×RN inR×RN\C.
Since F0 = IdRN , one has N (0, x) = 1 for all x ∈ RN , and since N is constant on
each connected component of R ×RN \ C, one concludes N = 1 on (a, b) ×RN ,
which proves d).

If (t, x) ∈ R ×RN \ C, the point x is a regular value of Ft. Since Ft is proper,
F−1
t ({x}) is compact, and therefore bounded. Pick R > 0 such that

F−1
t ({x}) ⊂ B(0, R) .

By (17) and Lemma 3.2 b) applied to the map g : y 7→ Ft(y)− x

#F−1
t ({x}) = #(F−1

t ({x}) ∩B(0, R)) is odd ,

which proves e). �

When U in is not of class C1, the arguments used to prove Proposition 3.3 are no
longer valid. However one can still obtain some information on the number N (t, x)
of solutions y of the equation Ft(y) = x by a completely different method, involving
the area — or co-area formula.

Assume that U in ∈ C(RN ;RN ) satisfies (11) and that its gradient (in the sense
of distributions) DU in satisfies the condition

(18) ∂lU
in
k

∣∣
Ω
∈ LN,1(Ω) for each bounded open Ω ⊂ RN ,
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for all k, l = 1, . . . , N . We recall that a measurable function f : Ω → R belongs to
the Lorentz space LN,1(Ω) if

∫ ∞

0

(
L

N ({x ∈ Ω | |f(x)| ≥ λ})
)1/N

dλ <∞ .

By Theorem B in [13], the vector field U in is differentiable a.e. on RN . Let E be
the L N -negligible set defined as

(19) E := {y ∈ RN |U in is not differentiable at y} .
By the chain rule, the absolute value of the Jacobian determinant

(20)
Jt(y) = | det(DxXt(y, U

in(y)) +DξXt(y, U
in(y))DU in(y))|

is defined for all (t, y) ∈ R× (RN \ E) .

Henceforth, the notation J−1
t ({0}) designates the set

(21) J−1
t ({0}) := {y ∈ RN \ E | Jt(y) = 0} ,

and we shall also consider the set

(22) Zt := J−1
t ({0}) ∪ E .

Theorem 3.4. [Rough case] Assume that U in ∈ C(RN ;RN ) satisfies (11) and
(18).

a) for all t ∈ R, the function Jt ∈ L1
loc(R

N );

b) for all t ∈ R, there are finitely many solutions y of the equation

(23) Ft(y) = x

for a.e. x ∈ RN — in other words, N (t, x) is finite for a.e. x ∈ RN , for all t ∈ R;
c) for each bounded B ⊂ RN , denote by NB(t, x) the number of solutions y ∈ B of
(23); then, whenever B is bounded, for each t ∈ R and each n ∈ N, one has

L
N
(
{x ∈ RN | NB(t, x) ≥ n}

)
≤ 1

n

∫

B

Jt(y)dy

≤ 1

n
eNκ|t|‖1 + (1− e−κ|t|)‖DU in‖NLN(B) ;

d) let t ∈ R; then for a.e. x ∈ RN , all solutions y of (23) satisfy

y ∈ RN \ E and Jt(y) > 0 ;

e) for all T > 0

H
1({(t, y) ∈ [−T, T ]×RN |Ft(y) = x}) < +∞

for a.e. x ∈ RN .

Remarks.

a) By the first statement in Proposition 3.1, N (t, x) = NRN (t, x) ≥ 1 for all
(t, x) ∈ R×RN .
b) Even in the smooth case, i.e. assuming in addition that U in ∈ C1(RN ), state-
ment c) in Theorem 3.4 provides information on the number of folds of Λt, that is
the image under Φt of the graph of U in, which seems to be new at the time of this
writing.
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Proof. By the second estimate in Lemma 2.1

(24) |DxXt(y, U
in(y)) +DξXt(y, U

in(y)) ·DU in(y)| ≤ eκ|t| + (eκ|t| − 1)|DU in(y)|
so that

(25)
Jt(y) = | det(DxXt(y, U

in(y)) +DξXt(y, U
in(y)) ·DU in(y))|

≤ eNκ|t|(1 + (1− e−κ|t|)|DU in(y)|)N

by Hadamard’s inequality. Since U in satisfies (18) and since LN,1(Ω) ⊂ LN (Ω),
this inequality implies statement a).

Since the map Ft is proper by Proposition 3.1, the set Kt,R = F−1
t (B(0, R)) is

compact for each R > 0. By the area formula (see Theorem 3.4 in [18] and Theorem
A in [13]) ∫

RN

#(F−1
t ({x}) ∩Kt,R)dx =

∫

Kt,R

Jt(y)dy < +∞ .

Therefore #F−1
t ({x}) < ∞ for a.e. x ∈ B(0, R); since this is true for all R ∈ N,

one concludes that #F−1
t ({x}) <∞ for a.e. x ∈ RN , so that b) holds.

Let B be a measurable subset of RN ; applying again the area formula shows
that ∫

RN

NB(t, x)dx =

∫

B

Jt(y)dy .

By the Bienaymé-Chebyshev inequality, for each n ≥ 1

L
N
(
{x ∈ RN | NB(t, x) ≥ n}

)
≤ 1

n

∫

B

Jt(y)dy ,

which is precisely the first inequality in c). The second inequality follows from (25)
and Hölder’s inequality.

Let n = 1 and Zt := J−1
t ({0}) ∪ E. Let B = Zt ∩Kt,R; the set B is measurable

and bounded. Then ∫

B

Jt(y)dy = 0

since Jt(y) = 0 for all y ∈ B \E and L N (E) = 0. Applying c) shows that

L
N ({x ∈ RN | |x| ≤ R and NZt(t, x) ≥ 1}) = 0 ,

which entails d) by monotone convergence, letting R ∈ N tend to infinity.
Consider next the continuous map

F : [−T, T ]×RN ∋ (t, y) 7→ F (t, y) ∈ RN .

In view of (16), |F (t, y)| → ∞ as |y| → +∞ uniformly in t ∈ [−T, T ]. Therefore,

the set KR := F−1(B(0, R)) is compact for each R > 0. Then, for each t ∈ [−T, T ]
and each y ∈ RN \E, the Jacobian DF (t, y) is the column-wise partitioned matrix

DF (t, y) = [V (t, y) , M(t, y)] ,

with

V (t, y) = ∇ξH(Φt(y, U
in(y)))

and

M(t, y) := DxXt(y, U
in(y)) +DξXt(y, U

in(y))DU in(y) .

Therefore,

DF (t, y)DF (t, y)T = V (t, y)V (t, y)T +M(t, y)M(t, y)T
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so that, by the co-area formula (Theorem 1.3 in [19])
∫

RN

H
1(F−1({x}) ∩KR)dx

=

∫

KR

√
det(V (t, y)V (t, y)T +M(t, y)M(t, y)T )dtdy .

By Lemma 2.1, (t, x, ξ) 7→ Φt(x, ξ) is of class C
1 on R×RN ×RN , so that the map

(t, y) 7→ V (t, y) is continuous on R ×RN , and therefore bounded on the compact
KR. On the other hand, by (24)

sup
|t|≤T

|M(t, y)| ≤ eκT + (eκT − 1)|DU in(y)| ∈ LN
loc(R

N ) ,

since U in satisfies (18). Denoting

K ′
R := {y ∈ RN | there exists t ∈ [−T, T ] s.t. (t, y) ∈ KR}

that is compact in RN (being the projection of the compact KR on the second
factor in R×RN ), one has

‖V V T +MMT‖N/2

LN/2(KR)
≤ 2N/2−1‖V ‖NL∞(KR)L

N+1(KR) + 2N/2T ‖M‖NLN(K′

R)

<∞ .

Therefore H 1(F−1({x})∩KR) < +∞ is finite for a.e. x ∈ B(0, R), and since this
is true for all R ∈ N, one concludes that H

1(F−1({x})) < +∞ for a.e. x ∈ RN ,
which is statement e). �

Theorem 3.4 suggests considering the sets

(26) C′
t = {x ∈ RN |F−1

t ({x}) is infinite}
for all t ∈ R.

On the other hand, the definition of the caustic (15) in the smooth case should
be modified as follows when the continuous vector field U in is not of class C1 but
satisfies (11) and (18):

(27)

Ct := {x ∈ RN |F−1
t ({x}) ∩ Zt 6= ∅} ,

C :=
⋃

t∈R

Ct ,

where Zt is defined in (22). Notice that this definition coincides with (15) whenever
U in is differentiable everywhere. However we do not know whether C or Ct are
closed whenever U in is not of class C1.

The first part of statement c) in Proposition 3.3 is equivalent to the inclusion

(28) C′
t ⊂ Ct for all t ∈ R .

Statements b) and d) in Theorem 3.4 can be recast as follows

(29) L
N (C′

t) = 0 and L
N (Ct) = 0 , for all t ∈ R .

This is the analogue of statement a) in Proposition 3.3 in the case of a rough
U in. Notice that (29) is a consequence of the area formula while statement a) in
Proposition 3.3 follows from Sard’s theorem (see Remark 2.97 on pp. 103–104 in
[2], discussing the relation between Sard’s theorem and the co-area formula).
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4. Some examples

While the notion of caustic C naturally occurs in studying the geometry of Λt in
the smooth case, its relation to the number of solutions y of the equation Ft(y) = x
is slightly less obvious, as shown by the following examples. In all these examples,
the Hamiltonian is

H(x, ξ) = 1
2ξ

2

generating the free flow

Φt : R×R ∋ (x, ξ) 7→ (x + tξ, ξ) ∈ R×R .

Thus
Ft : R ∋ y 7→ y + tU in(y) ∈ R .

The first example below shows that the set F−1
t ({x}) may be finite even if x ∈ Ct.

In other words, it may happen that the inclusion (28) is strict for all t ∈ R.

Example 1. Set N = 1, and let U in be real analytic on R and satisfy (11).
Therefore Ft is real analytic on R for each t ∈ R. For each x ∈ R, the set
F−1
t ({x}) is the set of zeros of the analytic function y 7→ Ft(y) − x. Since U in

satisfies (11), one has Ft(y) ∼ y as |y| → ∞, so that, for each t ∈ R, the function
Ft is not a constant. Therefore the zeros of y 7→ Ft(y) − x are isolated for each
(t, x) ∈ R ×R. Equivalently, the set F−1

t ({x}) consists of isolated points. On the
other hand, for each (t, x) ∈ R2, the set F−1

t ({x}) is compact since Ft is proper by
Proposition 3.1. Therefore the set F−1

t ({x}) is finite for all (t, x) ∈ R2.

The next example shows that the set F−1
t ({x}) may be infinite for infinitely

many times t — in this case, for all t in a nonempty, open interval of R.

Example 2. Set N = 1, and let U in be defined by

U in(z) :=

{
tanh(z) sin(ln |z|) if z > 0 ,

0 if z = 0 .

Clearly U in ∈ C1(R∗) and, for all z ∈ R∗, one has

(U in)′(z) = (1− tanh2(z)) sin(ln |z|) + tanh(z)

z
cos(ln |z|) .

Observe that (U in)′(z) =
√
2 sin(ln |z|+ π

4 )+O(z
2) does not have a limit for z → 0,

so that U in /∈ C1(R). On the other hand

sup
z∈R

|U in(z)| = 1 and sup
z 6=0

|(U in)′(z)| ≤ 2

so that U in is Lipschitz continuous on R and the map Ft is proper on R.
Let x = 0; for each t such that |t| > 1, the set F−1

t ({0}) is infinite.
Indeed, the set F−1

t ({0}) obviously contains z = 0; besides, F−1
t ({0}) contains

also a decreasing sequence yn → 0 as n→ +∞, which satisfies

sin(ln |yn|) → −1/t as n→ ∞ .

Therefore F−1
t ({0}) is countably infinite whenever |t| > 1.

Notice that, in example 2, whenever T > 1

{(t, y) ∈ [−T, T ]×R |Ft(y) = 0} = ([−T,−1]∪ [1, T ])× ({0} ∪ {yn |n ≥ 1})
so that

H
1({(t, y) ∈ [−T, T ]×R |Ft(y) = 0}) = +∞ .
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In other words, the set of points x for which

H
1({(t, y) ∈ [−T, T ]×R |Ft(y) = x}) = +∞ ,

while L
1-negligible by statement e) of Theorem 3.4, may be non empty.

There is another interesting observation in connection with Example 2. Observe
that 0 ∈ C′

t and that

F−1
t ({0}) = {0} ∪ {yn |n ≥ 1} , whenever |t| > 1 .

Nevertheless, for each n ≥ 1

(U in)′(yn) = sin(ln |yn|) + cos(ln |yn|) +O(|yn|2) → −1

t
+

√
1− 1

t2
6= −1

t

if |t| > 1, and Ft is not differentiable at y = 0. Thus y = 0 is in the exceptional set
E where the Lipschitz continuous function U in is not differentiable, so that 0 ∈ Ct

with the definition (27) although

F−1
t ({0}) ∩ J−1

t ({0}) = ∅ ,

so that 0 would not belong to Ct had we kept the classical definition (15) in the
case of non everywhere differentiable U in profiles.

The next two examples show that F−1
t ({x}) can even be uncountably infinite,

even for a smooth profile U in.

Example 3. Set N = 1, and let U in be defined by

U in(z) :=





+ 1 if z < −1 ,

− z if |z| ≤ 1 ,

− 1 if z > 1 .

Consider the equation

Ft(y) := y + tU in(y) = x

with unknown y; for t < 1, its solution is unique and given by

y =





x− t if x < t− 1 ,
x

1− t
if |x| ≤ 1− t ,

x+ t if x > 1− t .

For t = 1, the solution is

y =





x− t if x < 0 ,

any y ∈ [−1, 1] if x = 0 ,

x+ 1 if x > 0 .

For t > 1, the solution is

y =





x− t if x < 1− t ,

x− t ,
x

1− t
and x+ t if 1− t ≤ x ≤ t− 1 ,

x+ t if x > t− 1 .

Now F−1
t ({x}) is finite for all x ∈ R whenever t 6= 1, while F−1

1 ({0}) = [−1, 1].
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Example 4. In the previous example, U in is Lipschitz continuous but not of class
C1. Yet the same phenomenon can be observed by smoothing U in near z = ±1.
Regularize U in and obtain U in

ǫ ∈ C∞(R) so that

supp(U in
ǫ − U in) ⊂ [−1− ǫ,−1 + ǫ] ∪ [1− ǫ, 1 + ǫ] , and

U in
ǫ ≤ U in on [−1− ǫ,−1 + ǫ] and U in ≤ U in

ǫ on [1− ǫ, 1 + ǫ] .

In that case

F−1
1 ({0}) = [−1 + ǫ, 1− ǫ] .

Indeed, since U in
ǫ ≤ U in on [−1− ǫ,−1+ ǫ], all the points on the graph of U in

ǫ with
abscissa in (−1 − ǫ,−1 + ǫ) will reach x = 0 after t = 1. The same is true of the
points on the graph of U in

ǫ with abscissa in (1 − ǫ, 1 + ǫ). Thus the regularization
does not affect the dynamics of the points with abscissa in (−1 + ǫ, 1 − ǫ) for all
t ∈ [0, 1], and in particular for t = 1.

5. On the structure of µ(t)

Throughout this section, we assume that U in ∈ C(RN ;RN) satisfies the sublin-
earity condition (11) at infinity and the regularity condition (18).

Consider a monokinetic measure µin of the form (3) with ρin ∈ L1(RN ), whose
action on a test function χ ∈ Cb(R

N ×RN) is given by the formula

〈µin, χ〉 :=
∫

RN

χ(y, U in(y))ρin(y)dy .

In other words

µin = L
N
x ⊗ ρin(x)δinUin(x) .

Let H ∈ C2(RN ×RN) satisfy (7), and let Φt be the Hamiltonian flow generated
by H .

For all t ∈ R, let µ(t) = Φt#µ
in be the push-forward of µin under Φt, defined

as follows: for each test function χ ∈ Cb(R
N ×RN),

(30) 〈µ(t), χ〉 := 〈µin, χ ◦ Φt〉 =
∫

RN

χ(Φt(y, U
in(y)))ρin(y)dy .

Finally, let ρ(t) be the measure on RN defined as

(31) ρ(t) := Π#µ(t)

where Π : T ∗RN ≃ RN ×RN ∋ (x, ξ) 7→ x ∈ RN is the canonical projection. In
other words, for each test function φ ∈ Cb(R

N )

(32) 〈ρ(t), φ〉 =
∫

RN

φ(Xt(y, U
in(y))ρin(y)dy

or, equivalently

(33) ρ(t) = Ft#ρ
in .

We shall also use the following definition

(34) Pt := {y ∈ RN \E | Jt(y) > 0} .
Our main result in this section bears on the structure of the measures µ(t) and

its projection ρ(t).
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Theorem 5.1. Under the assumptions above, let ρin ∈ L1(RN ) be such that ρin ≥
0 a.e. on RN .
a) for each t ∈ R,

ρin1PtL
N ≪ JtL

N , and ρin1ZtL
N ⊥ JtL

N

b) for each t ∈ R,

µ(t) = µa(t) + µs(t) with µa(t) ⊥ µs(t) ,

where 



µa(t) := L
N
x ⊗

∑

y∈F−1
t ({x})

ρin1Pt

Jt
(y)δΞt(y,Uin(y)) ,

µs(t) := Φt#(L N
x ⊗ ρin(x)1Zt(x)δUin(x)) .

Moreover
c) for each t ∈ R, one has

supp(µ(t)) ⊂ Λt := Φt({(y, U in(y)) | y ∈ RN}) ;
d) for each t ∈ R, the measure

ρa(t) := Π#µa(t) ≪ L
N ;

with
dρa(t)

dL N
(x) = 1RN\C′

t
(x)

∑

y∈F−1
t ({x})

d(ρin1PtL
N )

d(JtL N )
(y)

where C′
t is defined in (26);

e) for each t ∈ R, the measure

ρs(t) := Π#µs(t) is carried by Ct ;

in particular

ρa(t) ⊥ ρs(t) .

A few remarks are in order before we give the proof of Theorem 5.1. In the
smooth case — i.e. whenever U in ∈ C1(RN ;RN) and satisfies (11), we recall
that Ct is closed in RN for each t ∈ R, by statement b) of Proposition 3.3. For
any given t ∈ R, let χ ≡ χ(x, ξ) be a test function in Cc(R

N × RN) such that
Π supp(χ) ∩ Ct = ∅. By (30)

〈µ(t), χ〉 =
∫

RN

χ(Φt(y, U
in(y)))ρin(y)dy .

Since Π(supp(χ)) is compact and included in the open set RN \ Ct, it intersects
at most finitely many connected components of RN \ Ct. Assume without loss of
generality that Π(supp(χ)) is connected, so that it intersect exactly one connected
component Ω of RN \ Ct; on Ω, the integer-valued function N is a constant de-
noted by NΩ, by statement c) of Proposition 3.3. With the notation used in that
proposition, for each x ∈ Π(supp(χ)) ⊂ Ω

F−1
t ({x}) = {yj(t, x) | j = 1, . . . ,NΩ} ,

and

yj(t, ·) ∈ C1(Ω) for all j = 1, . . . ,NΩ .
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Therefore yj(t, ·) is a C1-diffeomorphism from Ω on its image Oj , with inverse Ft.
Thus

F−1
t (Ω) =

NΩ⋃

j=1

Oj and Oi ∩Oj = ∅ if i 6= j ,

so that

∫∫

Ω×RN

χ(t, x)µ(t, dxdξ) =

NΩ∑

j=1

∫

Oj

χ(Ft(y),Ξt(y, U
in(y)))ρin(y)dy .

In each of the integrals on the right hand side, Ft is a C
1-diffeomorphism mapping

Oj on Ω, so that, changing variables, we see that
∫

Oj

χ(Ft(y),Ξt(y, U
in(y)))ρin(y)dy

=

∫

Ω

χ(x,Ξt(yj(t, x), U
in(yj(t, x))))ρ

in(yj(t, x)) |det(∇xyj(t, x))| dx .

Since

|det(Dxyj(t, x))| = Jt(yj(t, x))
−1 ,

we conclude that the restriction of µ(t) to (R×RN )\C is a measure-valued function
of (t, x) given by the following formula:

(35) µ(t, x, ·) :=
N (t,x)∑

j=1

ρin(yj(t, x)

Jt(yj(t, x))
δΞt(yj(t,x),Uin(yj(t,x)))

whenever (t, x) /∈ C. This formula is strikingly similar to the one giving µa(t) in
statement b) of Theorem 5.1. There are however subtle differences, which we shall
discuss in more detail in the next section. At this point, it suffices to say that
Theorem 5.1 provides a formula for µ(t) that holds globally on RN ×RN instead
of (RN \ Ct)×RN , and that the argument above requires more regularity on U in

than assumed in Theorem 5.1.

Proof of Theorem 5.1. Let A ⊂ RN ; then the condition
∫

A

Jt(y)dy = 0 implies that Jt(y) = 0 for a.e. y ∈ A .

Therefore L N (Pt ∩A) = 0 so that
∫

A

(ρin1Pt)(y)dy =

∫

Pt∩A

ρin(y)dy = 0 .

Thus ρin1PtL
N ≪ JtL

N .
On the other hand, for each t ∈ R

RN = Pt ∪ Zt with Pt ∩ Zt = ∅ .

Since

Jt(y) = 0 for y ∈ Zt \ E i.e. L
N -a.e. on Zt

while

ρin(y)1Zt(y) = 0 for all y ∈ Pt ,

we conclude that ρin1ZtL
N ⊥ JtL

N , which proves a).



MONOKINETIC MEASURES WITH ROUGH MOMENTUM PROFILES 17

Define
µin
a := L

N
x ⊗ (ρin1Pt)(x)δ

in
Uin(x) ,

µin
s := L

N
x ⊗ (ρin1Zt)(x)δ

in
Uin(x) ,

and, for each t ∈ R

µa(t) := Φt#µ
in
a , µs(t) := Φt#µ

in
s ,

so that one has indeed

µa(t) + µs(t) = Φt#(µin
a + µin

s ) = Φt#µ
in = µ(t) .

Then there exists a unique b ∈ L1(RN ; JtL
N ) such that

ρin1PtL
N = bJtL

N

by the Radon-Nikodym theorem. Thus, for each χ ∈ Cc(R
N ×RN ), by the area

formula (see Theorem 3.4 in [18] and Theorem A in [13])

〈µa(t), χ〉 =
∫

RN

χ(Ft(y),Ξt(y, U
in(y)))b(y)Jt(y)dy

=

∫

RN


 ∑

y∈F−1
t ({x})

b(y)χ(x,Ξt(y, U
in(y)))


 dx

=

∫

RN


 ∑

y∈F−1
t ({x})

b(y)〈δΞt(y,Uin(y)), χ(x, ·)〉


 dx .

In the formula above

b :=
d(ρin1PtL

N )

d(JtL N )

is the Radon-Nikodym derivative of ρin1Pt with respect to JtL
N . Since Jt > 0 on

the set Pt

(36) b =
ρin1Pt

Jt
a.e. on RN ,

which proves b).
Formula (3) obviously implies that

supp(µin) ⊂ Λ0 := {(y, U in) | y ∈ RN} .
Since µ(t) = Φt#µ

in, one has

supp(µ(t)) ⊂ Φt({(y, U in) | y ∈ RN}) = Λt ,

which is precisely statement c).
In view of the first formula in b) and of the definition ρa(t) = Π#µa(t) of the

measure ρa(t), one has

ρa(t) =


 ∑

y∈F−1
t ({x})

b(y)


L

N ,

with b as in (36). The set F−1
t ({x}) can obviously be infinite, in which case the

sum above can be undefined. However, this occurs only if x ∈ C′
t as defined in (26).

Since C′
t is L N -negligible

ρa(t) = ftL
N
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with

ft(x) := 1RN\C′

t
(x)


 ∑

y∈F−1
t ({x})

b(y)


 .

Thus, ρa(t) is of the form ρa(t) = ftL
N with ft ≥ 0 measurable on RN . Besides

0 ≤ ρa(t) ≤ ρ(t) and

∫

RN

ρ(t, dx) =

∫

RN

ρin(x)dx) <∞

which implies in particular that ρa(t) ≪ L N with the formula for the Radon-
Nikodym derivative as in d).

Consider the measurable set A := RN \Ct. By (33) applied to ρin1Zt instead of
ρin, one has

ρs(t)(A) =

∫

F−1
t (A)

ρin(y)1Zt(y)dy =

∫

F−1
t (A)∩Zt

ρin(y)dy = 0 .

Indeed, by definition of Ct, one has F−1
t (A) ∩ Zt = ∅. In other words, ρs(t) is

carried by Ct.
Finally, since ρa(t) ≪ L N and ρs(t) is carried by Ct which is L N -negligible by

(29), we conclude that ρa(t) ⊥ ρs(t) which is precisely statement e). �

6. On the caustic and other exceptional sets

In the case of a smooth U in profile — i.e. when U in ∈ C1(RN ;RN) satisfies
(11), the caustic C is the only exceptional set — Ct being equivalently defined as
the image under the projection Π of the set of points in the manifold Λt in (12)
where the restriction Π

∣∣
Λt

is not differentiable.

When U in is not everywhere differentiable, this definition of Ct does not make
sense in general since Λt is not a differentiable manifold in the first place. In such
cases, it is more natural to consider the measures µ(t) and ρ(t) instead of the sets
Λt and Ct — all the more so since Ct may not even be closed in RN . Thus, even
though ρs(t) is concentrated on Ct, one cannot say that Ct is the support of ρs(t) as
Ct may not be closed. On the other hand, the inclusion supp ρs(t) ⊂ Ct is of little
interest as Ct might be dense in some domain ofRN . Although ρs(t) is concentrated
on Ct, this obviously does not characterize Ct (if a measure is concentrated on a
set, it is also concentrated on the complement in that set of any negligible set for
that same measure).

There are analogous difficulties with the absolutely continuous part of the mea-
sure ρa(t). In formula (35), the restriction of µa(t) to (RN \Ct)×RN is viewed as
a function of x ∈ RN \Ct with values in the set of Radon measures in the variable
ξ ∈ RN . This viewpoint is obviously not appropriate if U in is not at least of class
C1 — for instance, if the set Ct is dense in some domain of RN . In Theorem 5.1,
the measure µ is a weakly continuous function of the time variable t with values
in the space of Radon measures in the variables (x, ξ), and is therefore globally
defined on RN

x ×RN
ξ . Obviously, the ratio ρin1Pt/Jt is just one possible choice of

the Radon-Nikodym derivative d(ρin1PtL
N )/d(JtL

N ) and could be modified ar-
bitrarily on any set of JtL

N -measure 0 — which could be of positive L
N -measure,
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as in Examples 3-4 above. The difference induced in the expression

(37)
∑

y∈F−1
t ({x})

d(ρin1PtL
N )

d(JtL N)
(y)δUin(y)

by two different choices of the Radon-Nikodym derivative d(ρin1PtL
N )/d(JtL

N )
is of the form ∑

y∈F−1
t ({x})

m(y)δUin(y)

with m ≥ 0 being a JtL
N -measurable function such that m = 0 a.e. on RN \ Zt.

Therefore
∫

RN

m(y)Jt(y)dy = 0 =

∫

RN


 ∑

y∈F−1
t ({x})

|m(y)|


 dx

so that ∑

y∈F−1
t ({x})

m(y) = 0 L
N − a.e. on RN

and
L

N ⊗
∑

y∈F−1
t ({x})

m(y)δUin(y) = 0

as a measure on RN ×RN .
On the other hand, even in the smooth case, formula (35) is not enough to

define completely µ(t), as it fails to capture singular parts of the measure carried
by Ct ×RN . For instance, in Example 4, for t = 1, if one computes the restriction
of the measure µ(1) to (RN \ C1)×RN by formula (35), one obtains

∫

RN\C1

(∫

RN

µ(t, x, dξ)

)
dx =

∫ −1+ǫ

−∞

ρin(y)dy +

∫ +∞

1−ǫ

ρin(y)dy

6=
∫

RN

ρin(y)dy =

∫

RN

(∫

RN

µin(x, dξ)

)
dx

unless ρin = 0 on [−1 + ǫ, 1 − ǫ] = J−1
1 ({0}). Since this is obviously incompatible

with the conservation of the total mass of the measure∫∫

RN×RN

µ(t, dxdξ) =

∫∫

RN×RN

Φt#µ
in(dxdξ) =

∫∫

RN×RN

µin(dxdξ)

by the transportation under the flow Φt, this example confirms that (35) alone is
not enough to compute µ(t).

The expression involved in the formula for µa in Theorem 5.1, i.e.

(38)
∑

y∈F−1
t ({x})

ρin1Pt

Jt
(y)δUin(y)

which is analogous to formula (35) a priori makes sense only if x ∈ RN \ C′
t. In

the rough case, i.e. if U in satisfies only the regularity properties in Theorem 3.4 or
Theorem 5.1, it might on principle happen that

C′
t ∩ (RN \ Ct) 6= ∅ .

Whenever this is the case, the sum in formula (38) above may fail to be defined
everywhere on RN \ Ct, as would occur for U in of class C1, by statement c) in
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Proposition 3.3, or (28). Since this may occur at most on a L N -negligible set, the
expression for µa in Theorem 5.1 is well defined as a measure on RN ×RN while
the one in (38) may not be defined everywhere on RN \Ct as a function of x with
values in the space of measures in the variable ξ ∈ RN .

Another strategy is to abandon the idea of viewing the caustic C as an excep-
tional set unambiguously defined by the measure ρ(t), and to investigate those
exceptional sets that can be uniquely defined in terms of this measure.

This leads for instance to consider the set

(39) C′′
t := {x ∈ RN |L N (F−1

t ({x}) ∩ J−1
t ({0}) > 0} ,

which is of particular interest, as shown by the following result.

Theorem 6.1. Assume that H ∈ C2(RN ×RN ) satisfies the conditions (7), while
U in ∈ C(RN ;RN) satisfies the sublinearity condition (11) at infinity and the reg-
ularity condition (18). Then

a) C′′
t ⊂ Ct ∩ C′

t for each t ∈ R;
b) for each t ∈ R and each x ∈ C′′

t , there exists ρin ∈ L1(RN ) such that ρin ≥ 0
a.e. and the projected measure ρ(t) = Π#µ(t) satisfies

ρ(t)({x}) > 0 ;

c) C′′
t is at most countable for each t ∈ R;

d) if ρin ∈ L1(RN ) is such that ρn ≥ 0 a.e. on RN and ρin = 0 a.e. on J−1
t (R∗

+)

while ‖ρin‖L1(RN ) > 0, then

ρ(t)({x}) > 0 if and only if (ρinL
N )(F−1

t ({x}) ∩ J−1
t ({0}))) > 0 .

Proof. If x ∈ C′′
t , then L N (F−1

t ({x}) ∩ J−1
t ({0}) > 0 so that in particular the

intersection F−1
t ({x})∩J−1

t ({0} is infinite, which implies that x ∈ Ct∩C′
t, thereby

proving a).

Let R > 0; since Ft is proper by Proposition 3.1, F−1
t (B(0, R)) = KR is a

compact subset of RN . Pick ρin = 1KR ; obviously ρ
in ∈ L1(RN) and ρin ≥ 0 a.e..

Set µin = L
N ⊗(1KRδUin), let µ(t) = Φ#µin be the push-forward of µin under the

Hamiltonian flow and let ρ(t) = Π#µ(t) be the projected measure. As explained

above ρ(t) = Ft#(1KRL N ) so that, whenever x ∈ B(0, R) ∩ C′′
t ,

ρ(t)({x}) = (1KRL
N )(F−1

t ({x})) = L
N (KR ∩ F−1

t ({x}))
= L

N (F−1
t ({x}))

≥ L
N (F−1

t ({x}) ∩ J−1
t ({0})) > 0 .

This immediately implies both b) and c). Indeed, b) is satisfied with ρin = 1KR

for each R > 0 such that x ∈ C′′
t ∩B(0, R). On the other hand, for each R > 0, all

the points in C′′
t ∩B(0, R) are atoms of the same Borel measure Ft#(1KRL N ) on

RN , which implies c).
As for d), one has again ρ(t) = Ft#(ρinL N ), so that

ρ(t)({x}) = (ρinL
N)(F−1

t ({x})) = (ρinL
N )(F−1

t ({x}) ∩E)

+ (ρinL
N )(F−1

t ({x}) ∩ J−1
t ({0}))

+ (ρinL
N )(F−1

t ({x}) ∩ J−1
t (R∗

+))
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where E is the L N -negligible set where Ft is not differentiable. The conclusion
follows from the fact that L N(E) = 0 and ρin = 0 a.e. on J−1

t (R∗
+), so that

ρ(t)({x}) = (ρinL
N )(F−1

t ({x}) ∩ J−1
t ({0}))

�

If ρin ∈ L1(RN ) satisfies ρin ≥ 0 a.e. on RN and ρin = 0 a.e. on J−1
t (R∗

+)

while ‖ρin‖L1(RN ) > 0, one has (ρinL N ) ⊥ (JtL
N ), so that the projected measure

ρ(t) = Π#µ(t) satisfies ρ(t) ⊥ L N by statement b) in Theorem 5.1. By statement
d) in Theorem 6.1, the measure ρ(t) is diffuse if and only if

(ρinL
N )(F−1

t ({x}) ∩ J−1
t ({0}))) = 0 for all x ∈ Ct .

This may indeed happen, as shown by the following example.

Example 5. Assume N = 1, and set H(x, ξ) = 1
2ξ

2, which generates the free flow
Φt : (x, ξ) 7→ (x + tξ, ξ). By regularity of the Lebesgue measure, there exists a
compact set K ⊂ (0, 1) \Q such that 1

2 < L 1(K) < 1. Let Ω = (0, 1) \K; since Ω
is open in (0, 1) and contains (0, 1) ∩Q, it is a countably infinite union of disjoint
nonempty open intervals:

Ω =
⋃

n∈N

In , so that L
1(Ω) =

∑

n∈N

L
1(In) .

In particular λ := L
1(Ω) > 0 since L

1(In) > 0 for each n ∈ N (indeed each In is
an open interval that contains at least one rational). Set t = 1 and

F1(y) :=





y , if y ≤ 0 ,
∫ y

0

1Ω(z)dz , if y ∈ (0, 1) ,

λ+ (y − 1) , if y ≥ 1 .

Define

U in(y) := F (y)− y .

The function F1 is Lipschitz continuous on R, being the indefinite integral of a
bounded measurable function. Therefore U in is also Lipschitz continuous on R.

The function F1 is increasing on R — this being obvious on R∗
− and on (1,∞).

Indeed, if 0 < y1 < y2 < 1, the interval (y1, y2) contains at least one rational
number r, so that

F1(y2)− F1(y1) = L
1(Ω ∩ (y1, y2)) > 0 ,

since the open set Ω∩ (y1, y2) contains the intersection of the connected component
of r in Ω with (y1, y2), which is a nonempty open interval. Since F1(y) → ±∞ as
y → ±∞, we conclude that F1 : R → R is one-to-one and onto.

By the Lebesgue differentiation theorem (Theorem 7.11 in [20]), F1 is differen-
tiable a.e. on R (in fact it is even of class C∞ on R∗

− ∪ (1,∞)) and F ′
1(y) = 1Ω(y)

for a.e. y ∈ (0, 1). Thus, denoting by E the L 1-negligible set on which F1 is
not differentiable, one has (F ′

1)
−1({0}) ∪ E = K. Since F1 is one-to-one and onto,

C1 = F1(K).
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Let ρin = 1K ; thus ‖ρin‖L1 = L 1(K) > 0, so that (ρinL 1) ⊥ (|F ′
1|L 1). The

measure ρ(t) = Π#µ(t) where µ(t) = Φ#µin with µin := L 1
x ⊗ ρin(x)δUin(x)

satisfies ρ(1) ⊥ L N by statement b) in Theorem 5.1

ρ(1)(R) = ρ(1)(C1) = ‖ρin‖2L1 = L
1(K) > 0 .

On the other hand, since F1 is one-to-one and onto, for each x ∈ R, one has
#F−1

1 ({x}) = 1. In particular, for each x ∈ C1 = F1(K), one has

F−1
1 ({x}) ⊂ (F ′

1)
−1({0}) so that #(F−1

1 ({x})∩(F ′
1)

−1({0})) = #F−1
1 ({x}) = 1 .

In particular, for each x ∈ C1, by statement d) of Theorem 6.1, one has

(ρinL
1)(F−1

1 ({x}) ∩ (F ′
1)

−1({0})) = 0 ,

so that

ρ(1)({x}) = 0 .

Hence ρ(1) ⊥ L 1 and is diffuse, while ρ(1) 6= 0 since ρ(1)(C1) > 0.

7. Application to the classical limit of quantum mechanics

In this section, we apply the results obtained above to the classical limit of the
Schrödinger equation.

7.1. The classical scaling. Consider the evolution Schrödinger equation

i~∂tψ = − 1
2m~

2∆xψ + V (x)ψ

for the wave function ψ of a point particle of mass m subject to the action of an
external potential V ≡ V (x) ∈ R.

Choosing “appropriate” units of time T and length L, we recast the Schrödinger
equation in terms of dimensionless variables t̂ := t/T and x̂ := x/L. We define a

rescaled wave function ψ̂ and a rescaled, dimensionless potential V̂ by the formulas

ψ̂(t̂, x̂) := ψ(t, x) and V̂ (x̂) :=
T 2

mL2
V (x) .

In these dimensionless variables, the Schrödinger equation takes the form

i∂t̂ψ̂ = − ~T

2mL2
∆x̂ψ̂ +

mL2

~T
V̂ (x̂)ψ̂ .

The dimensionless number 2π~T/mL2 is the ratio of the Planck constant tomL2/T ,
that is (twice) the action of a classical particle of mass m moving at speed L/T on a
distance L. If the scales of time T and length L have been chosen conveniently, L/T
is the typical order of magnitude of the particle speed, and L is the typical length
scale on which the particle motion is observed. The classical limit of quantum
mechanics is defined by the scaling assumption 2π~ ≪ mL2/T — i.e. the typical
action of the particle considered is large compared to ~. Equivalently, mL/T is
the order of magnitude of the particle momentum, so that 2π~T/mL is its de
Broglie wavelength; the scaling assumption 2π~T/mL ≪ L means that the de
Broglie wavelength of the particle under consideration is small compared to the
observation length scale L.
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Introducing the small, dimensionless parameter ǫ = ~T/mL2 and dropping hats
in the dimensionless variables as well as on the rescaled wave function and di-
mensionless potential, we arrive at the following formulation for the Schrödinger
equation in dimensionless variables

(40) iǫ∂tψ = − 1
2ǫ

2∆xψ + V (x)ψ .

The WKB ansatz postulates that, at time t = 0, the wave function is of the form

ψ(t, x) = ain(x)eiS
in(x)/~ , x ∈ RN .

Consistently with the scaling argument above, we set

âin(x̂) := ain(x) and Ŝin(x̂) := TSin(x)/mL2

— since Sin has the dimension of an action — so that

(41) ψ̂(0, x̂) = âin(x̂)eiŜ
in(x̂)/ǫ .

Dropping hats in the initial data as well as in the Schrödinger equation, one ar-
rives at the following Cauchy problem for the Schrödinger equation in dimensionless
variables:

(42)

{
iǫ∂tψǫ = − 1

2ǫ
2∆xψǫ + V (x)ψǫ , x ∈ RN , t ∈ R ,

ψǫ(0, x) = ain(x)eiS
in(x)/ǫ .

The problem of the classical limit of the Schrödinger equation is to describe the
wave function ψǫ in the limit as ǫ→ 0+.

7.2. The WKB method. The traditional procedure for describing the classical
limit of the Schrödinger equation is the WKB method recalled below. First we
recall some mathematical tools and elements of notation used in the presentation
of that method.

Assume that V ∈ C∞(RN ) satisfies

(43) ∂αV ∈ L∞(RN) for each multi-index α ∈ NN

and

(44)
V (x)

|x| → 0 as |x| → +∞ .

Then the Hamiltonian

H(x, ξ) := 1
2 |ξ|2 + V (x)

satisfies (7) and therefore generates a global flow

RN ×RN ∋ (x, ξ) 7→ (Xt(x, ξ),Ξt(x, ξ)) ∈ RN ×RN

by Lemma 2.1.
Assume further that

(45) sup
x∈RN

∫

RN

Γη(x− y)V −(y)dy → 0 as η → 0 if N ≥ 2

with

Γη(z) =

{
1[0,η](|z|)|z|2−N if N ≥ 3 ,

1[0,η](|z|) ln(1/|z|) if N = 2 ,
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while

(46) sup
x∈RN

∫ x+1

x−1

V −(y)dy <∞ if N = 1 .

Under assumptions (45)-(46), the operator − 1
2ǫ

2∆x+V has a self-adjoint exten-

sion on L2(RN ) that is bounded from below.
Under assumption (43), there exists a FIO that is a parametrix for the operator

Gǫ(t) := e
i
t
ǫ

(

1
2 ǫ

2∆x−V
)

see for instance Theorem 2.1 in [16], whose main features are recalled below.
Consider the action

(47) S(t, x, ξ) :=

∫ t

0

(
1
2 |Ξs(x, ξ)|2 − V (Xs(x, ξ))

)
ds

Given T > 0, we shall have to deal with the class of phase functions

ϕ ≡ ϕ(t, x, y, η) ∈ C of class C∞ on [0, T )×RN ×RN ×RN )

satisfying the conditions

(48)





ϕ(t,Xt(y, η), y, η) = S(t, y, η) ,

Dxϕ(t,Xt(y, η), y, η) = Ξt(y, η) ,

iD2
xϕ(t, x, y, η) ≤ 0 is independent of x ,

det(Dxηϕ(t,Xt(y, η), y, η)) 6= 0 for each (t, y, η) ∈ [0, T )×RN ×RN .

Pick χ ∈ C∞
c (RN ×RN ) and T > 0. Then, for any phase function ϕ satisfying

(48) and any n ≥ 0, there exists An ≡ An(t, y, η, ǫ) ∈ C∞
c ([0, T ] × RN × RN)[ǫ]

such that the FIO Gn(t) with Schwartz kernel

Gǫ,n(t, x, y) =

∫
An(t, y, η, ǫ)e

iϕ(t,x,y,η)/ǫ dη

(2πǫ)N

satisfies

sup
0≤t≤T

‖(Gǫ(t)−Gǫ,n(t))χ(x,−iǫ∂x)‖L(L2(RN )) ≤ C[V, T, χ]ǫn−2N .

In this inequality the notation χ(x,−iǫ∂x) designates the pseudo-differential oper-
ator defined by the formula

χ(x,−iǫ∂x)φ(x) :=
∫∫

RN×RN

ei(x−y)·η/ǫχ(x, η)φ(y)
dydη

(2πǫ)N

Taking Theorem 2.1 in [16] for granted, one arrives at the following description
of the classical limit of (42). It is stated without proof in Appendix 11 of [5] or as
Theorem 5.1 in [3].

Let U in = ∇Sin and let C be defined as in (15); let N (t, x) and yj(t, x) be
defined as in Proposition 3.3 for each (t, x) ∈ R×RN \C. Let Jt(y) be defined as
in (14).

Proposition 7.1. Let ain ∈ Cm
c (RN ) and Sin ∈ Cm+1(RN ) with m > 6N + 4.

For all ǫ > 0 and all (t, x) ∈ R+ ×RN \ C, set

(49) Ψǫ(t, x)=

N (t,x)∑

j=1

ain(yj(t, x))

Jt(yj(t, x))1/2
eiSj(t,x)/ǫeiπνj(t,x)/2 ,
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where

Sj(t, x) := Sin(yj(t, x)) + S(t, yj(t, x),∇Sin(yj(t, x))) , j = 1, . . . ,N (t, x)

S(t, y, ξ) is given by (47) and νj(t, x) ∈ Z for all (t, x) ∈ R+ ×RN \C is constant
on each connected component of R×RN where j ≤ N .

Then the solution ψǫ of the Cauchy problem (42) satisfies

(50) ψǫ(t, x) = Ψǫ(t, x) +R1
ǫ(t, x) +R2

ǫ (t, x)

for all T > 0, where

sup
0≤t≤T

‖R1
ǫ‖L2(B(0,R)) = O(ǫ) for all R > 0

and

sup
(t,x)∈K

|R2
ǫ (t, x)| = O(ǫ) for each compact K ⊂ R+ ×RN \ C

as ǫ→ 0+.

Let us remark that the integer nuj(t, x) is precisely defined through the proof of
the Proposition, see formula 63 below. As w won’t need it we will not discuss here
its link with the Morse index of the path

[0, t] ∋ s 7→ Xs(yj(t, x),∇Sin(yj(t, x))),

see [3] for more details concerning this point.
A self-contained proof of Proposition 7.1 is given in Appendix A following the

parametrix construction of [16].

7.3. The Wigner transform. Alternately, the asymptotic limit of ψǫ can also be
investigated with the help of Wigner’s transform [23, 17].

For each Ψ ∈ L2(RN), one defines the Wigner transform of Ψ at scale ǫ by the
formula

Wǫ[Ψ](x, ξ) := 1
(2π)N

∫

RN

e−iy·ξΨ(x+ 1
2ǫy)Ψ(x− 1

2ǫy)dy .

Let us define the ǫ-Fourier transform Ψ̂ as

Ψ̂(ξ) :=
1

(2πǫ)N/2

∫

L2(RN )

Ψ(x)ei
xξ
ǫ dx.

Straightforward computations lead easily to the following identities.

(51)

∫

RN

Wǫ[Ψ](x, ξ)dξ = |Ψ(x)|2,
∫

RN

Wǫ[Ψ](x, ξ)dx = |Ψ̂(ξ)|2

and, for any pseudodifferential A operator of (total) Weyl symbol a(x, ξ)

(52)

∫

RN

Wǫ[Ψ](x, ξ)a(x, ξ)dxdξ = 〈Ψ, AΨ〉L2(RN )

Lemma 7.2. Let ain ∈ L2(RN ) and Sin ∈∈ W 1,1
loc (R

N). Then

Wǫ[a
ineiS

in/ǫ](x, ξ) → (ain)2(x)δ(ξ −∇Sin(x)) in S ′(RN ×RN )

as ǫ→ 0.

See Example III.5 in [17].
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Proposition 7.3 ([17]). Assume that V ∈ C1,1(RN ) satisfies (45)-(46)-(43)-(44).
Let

µǫ(t, x, ξ) :=Wǫ[ψǫ(t, ·)](x, ξ)
for each ǫ > 0 and each t ∈ R, and for a.e. (x, ξ) ∈ RN ×RN .

Then the family µǫ converges in S ′(R × RN × RN ) as ǫ → 0 to the unique
solution of the Liouville equation

(53)

{
∂tµ+ ξ · ∇xµ−∇xV (x) · ∇ξµ = 0 , x, ξ ∈ RN , t ∈ R ,

µ(0, x, ξ) := ain(x)2δ∇Sin(x)(ξ) .

In particular, µ ∈ Cb(R, w−M(RN ×RN)) and µ(t) is a positive Radon measure
for all t ∈ R.

This proposition is stated as Theorem IV.1 in [17], to which we refer for a
complete proof.

Therefore, the structure of the measure µ(t) is given by Theorem 5.1 with

ρin = (ain)2 and U in = ∇Sin .

Likewise, Theorem 6.1 provides a precise description of the exceptional sets associ-
ated to µ(t).

7.4. Link with the results of the present article. The WKB asymptotic so-
lution (49) obviously contains more information than the regular part µa(t) of the
Wigner measure µ(t) that is the solution of the Liouville equation (53) — for the
definition of µa(t) and its structure, see Theorem 5.1.

For instance, the (finitely many) phase functions Sj(t, x) appearing in (49) define
velocity fields Uj(t, x) := ∇xSj(t, x) as in the formula giving µa(t) in Theorem 5.1.
On the contrary, the Morse indices νj(t, x) do not appear in the formula for µa(t).

One can go a little further, and compute the Wigner measure associated to the
WKB asymptotic solution (49), under the assumptions used in Proposition 7.1.

Let t ∈ R; for each x ∈ RN \ Ct and j ∈ {1, . . . ,N (t, x)}, one has

∇xSj(t, x) = DSin(yj(t, x))Dxyj(t, x) +DyS(t, yj(t, x), DS
in(yj(t, x)))Dxyj(t, x)

+DηS(t, yj(t, x), DS
in(yj(t, x)))D

2Sin(yj(t, x)Dxyj(t, x)

= Ξt(yj(t, x), DS
in(yj(t, x))) · (DyXt(yj(t, x), DS

in(yj(t, x)))Dxyj(t, x)

+DηXt(yj(t, x), DS
in(yj(t, x)))D

2Sin(yj(t, x))Dxyj(t, x)) ,

in view of formulas (3.1-2) in [16] recalled above (see (58)). By definition

(54) Xt(yj(t, x), DS
in(yj(t, x))) = x , j = 1, . . . ,N (t, x) ,

so that

DyXt(yj(t, x), DS
in(yj(t, x)))Dxyj(t, x)

+DηXt(yj(t, x), DS
in(yj(t, x)))D

2Sin(yj(t, x))Dxyj(t, x) = I

which implies in turn that

(55) ∇xSj(t, x) = Ξt(yj(t, x), DS
in(yj(t, x))) , j = 1, . . . ,N (t, x) .

Because of (54) and of the condition

yj(t, x) 6= yk(t, x) if 1 ≤ j < k ≤ N (t, x) ,
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one has

∇xSj(t, x) = Ξt(yj(t, x), DS
in(yj(t, x)))

6= Ξt(yk(t, x), DS
in(yk(t, x))) = ∇xSk(t, x) if 1 ≤ j < k ≤ N (t, x) ,

by uniqueness of the solution of the Cauchy problem for Hamilton’s equations.
Applying Proposition 1.5 in [9] implies that

Wǫ[Ψǫ(t, ·)] → µ(t) in D′((RN \ Ct)×RN)

as ǫ→ 0, where

µ(t, x, dξ) :=

N (t,x)∑

j=1

|ain(yj(t, x))|2
Jt(yj(t, x))

δ∇xSj(t,x) .

The expression in the right hand side of the equality above coincides with the
regular part µa(t) of the Wigner measure µ(t) in Theorem 5.1.

Since Theorem 5.1 is valid under much weaker hypothesis on the phase of the
initial WKB type initial conidtion, one might ask alternatively which information
our results give on the solution of the Schrödinger equation itself. The fact that the
Wigner measure is the limit of the Wigner transform at ǫ = 0 shows clearly that
there is no simple way of pulling back any quantitative information from it to the
wave function at ǫ 6= 0. Moreover the Wigner transform is quadratic. Therefore
it is natural to expect that our results carry information about the limit ǫ → 0 of
some quadratic expressions of the solution of the Schrödinger equation with rough
initial data.

Using (51) and (52) we easily get the

Proposition 7.4. Let ψǫ the solution of the Schrödinger equation (42) where ain

and ∇Sin satisfy the hypothesis of Theorem 5.1. One has, for each t ∈ R,

a) for any pseudodifferential operator A of principal Weyl symbol a(x, ξ),

lim
ǫ→0

〈ψǫ, Aψǫ〉L2(RN ) =

∫
aµ(t),

where µ(t) is described in Theorem 5.1,

b) weakly in M((RN \ C′
t)),

|ψǫ(x)|2 →
∑

y∈F−1
t ({x})

|ain|21Pt

Jt
(y) as ǫ→ 0,

c) weakly in M(RN \ Ξt(C
′
t,∇Sin(C′

t))),

|ψ̂ǫ(ξ)|2 →
∫

RN

∑

y∈F−1
t ({x})

|ain|21Pt

Jt
(y)δ(ξ − Ξt(y,∇Sin(y)))dx as ǫ→ 0,

where again C′
t is defined in (26) and Pt, Jt, Ξt and Ft are as in Theorem 5.1,

M(X) denotes the cone of positive bounded measures on X and Ξt(C
′
t,∇Sin(C′

t))
is meant for {Ξt(y,∇Sin(y)), y ∈ C′

t}.
Note that the restrictions x /∈ C′

t in b) and ξ /∈ Ξt(C
′
t,∇Sin(C′

t)) in c) can be
released using the singular part of µ(t) introduced in Theorem 5.1. We will not do
it here, the corresponding expressions being somehow less explicit.
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Let us give some final comments concerning the results contained in the present
paper. Though Proposition 7.1 can be improved by adding extra hypothesis on
ain and Sin, the approximation stated in full generality holds in R×RN \C, and
only locally. In particular, the approximation of the wave function ψǫ by the WKB
ansatz Ψǫ is not uniform as (t, x) gets near C. (For more on this well known fact
in another, related context, we refer the reader to the last paragraph in §55 and
on the problem in §59 in [14].) On the contrary, the result obtained in Theorem
5.1 is global, holds in the sense of measures and does not involve the caustic C as
explained in the previous sections.

Appendix A. Proof of Proposition 7.1

Let χ(x, ξ) = χ1(x)χ2(ξ) with χ1, χ2 ∈ C∞
c (RN ), satisfying

1B(0,R)(x) ≤ χ1(x) ≤ 1B(0,R+1) and 1B(0,Q)(ξ) ≤ χ2(ξ) ≤ 1B(0,Q+1)

for all x, ξ ∈ RN , where R > 0 and Q is to be chosen later. Pick n > 2N ; then

ψǫ(t, ·)−Gǫ,n(t)χ(x,−iǫ∂x)ψin
ǫ = Gǫ(t)(1− χ(x,−iǫ∂x))ψin

ǫ

+ (Gǫ(t)−Gǫ,n(t))χ(x,−iǫ∂x)ψin
ǫ .

Since Gǫ(t) is a unitary group on L2(RN )

‖ψǫ(t, ·)−Gǫ,n(t)χ(x,−iǫ∂x)ψin
ǫ ‖L2(RN ) ≤ ‖(1− χ(x,−iǫ∂x))ψin

ǫ ‖L2(RN )

+‖(Gǫ(t)−Gǫ,n(t))χ(x,−iǫ∂x)ψin
ǫ ‖L2(RN )

≤ ‖(1− χ(x,−iǫ∂x))ψin
ǫ ‖L2(RN )

+CT,Qǫ
n−2N‖ain‖L2(RN )

for all t ∈ [0, T ], where CQ,T = C[V, T, χ].
Now, χ(x,−iǫ∂x)ψin

ǫ = χ1(x)χ2((−iǫ∂x)ψin
ǫ and since supp(ain) ⊂ B(0, R)

‖(1− χ(x,−iǫ∂x))ψin
ǫ ‖L2(RN ) = ‖χ1(1− χ2(−iǫ∂x))ψin

ǫ ‖L2(RN )

≤ ‖(1− χ2(−iǫ∂x))ψin
ǫ ‖L2(RN )

= (2π)−N‖(1− χ2(ǫξ))ψ̂in
ǫ ‖L2(RN )

≤ (2π)−N‖1[Q/ǫ,∞)(|ξ|)ψ̂in
ǫ ‖L2(RN )

Since

ψ̂in
ǫ (ζ/ǫ) =

∫

RN

e−i(ζ·x−Sin(x))/ǫain(x)dx

we conclude from estimate (7.7.1’) in [11] that

|ψ̂in
ǫ (ζ/ǫ)| ≤ C‖ain‖Wm,∞(RN )

(|ζ| − ‖∇Sin‖L∞(B(0,R))m
ǫm

provided that supp(ain) ⊂ B(0, R) and |ζ| > 1 + ‖∇Sin‖L∞(B(0,R). Therefore

(56)
‖ψǫ(t, ·)−Gǫ,n(t)χ(x,−iǫ∂x)ψin

ǫ ‖L2(RN ) ≤ CT,Q‖ain‖L2(RN )ǫ
n−2N

+C‖(1 + |ζ|)−m‖L2(RN )‖ain‖Wm,∞(RN )ǫ
m

for all m > N/2.
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Next we analyze the term
(57)
Gǫ,n(t)χ(x,−iǫ∂x)ψin

ǫ (x)

=

∫∫∫∫
An(t, y, η, ǫ)a

in(z)χ2(ζ)e
i(ϕ(t,x,y,η)+ζ·(y−z)+Sin(z))/ǫ dzdζdydη

(2πǫ)2N

with the stationary phase method.
Choose ϕ of the form

ϕ(t, x, y, η) = S(t, y, η) + (x−Xt(y, η)) · Ξt(y, η) + iB : (x−Xt(y, η))
⊗2

where the matrix B = BT > 0 is constant (see formula (2.7) [16] and the following
Remark 2.1). Critical points of the phase in the oscillating integral (57) are defined
by the system of equations





− ζ +DSin(z) = 0 ,

y − z = 0 ,

∂yS(t, x, y)− Ξt(y, η) ·DyXt(y, η) + (x −Xt(y, η)) ·DyΞt(y, η)

− iB : (x−Xt(y, η))⊗DyXt(y, η) + ζ = 0 ,

∂ηS(t, x, y)− Ξt(y, η) ·DηXt(y, η) + (x −Xt(y, η)) ·DηΞt(y, η)

− iB : (x−Xt(y, η))⊗DηXt(y, η) + ζ = 0 .

At this point, we recall formulas (3.1-2) from [16]

(58)
∂yS(t, x, y) = Ξt(y, η) ·DyXt(y, η)− η ,

∂ηS(t, x, y) = Ξt(y, η) ·DηXt(y, η) ,

together with the following definitions

Y (t, y, η) := DyΞt(y, η)− iBDyXt(y, η) ,

Z(t, y, η) := DηΞt(y, η)− iBDηXt(y, η) .

Thus the critical points of the phase in (57) are given by




ζ = DSin(z) ,

y = z ,

(x−Xt(y, η))
TY (t, y, η) + ζ = η ,

(x−Xt(y, η))
TZ(t, y, η) = 0 .

Since the matrix Z is invertible by Lemma 4.1 of [16], we conclude that the system
of equations above is equivalent to





ζ = DSin(z) ,

y = z ,

ζ = η ,

x = Xt(y, η) .

In other words,

Ft(z) = x , y = z , ζ = η = DSin(z) .
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Assuming that (t, x) /∈ C, we apply Proposition 3.3 and conclude that the set of
critical points of the phase in (57) is of the form

{
y = z = yj(t, x) ,

ζ = η = DSin(yj(t, x)) ,
j = 1, . . . ,N (t, x) .

At this point, we apply the stationary phase method (Theorem 7.7.5 in [11]). First
we need to compute the Hessian of the phase in (57) at its critical points. One finds

Hj(t, x) :=




D2Sin −I 0 0
−I 0 +I 0
0 +I −Y DyXt −Y DηXt − I
0 0 −ZDyXt −ZDηXt




y=yj (t,x)

η=DSin(yj (t,x))

and it remains to compute det(Hj(t, x)). Adding the first row of Hj(t, x) to the
third row, one finds that

detHj(t, x) =

∣∣∣∣∣∣∣∣

D2Sin −I 0 0
−I 0 +I 0

D2Sin 0 −Y DyXt −Y DηXt − I
0 0 −ZDyXt −ZDηXt

∣∣∣∣∣∣∣∣ y=yj (t,x)

η=DSin(yj (t,x))

= (−1)N

∣∣∣∣∣∣

−I +I 0
D2Sin −Y DyXt −Y DηXt − I

0 −ZDyXt −ZDηXt

∣∣∣∣∣∣ y=yj (t,x)

η=DSin(yj(t,x))

= (−1)N

∣∣∣∣∣∣

−I 0 0
D2Sin −Y DyXt +D2Sin −Y DηXt − I

0 −ZDyXt −ZDηXt

∣∣∣∣∣∣ y=yj (t,x)

η=DSin(yj(t,x))

where the last equality follows from adding the first column in the right hand side
of the second equality to the second column. Eventually, one finds that

detHj(t, x) =

∣∣∣∣
−Y DyXt +D2Sin −Y DηXt − I

−ZDyXt −ZDηXt

∣∣∣∣ y=yj (t,x)

η=DSin(yj (t,x))

which is computed as follows. First
∣∣∣∣
I −Y Z−1

0 I

∣∣∣∣
∣∣∣∣
−Y DyXt +D2Sin −Y DηXt − I

−ZDyXt −ZDηXt

∣∣∣∣ =
∣∣∣∣
D2Sin −I

−ZDyXt −ZDηXt

∣∣∣∣

so that

detHj(t, x) =

∣∣∣∣
D2Sin −I

−ZDyXt −ZDηXt

∣∣∣∣ y=yj(t,x)

η=DSin(yj (t,x))

On the other hand
∣∣∣∣
D2Sin −I

−ZDyXt −ZDηXt

∣∣∣∣ = det(ZDyXt + ZDηXtD
2Sin)

= det(Z) det(DyXt +DηXtD
2Sin)

by the following elementary lemma.
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Lemma A.1. Let A,B,C,D ∈MN (C). If AB = BA, one has
∣∣∣∣
A B
C D

∣∣∣∣ = det(DA− CB) .

Therefore

(59)
detHj(t, x) = det(Z) det(DyXt +DηXtD

2Sin)
∣∣∣
y=yj(t,x), η=DSin(yj(t,x))

= det(Z(yj(t, x), DS
in(yj(t, x))) det(DFt(yj(t, x)))

where Ft is defined in (13) with U in = DSin.
Pick a nonempty closed ball B ⊂ R×RN \C, let NB = N (t, x) for all (t, x) ∈ B,

and let

Kj = {(yj(t, x),∇Sin(yj(t, x))) | (t, x) ∈ B} , j = 1, . . . ,NB .

Assuming that B is of small enough radius, Kj ∩Kk = ∅ for j 6= k ∈ {1, . . . ,NB}.
Let κj ∈ C∞

c (R2N ) for all j = 1, . . . ,NB, such that
{
κj ≥ 0 and κj

∣∣
Kj

= 1 , j = 1, . . . ,NB ,

while κjκk = 0 for j 6= k ∈ {1, . . . ,NB} ,
Applying Theorem 7.7.1 in [11] shows that
(60)

sup
(t,x)∈B

∣∣∣∣
∫∫∫∫

An(t, y, η, ǫ)a
in(z)χ2(ζ)e

i(ϕ(t,x,y,η)+ζ·(y−z)+Sin(z))/ǫ dzdζdydη

(2πǫ)2N

−
NB∑

j=1

∫∫∫∫
An(t, y, η, ǫ)a

in(z)χ2(ζ)κj(y, η)κj(z, ζ)

ei(ϕ(t,x,y,η)+ζ·(y−z)+Sin(z))/ǫ dzdζdydη

(2πǫ)2N

∣∣∣∣ = O(ǫ)

as ǫ→ 0.
Next we set

Ij(t, x, ǫ) :=

∫∫∫∫
An(t, y, η, ǫ)a

in(z)χ2(ζ)κj(y, η)κj(z, ζ)

×ei(ϕ(t,x,y,η)+ζ·(y−z)+Sin(z))/ǫ dzdζdydη

(2πǫ)2N

for j = 1, . . . ,NB . By Theorem 7.7.5 in [11], we conclude that
(61)

sup
(t,x)∈B

|Ij(t, x, ǫ)−A0(t, yj(t, x),∇Sin(yj(t, x)), 0)a
in(yj(t, x))χ2(∇Sin(yj(t, x)))

×ei(ϕ(t,x,yj(t,x),∇Sin(yj(t,x)))+Sin(yj(t,x)))/ǫ(detHj(t, x))
−1/2| = O(ǫ)

as ǫ→ 0. Our choice of χ2 and ϕ implies that χ2(∇Sin(yj(t, x))) = 1 and

ϕ(t, x, yj(t, x),∇Sin(yj(t, x))) = S(t, yj(t, x),∇Sin(yj(t, x)))

so that
(ϕ(t, x, yj(t, x),∇Sin(yj(t, x))) + Sin(yj(t, x))) = Sj(t, x) .

By formula (2.13) in [16]

(62) A0(t, yj(t, x),∇Sin(yj(t, x)), 0) =
cont

√
Det(Z(yj(t, x), DSin(yj(t, x)))
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where the determination of cont
√
z is obtained by continuity (let us recall that

Det(Z(yj(t, x), DS
in(yj(t, x))) never vanishes), According to (62), (59), Lemma

5.1 and formula (5.15) in [16], we have

(63)
A0(t, yj(t, x),∇Sin(yj(t, x)), 0)(detHj(t, x))

−1/2

= | det(DFt(yj(t, x)))|−1/2eiπνj(t,x)/2 = J(yj(t, x))
−1/2eiπνj(t,x)/2 ,

where νj(t, x) is an integer.
Putting together (56)-(60)-(61)-(63) concludes the proof.

Proof of Lemma A.1. If A is nonsingular and AB = BA, one has
∣∣∣∣
A B
C D

∣∣∣∣ = (−1)N
∣∣∣∣
A B
C D

∣∣∣∣
∣∣∣∣
A−1 B
0 −A

∣∣∣∣ = (−1)N
∣∣∣∣

I 0
CA−1 CB −DA

∣∣∣∣
= (−1)N det(CB −DA) = det(DA− CB) .

Since both sides of the identity above are continuous functions of A and the set
of nonsingular matrices GLN (C) is dense in MN (C), this identity holds for all
A ∈Mn(C) such that AB = BA. �
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