Hamiltonian Evolution of Monokinetic Measures with Rough Momentum Profile

Claude Bardos, François Golse, Peter Markowich, Thierry Paul

To cite this version:

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. Hamiltonian Evolution of Monokinetic Measures with Rough Momentum Profile. 2012. hal-00706180v2

HAL Id: hal-00706180

https://polytechnique.hal.science/hal-00706180v2

Preprint submitted on 25 Jul 2012 (v2), last revised 26 Apr 2013 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HAMILTONIAN EVOLUTION OF MONOKINETIC MEASURES WITH ROUGH MOMENTUM PROFILE

CLAUDE BARDOS, FRANÇOIS GOLSE, PETER MARKOWICH, AND THIERRY PAUL

Abstract

Consider a probability density in the phase space $\mathbf{R}_{x}^{N} \times \mathbf{R}_{\xi}^{N}$, carried by the graph of a vector field $U^{i n}$ on \mathbf{R}^{N}, i.e. a Radon measure of the form $\mu^{i n}=\rho^{i n}(x) \delta\left(\xi-U^{i n}(x)\right)$. Let Φ_{t} be a Hamiltonian flow on $\mathbf{R}_{N} \times \mathbf{R}^{N}$. In this paper, we study the structure of the transported measure $\mu(t):=\Phi_{t} \# \mu^{\text {in }}$ and of its integral in the ξ variable denoted $\rho(t)$. In particular, we (a) provide estimates on the number of folds in $\operatorname{supp}(\mu(t))=\Phi_{t}\left(\right.$ graph of $\left.U^{i n}\right)$, (b) establish a decomposition of $\mu(t)$ into a "regular" component whose integral in the ξ variable is absolutely continuous with respect to the Lebesgue measure \mathscr{L}^{N}, (c) discuss the possibility of atoms for the measure $\rho(t)$ and (d) construct an example in which $\rho(t)$ is singular with respect to \mathscr{L}^{N} and diffuse. We conclude our study by explaining how our results can be applied to the classical limit of the Schrödinger equation by using the formalism of Wigner measures. Our results hold for initial momentum profiles $U^{\text {in }}$ less regular than C^{1}, for which the usual notion of caustic is not relevant. The proofs of these results is based on the area formula of geometric measure theory.

1. Introduction

The subject of this article is the propagation of a certain class of positive Radon measures by Hamiltonian flows.

Let $H \equiv H(x, \xi)$ be a Hamiltonian of class C^{2} on $T^{*} \mathbf{R}^{N}=\mathbf{R}_{x}^{N} \times \mathbf{R}_{\xi}^{N}$. Assume that the system of Hamilton's equations

$$
\begin{cases}\dot{X}_{t}=\nabla_{\xi} H\left(X_{t}, \Xi_{t}\right), & X_{0}(x, \xi)=x \tag{1}\\ \dot{\Xi}_{t}=-\nabla_{x} H\left(X_{t}, \Xi_{t}\right), & \Xi_{0}(x, \xi)=\xi\end{cases}
$$

generates a global flow

$$
\begin{equation*}
\Phi_{t}(x, \xi)=\left(X_{t}(x, \xi), \Xi_{t}(x, \xi)\right) \tag{2}
\end{equation*}
$$

Let $\mu^{i n}$ be a monokinetic measure on $\mathbf{R}_{x}^{N} \times \mathbf{R}_{\xi}^{N}$ i.e. a Radon measure of the form

$$
\begin{equation*}
\mu^{i n}(x, \xi)=\rho^{i n}(x) \delta_{U^{i n}(x)}(\xi) \tag{3}
\end{equation*}
$$

where $U^{i n}$ is a vector field on \mathbf{R}^{N} and $\rho^{i n} \in L^{1}\left(\mathbf{R}^{N}\right)$. Define

$$
\begin{equation*}
\mu(t)=\Phi_{t} \# \mu^{i n} \tag{4}
\end{equation*}
$$

[^0]the push-forward of $\mu^{i n}$ under Φ_{t}. Equivalently, $\mu(t) \in C_{b}\left(\mathbf{R}_{+} ; w-\mathcal{M}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)\right)$ is the unique weak solution of the Liouville equation
\[

\left\{$$
\begin{array}{l}
\partial_{t} \mu+\{H, \mu\}=0 \tag{5}\\
\left.\mu\right|_{t=0}=\mu^{i n}
\end{array}
$$\right.
\]

where $\{\cdot, \cdot\}$ designates the Poisson bracket

$$
\{f, g\}=\nabla_{\xi} f \cdot \nabla_{x} g-\nabla_{x} f \cdot \nabla_{\xi} g
$$

Our purpose is to study the structure of $\mu(t)$ and to deduce from it some information on its support

$$
\operatorname{supp}(\mu(t)) \subset \Lambda_{t}:=\Phi_{t}\left(\left\{\left(y, U^{i n}(y)\right) \mid y \in \mathbf{R}^{N}\right\}\right)
$$

While Λ_{t} is the image under Φ_{t} of the graph of $U^{i n}$, it is not in general the graph of a vector field on \mathbf{R}^{N} for all values of t.

When $U^{i n}=\nabla S^{i n}$ is a smooth gradient field on \mathbf{R}^{N}, then Λ_{t} is the union of graphs of $x \mapsto \nabla_{x} S_{j}(t, x)$, where S_{j} is a solution of the Hamilton-Jacobi equation

$$
\begin{equation*}
\partial_{t} S(t, x)+H\left(x, \nabla_{x} S(t, x)\right)=0 \tag{6}
\end{equation*}
$$

defined on some open set of $\mathbf{R}_{t} \times \mathbf{R}^{N}$. The graphs of $\nabla_{x} S_{j}$ are glued along submanifolds of Λ_{t} where the restriction of the canonical projection

$$
\Pi: T^{*} \mathbf{R}^{N}=\mathbf{R}_{x}^{N} \times \mathbf{R}_{\xi}^{N} \ni(x, \xi) \mapsto x \in \mathbf{R}^{N}
$$

is not smooth: see $\S 8$ in [5] and $\S 46-47$ in [6]. A natural question is to compute, or at least estimate, the number of solutions S_{j} of the Hamilton-Jacobi equation needed to obtain Λ_{t}.

Equivalently, the restriction to Λ_{t} of the canonical projection Π is in general not one-to-one for all t. The question above reduces to the following problem.
Problem A. To estimate the number $\mathcal{N}(t, x)$ of points in Λ_{t} whose image under Π is x.

The function \mathcal{N} describes the number of folds in Λ_{t} induced by the Hamiltonian dynamics Φ_{t} on the graph of $U^{i n}$ - even when $U^{i n}$ is not a gradient field.

Another natural question is the following one.
Problem B. To study the structure of $\mu(t)$ and of its push-forward $\rho(t)$ under the canonical projection Π - equivalently, of the first marginal of the measure $\mu(t)$ in the product space $\mathbf{R}_{x}^{N} \times \mathbf{R}_{\xi}^{N}$.

As we shall see below, both problems are intimately related.
The mathematical problem described above appears in a great variety of contexts. It appeared first in the theory of geometric optics, in the works of Fermat and Huygens: see for instance chapter VII in [15], chapter III in [11] and chapter 12 $\S 2$ in [13]. It appears in the classical limit of quantum mechanics: see for instance chapter VII in [16] or [25].

Specifically, we shall discuss the following problem in connection with Problems A-B:
Problem C. To study the propagation under the dynamics of the Schrödinger equation of a WKB type ansatz, i.e. of a wave function of the form

$$
\psi^{i n}(x)=a^{i n}(x) e^{i S^{i n}(x) / \hbar}
$$

in the classical limit, in the case of rough (non C^{2}) phase functions $S^{i n}$ and square integrable (not necessarily continuous) amplitudes $a^{i n}$.

We recall that the usual approach to the classical limit of the Schrödinger equation involves the construction of a Fourier integral type parametrix and applying the stationary phase method: see for instance [17] and the proof of Proposition 7.1 below in the appendix. This obviously requires stringent regularity conditions on both the initial phase and amplitude functions in the WKB ansatz.

In both examples above, the fact that $U^{i n}$ is a gradient field is important. There are however other types of physical models leading to the same mathematical problem even when $U^{i n}$ is not a gradient field. Indeed, the Maxwell distribution with density ρ, bulk velocity U and temperature θ, i.e.

$$
\frac{\rho(x)}{(2 \pi \theta)^{N / 2}} e^{-|\xi-U(x)|^{2} / 2 \theta}
$$

converges weakly to the monokinetic measure $\rho(x) \delta_{U(x)}(\xi)$ as $\theta \rightarrow 0^{+}$. The propagation of this class of measures by the flow Φ_{t} generated by the free Hamiltonian $H(x, \xi):=\frac{1}{2}|\xi|^{2}$, i.e. $\Phi_{t}(x, \xi)=(x+t \xi, \xi)$ can be viewed as the kinetic theory of pressureless gases, and appears for instance in a cosmological model due to Zeldovich $[27,9,8,7]$. When $U^{i n}$ is a gradient field, the Liouville equation (5) can therefore be viewed as a kinetic formulation of the Hamilton-Jacobi equation (6).

While the classical mathematical theory of geometric optics or of the semiclassical limit of quantum mechanics is centered on the geometry of Λ_{t} in the case where both the Hamiltonian H and $U^{i n}=\nabla S^{i n}$ are smooth, our approach of the mathematical problem stated above is centered on the propagation of the monokinetic measure $\rho(x) \delta_{U^{i n}(x)}(\xi)$ by the Hamiltonian flow. Besides, our analysis on the propagation problem is focussed on mathematical methods and results in which the initial momentum profile $U^{i n}$ is not required to be everywhere differentiable - so that Λ_{t} is not even a C^{1}-manifold. Likewise, the Hamiltonian nature of the dynamics is of limited importance in our analysis, and there is no need for the momentum profile $U^{i n}$ to be a gradient - or, equivalently, for Λ_{t} to be a Lagrangian submanifold of $T^{*} \mathbf{R}^{N}$.

However, we assume that the vector field generating the dynamics is at least of class C^{1} - or equivalently that the Hamiltonian H is at least of class C^{2} on $\mathbf{R}_{x}^{N} \times \mathbf{R}_{\xi}^{N}$ - so that the existence, uniqueness and regularity of the flow Φ_{t} results from the classical Cauchy-Lipschitz theory. The classical limit of quantum dynamics with rough potentials, for which the existence and uniqueness of the classical Hamiltonian flow does not follow from the Cauchy-Lipschitz theory, has been recently studied in [2]. Our viewpoint in the present paper is different and in some sense complementary: we focus our attention to the special class of monokinetic measures and to their propagation by smooth Hamiltonian flows, but obtain detailed information on the structure of the propagated measure $\mu(t)$ even for rough initial momentum profiles $U^{i n}$.

The outline of the paper is as follows. In section 2 are collected our assumptions on the Hamiltonian H with some elementary estimates on the flow Φ_{t} that are crucial in the sequel. Section 3 is focussed on the problem of estimating the number of folds in the support Λ_{t} of the propagated measure $\mu(t)$; our answers to Problem A are to be found in Proposition 3.3 d)-e) and in Theorem 3.4 c). The structure of $\mu(t)$ itself is studied in section 5 ; see Theorem 5.1 for our answers to Problem
B. Section 4 gathers together a few examples showing that the results in section 3 are sharp. In section 6 , we study different exceptional sets that appear naturally in connection with the structure of the projected measure $\rho(t):=\Pi \# \mu(t)$, and explain how these sets are related to the traditional notion of "caustic" (introduced by Tschirnhaus in the 17th century in the context of geometric optics). Section 7 discusses applications of the theory presented in sections 3-5, to the classical limit of quantum mechanics. While we have not completely solved Problem C, partial answers to this problem are stated as Proposition 7.4 b) and c).

2. On the Hamiltonian flow

Let $H \equiv H(x, \xi) \in \mathbf{R}$ be a C^{2} function on $\mathbf{R}^{N} \times \mathbf{R}^{N}$ satisfying the following assumptions: there exists $\kappa>0$, and a function $h \in C\left(\mathbf{R} ; \mathbf{R}_{+}\right)$that is sublinear at infinity, i.e.

$$
\frac{h(r)}{r} \rightarrow 0 \quad \text { as } r \rightarrow+\infty
$$

such that

$$
\begin{align*}
\left|\nabla_{\xi} H(x, \xi)\right| & \leq \kappa(1+|\xi|) \\
\left|\nabla_{x} H(x, \xi)\right| & \leq h(|x|)+\kappa|\xi| \tag{7}\\
\left|\nabla^{2} H(x, \xi)\right| & \leq \kappa
\end{align*}
$$

for all $(x, \xi) \in \mathbf{R}^{N} \times \mathbf{R}^{N}$.
Lemma 2.1. Any Hamiltonian $H \in C^{2}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ satisfying (7) generates a global Hamiltonian flow Φ_{t} on $\mathbf{R}^{N} \times \mathbf{R}^{N}$. The map

$$
\mathbf{R} \times \mathbf{R}^{N} \times \mathbf{R}^{N} \ni(t, x, \xi) \mapsto \Phi_{t}(x, \xi) \in \mathbf{R}^{N} \times \mathbf{R}^{N}
$$

is of class C^{1}. Moreover, for each $\eta>0$, there exists $C_{\eta}>0$ such that

$$
\sup _{|t| \leq T}\left|X_{t}(x, \xi)-x\right| \leq C_{\eta}(1+|\xi|)+\eta|x|
$$

for each $x, \xi \in \mathbf{R}^{N}$, and

$$
\left|D \Phi_{t}(x, \xi)-\operatorname{Id}_{\mathbf{R}^{N} \times \mathbf{R}^{N}}\right| \leq e^{\kappa|t|}-1
$$

for all $t \in \mathbf{R}$.
Proof. By (7), one has the following a priori estimates, with the notation (2).
First

$$
\left|X_{t}(x, \xi)-x\right| \leq \int_{0}^{t}\left|\nabla_{\xi} H\left(\Phi_{s}(x, \xi)\right)\right| d s \leq \kappa t+\kappa \int_{0}^{t}\left|\Xi_{s}(x, \xi)\right| d s
$$

and

$$
\begin{aligned}
\left|\Xi_{t}(x, \xi)\right| & \leq|\xi|+\int_{0}^{t}\left|\nabla_{x} H\left(\Phi_{s}(x, \xi)\right)\right| d s \\
& \leq|\xi|+\kappa \int_{0}^{t}\left|\Xi_{s}(x, \xi)\right| d s+\int_{0}^{t} h\left(X_{s}(x, \xi)\right) d s
\end{aligned}
$$

By Gronwall's inequality, for all $0 \leq s \leq t$

$$
\begin{equation*}
\left|\Xi_{s}(x, \xi)\right| \leq\left(|\xi|+\int_{0}^{t} h\left(X_{\tau}(x, \xi)\right) d \tau\right) e^{\kappa s} \tag{8}
\end{equation*}
$$

so that

$$
\begin{aligned}
\left|X_{t}(x, \xi)-x\right| & \leq \kappa t+\kappa \int_{0}^{t} e^{\kappa s} d s\left(|\xi|+\int_{0}^{t} h\left(X_{\tau}(x, \xi)\right) d \tau\right) \\
& \leq \kappa t+e^{\kappa t}\left(|\xi|+\int_{0}^{t} h\left(X_{\tau}(x, \xi)\right) d \tau\right)
\end{aligned}
$$

Since h is sublinear at infinity, we have, for every $R>0$

$$
\begin{equation*}
h(r) \leq \mathbf{1}_{[0, R]}(r) \sup _{0 \leq r \leq R} h(r)+\mathbf{1}_{(R,+\infty)}(r) r \sup _{r>R} \frac{h(r)}{r} \eta \leq M_{R}+r m_{R} \tag{9}
\end{equation*}
$$

where

$$
M_{R}=\sup _{0 \leq r \leq R} h(r) \quad \text { and } m_{R}=\sup _{r>R} \frac{h(r)}{r}
$$

so that

$$
m_{R} \rightarrow 0 \quad \text { as } R \rightarrow+\infty
$$

Therefore

$$
\begin{aligned}
\left|X_{t}(x, \xi)-x\right| & \leq\left(\kappa+M_{R} e^{\kappa t}\right) t+e^{\kappa t}|\xi|+m_{R} e^{\kappa t} \int_{0}^{t}\left|X_{s}(x, \xi)\right| d s \\
& \leq\left(\kappa+M_{R} e^{\kappa t}\right) t+e^{\kappa t}|\xi|+m_{R} e^{\kappa t}|x|+m_{R} e^{\kappa t} \int_{0}^{t}\left|X_{s}(x, \xi)-x\right| d s
\end{aligned}
$$

By Gronwall's inequality,

$$
\begin{align*}
\left|X_{t}(x, \xi)-x\right| & \leq\left(\left(\kappa+M_{R} e^{\kappa t}\right) t+e^{\kappa t}|\xi|+m_{R} e^{\kappa t}|x|\right) e^{t m_{R} e^{\kappa t}} \tag{10}\\
& \leq \kappa t e^{t m_{R} e^{\kappa t}}+M_{R} t e^{t\left(\kappa+m_{R} e^{\kappa t}\right)}+|\xi| e^{t\left(\kappa+m_{R} e^{\kappa t}\right)}+m_{R}|x| e^{t\left(\kappa+m_{R} e^{\kappa t}\right)} .
\end{align*}
$$

The same estimates hold for $-T \leq t \leq 0$ after substituting $|t|$ to t.
In view of (10)-(8), for each $(x, \xi) \in \mathbf{R}^{N} \times \mathbf{R}^{N}$, the trajectory $(x, \xi) \mapsto \Phi_{t}(x, \xi)$ cannot escape to infinity in finite time, and is therefore globally defined.

Besides, since $m_{R} \rightarrow 0$ as $R \rightarrow+\infty$, the estimate (10) obviously implies the first inequality in the lemma with

$$
\eta:=m_{R} e^{T\left(\kappa+m_{R} e^{\kappa T}\right)} \quad \text { and } C_{\eta}:=\left(1+\kappa T+M_{R} T\right) e^{T\left(\kappa+m_{R} e^{\kappa T}\right)}
$$

Since $H \in C^{2}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$, the map $(t, x, \xi) \mapsto \Phi_{t}(x, \xi)$ is of class C^{1} on its domain of definition $\mathbf{R} \times \mathbf{R}^{N} \times \mathbf{R}^{N}$. Differentiating the Hamilton equations (1) with respect to the initial condition, one finds that

$$
\left\{\begin{array}{l}
\dot{D} X_{t}=+\nabla_{x, \xi}^{2} H\left(\Phi_{t}\right) \cdot D X_{t}+\nabla_{\xi, \xi}^{2} H\left(\Phi_{t}\right) \cdot D \Xi_{t} \\
\dot{D \Xi_{t}}=-\nabla_{x, x}^{2} H\left(\Phi_{t}\right) \cdot D X_{t}-\nabla_{x, \xi}^{2} H\left(\Phi_{t}\right) \cdot D \Xi_{t}
\end{array}\right.
$$

so that

$$
\left|D \Phi_{t}-\operatorname{Id}_{\mathbf{R}^{N} \times \mathbf{R}^{N}}\right| \leq \kappa \int_{0}^{|t|}\left|D \Phi_{s}\right| d s
$$

The second inequality in the lemma follows from Gronwall's inequality.

3. On the number of folds in Λ_{t}

Let $U^{i n} \in C\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ satisfy the condition

$$
\begin{equation*}
\frac{\left|U^{i n}(y)\right|}{|y|} \rightarrow 0 \quad \text { as }|y| \rightarrow 0 \tag{11}
\end{equation*}
$$

The present section is focussed on the structure of the set Λ_{t} in the introduction, defined as

$$
\begin{equation*}
\Lambda_{t}:=\Phi_{t}\left(\left\{\left(y, U^{i n}(y)\right) \mid y \in \mathbf{R}^{N}\right\}\right), \quad t \in \mathbf{R} \tag{12}
\end{equation*}
$$

Consider the map

$$
\begin{equation*}
F_{t}: \mathbf{R}^{N} \ni y \mapsto F_{t}(y)=X_{t}\left(y, U^{i n}(y)\right) \in \mathbf{R}^{N} \tag{13}
\end{equation*}
$$

Whenever $U^{i n}$ is differentiable at y, the map F_{t} is also differentiable at y by the chain rule; for any such y, define the absolute value of the Jacobian determinant

$$
\begin{equation*}
J_{t}(y)=\left|\operatorname{det}\left(D F_{t}(y)\right)\right| . \tag{14}
\end{equation*}
$$

We also introduce the set

$$
\begin{aligned}
& C:=\left\{(t, x) \in \mathbf{R} \times \mathbf{R}^{N} \mid F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}(\{0\}) \neq \varnothing\right\} \\
& C_{t}:=\left\{x \in \mathbf{R}^{N} \mid(t, x) \in C\right\}
\end{aligned}
$$

For lack of a better terminology and by analogy with geometric optics, C will be referred to as the "caustic" set.

Proposition 3.1. Under the conditions above, for each $t \in \mathbf{R}$, the map F_{t} is proper and onto. Moreover

$$
\begin{equation*}
\sup _{|t| \leq T} \frac{\left|F_{t}(y)-y\right|}{|y|} \rightarrow 0 \quad \text { as }|y| \rightarrow \infty \tag{16}
\end{equation*}
$$

The proof of this proposition and the next one will use the following topological argument.
Lemma 3.2. Let $g: \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$ be a continuous map satisfying the following condition: for some $R>0$

$$
(g(x) \mid x)>0 \quad \text { for all } x \in \mathbf{R}^{N} \text { such that }|x|=R
$$

Then
a) there exists $x \in \mathbf{R}^{N}$ such that $|x| \leq R$ and $g(x)=0$;
b) if g is of class C^{1} on \mathbf{R}^{N} and 0 is a regular value of g, then $g^{-1}(\{0\}) \cap B(0, R)$ is finite and $\#\left(g^{-1}(\{0\}) \cap B(0, R)\right)$ is odd.
Proof. Consider the homotopy $G \in C\left([0,1] \times \mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ defined by

$$
G(t, x)=t x+(1-t) g(x)
$$

One has

$$
G(t, x) \neq 0 \quad \text { whenever } t \in[0,1] \text { and }|x|=R
$$

Indeed, $G(1, x)=x \neq 0$ if $|x|=R>0$; besides, if $t \in[0,1[$ and $G(t, x)=0$, one has

$$
g(x)=-\frac{t}{1-t} x \quad \text { so that }(g(x) \mid x)=-\frac{t}{1-t}|x|^{2}=-\frac{t}{1-t} R^{2}<0
$$

for all $x \in \mathbf{R}^{N}$ such that $|x|=R$, which contradicts our assumption.

By the homotopy invariance of the degree (see Properties 7, 8 and Theorem 12.7 in chapter $12, \S$ A of [24])

$$
d(g, B(0, R), 0)=d(I, B(0, R), 0)=1
$$

This implies a). Moreover, if g is of class C^{1} on \mathbf{R}^{N} and 0 is a regular value of g, all the elements of $g^{-1}(\{0\})$ are isolated points by the implicit function theorem, so $g^{-1}(\{0\}) \cap \overline{B(0, R)}$ is finite. Besides (see Property 2 in chapter 12 , §A of [24])

$$
d(g, B(0, R), 0)=\sum_{x \in g^{-1}(\{0\}) \cap B(0, R)} \operatorname{sign}(\operatorname{det} D g(x))=1
$$

Therefore, there exists an integer $m \in \mathbf{N}$ such that

$$
\begin{aligned}
& \#\{x \in B(0, R) \mid g(x)=0 \text { and } \operatorname{det}(D g(x))>0\}=m+1 \\
& \#\{x \in B(0, R) \mid g(x)=0 \text { and } \operatorname{det}(D g(x))<0\}=m
\end{aligned}
$$

so that $\#\left(g^{-1}(\{0\}) \cap B(0, R)\right)=2 m+1$, which proves b$)$.
Proof of Proposition 3.1. By the first inequality in Lemma 2.1 and the condition (11 on $U^{i n}$, for each $\eta>0$, one has

$$
\varlimsup_{|y| \rightarrow+\infty} \sup _{|t| \leq T} \frac{\left|F_{t}(y)-y\right|}{|y|} \leq \eta
$$

so that (16) holds.
Because of (16), the continuous map F_{t} satisfies

$$
\begin{equation*}
\left(F_{t}(y)-x \mid y\right)=|y|^{2}+o\left(|y|^{2}\right) \quad \text { as }|y| \rightarrow+\infty \tag{17}
\end{equation*}
$$

so that F_{t} is onto by applying Lemma 3.2 to the map $g: y \mapsto F_{t}(y)-x$. On the other hand

$$
\left|F_{t}(y)\right| \rightarrow+\infty \quad \text { as }|y| \rightarrow+\infty
$$

so that F_{t} is proper.
By Proposition 3.1, we know that, for each $(t, x) \in \mathbf{R} \times \mathbf{R}^{N}$, the equation $F_{t}(y)=x$ has at least one solution $y \in \mathbf{R}^{N}$ when $U^{i n}$ is a continuous vector field sublinear at infinity, i.e. satisfying (11). In the next proposition, we study the number $\mathcal{N}(t, x)$ of solutions of this equation in the case where $U^{i n}$ is of class C^{1} at least. Equivalently, $\mathcal{N}(t, x)$ is the number of intersections of the manifold Λ_{t} with $T_{x}^{*} \mathbf{R}^{N} \simeq\{x\} \times \mathbf{R}^{N}$. Therefore, the integer-valued function \mathcal{N} measures the number of folds in the manifold Λ_{t} resulting from the interaction of the Hamiltonian flow Φ_{t} with the initial profile $U^{i n}$.
Proposition 3.3. [Smooth case] Assume that (11) holds for $U^{\text {in }} \in C^{1}\left(\mathbf{R}^{N}, \mathbf{R}^{N}\right)$ and that

$$
\left|D U^{i n}(y)\right|=O(1) \quad \text { as }|y| \rightarrow+\infty .
$$

a) For each $t \in \mathbf{R}$, one has $\mathscr{L}^{N}\left(C_{t}\right)=0$.
b) The set C is closed in $\mathbf{R} \times \mathbf{R}^{N}$.
c) For each $(t, x) \in \mathbf{R} \times \mathbf{R}^{N} \backslash C$, the set $F_{t}^{-1}(\{x\})$ is finite, and henceforth denoted by

$$
\left\{y_{j}(t, x), j=1, \ldots, \mathcal{N}(t, x)\right\}
$$

The integer \mathcal{N} is a constant function of (t, x) in each connected component of $\mathbf{R} \times \mathbf{R}^{N} \backslash C$ and, for each $j \geq 1$, the map y_{j} is of class C^{1} on each connected component of $\mathbf{R} \times \mathbf{R}^{N} \backslash C$ where $\mathcal{N} \geq j$.
d) There exists $a<0<b$ such that $C \cap\left((a, b) \times \mathbf{R}^{N}\right)=\varnothing$ and $\mathcal{N}=1$ on $(a, b) \times \mathbf{R}^{N}$.
e) $\mathcal{N}(t, x)$ is odd for each $(t, x) \in \mathbf{R} \times \mathbf{R}^{N} \backslash C$.

Proof. If $U^{\text {in }} \in C^{1}\left(\mathbf{R}^{N}\right)$, the map F_{t} is of class C^{1} from \mathbf{R}^{N} to \mathbf{R}^{N}, being the composition of C^{1} maps. Since C_{t} is the set of critical values of F_{t}, one has $\mathscr{L}^{N}\left(C_{t}\right)=0$ by Sard's Theorem (in the equal dimension case), which proves a).

Pick any sequence $\left(t_{n}, x_{n}\right) \in C$ such that $\left(t_{n}, x_{n}\right) \rightarrow(t, x)$ in $\mathbf{R} \times \mathbf{R}^{N}$ as $n \rightarrow \infty$. By definition of C, there exists y_{n} such that $F_{t_{n}}\left(y_{n}\right)=x_{n}$. Since the sequences t_{n} and x_{n} converge, they are both bounded. Let $T=\sup _{n}\left|t_{n}\right|$; assume that the sequence y_{n} is unbounded; if so there exists a subsequence $y_{n_{l}}$ such that $\left|y_{n_{l}}\right| \rightarrow \infty$. By (16)

$$
\left|x_{n_{l}}-y_{n_{l}}\right|=\left|F_{t_{n_{l}}}\left(y_{n_{l}}\right)-y_{n_{l}}\right| \leq \sup _{|t| \leq T}\left|F_{t}\left(y_{n_{l}}\right)-y_{n_{l}}\right|=o\left(\left|y_{n_{l}}\right|\right)
$$

so that $\left|x_{n_{l}}\right| \sim\left|y_{n_{l}}\right|$ as $n_{l} \rightarrow+\infty$. Since this contradicts the fact that the sequence x_{n} is bounded, we conclude that the sequence y_{n} is bounded. Therefore, there exists a convergent subsequence $y_{n_{k}}$ of y_{n}; call y its limit as $n_{k} \rightarrow+\infty$. Passing to the limit in both relations

$$
F_{t_{n_{k}}}\left(y_{n_{k}}\right)=x_{n_{k}} \quad \text { and } J_{t_{n_{k}}}\left(y_{n_{k}}\right)=\left|\operatorname{det}\left(\nabla F_{t_{n_{k}}}\left(y_{n_{k}}\right)\right)\right|=0
$$

we conclude that (t, x, y) satisfies

$$
F_{t}(y)=x \quad \text { and } J_{t}(y)=0
$$

and therefore that $(t, x) \in C$, which proves b$)$.
For $(t, x) \in \mathbf{R} \times \mathbf{R}^{N} \backslash C$, all the solutions of the equation $F_{t}(y)-x=0$ are isolated by the implicit function theorem. The set of all such points, $F_{t}^{-1}(\{x\})$, is therefore compact since F_{t} is proper. By the implicit function theorem, the integer \mathcal{N} is a locally constant function of $(t, x) \in \mathbf{R} \times \mathbf{R}^{N} \backslash C$, and is therefore constant on each connected component of $\mathbf{R} \times \mathbf{R}^{N} \backslash C$. Let $j \in \mathbf{N}^{*}$, and let Ω be a connected component of $\mathbf{R} \times \mathbf{R}^{N} \backslash C$; by the implicit function theorem $y_{j} \in C^{1}(\Omega)$. This proves c).

Assume $\inf \left\{t>0 \mid C_{t} \neq \varnothing\right\}=0$. Then, there exists $\left(t_{n}, x_{n}, y_{n}\right)$ such that

$$
t_{n} \rightarrow 0^{+}, \quad F_{t_{n}}\left(y_{n}\right)=x_{n}, \quad \text { and } J_{t_{n}}\left(y_{n}\right)=0
$$

Assume that a subsequence $y_{n_{k}}$ of the sequence y_{n} is bounded. Up to extraction of a subsequence, one can assume that $y_{n_{k}} \rightarrow y$, so that $0=J_{t_{n_{k}}}\left(y_{n_{k}}\right) \rightarrow J_{0}(y)$. But since $F_{t}=\operatorname{Id}_{\mathbf{R}^{N}}$, one has $J_{0}(y)=1$. Therefore $\left|y_{n}\right| \rightarrow+\infty$. By the second inequality in Lemma 2.1

$$
\begin{aligned}
& \left|D_{x} X_{t_{n}}\left(y_{n}, U^{i n}\left(y_{n}\right)\right)-\operatorname{Id}_{\mathbf{R}^{N}}\right| \leq e^{\kappa\left|t_{n}\right|}-1 \\
& \left|D_{\xi} X_{t_{n}}\left(y_{n}, U^{i n}\left(y_{n}\right)\right) \cdot D U^{i n}\left(y_{n}\right)\right|=O\left(e^{\kappa\left|t_{n}\right|}-1\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
0=J_{t_{n}}\left(y_{n}\right) & =\left|\operatorname{det}\left(D_{x} X_{t_{n}}\left(y_{n}, U^{i n}\left(y_{n}\right)\right)+D_{\xi} X_{t_{n}}\left(y_{n}, U^{i n}\left(y_{n}\right)\right) \cdot D U^{i n}\left(y_{n}\right)\right)\right| \\
& \rightarrow\left|\operatorname{det}\left(\operatorname{Id}_{\mathbf{R}^{N}}\right)\right|=1 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus the assumption $t_{n} \rightarrow 0$ leads to a contradiction. Therefore,

$$
\inf \left\{t>0 \mid C_{t} \neq \varnothing\right\}=b>0 .
$$

By the same token,

$$
\sup \left\{t<0 \mid C_{t} \neq \varnothing\right\}=a<0
$$

Thus $(a, b) \times \mathbf{R}^{N}$ is contained in the connected component of $\{0\} \times \mathbf{R}^{N}$ in $\mathbf{R} \times \mathbf{R}^{N} \backslash C$. Since $F_{0}=\operatorname{Id}_{\mathbf{R}^{N}}$, one has $\mathcal{N}(0, x)=1$ for all $x \in \mathbf{R}^{N}$, and since \mathcal{N} is constant on each connected component of $\mathbf{R} \times \mathbf{R}^{N} \backslash C$, one concludes $\mathcal{N}=1$ on $(a, b) \times \mathbf{R}^{N}$, which proves d).

If $(t, x) \in \mathbf{R} \times \mathbf{R}^{N} \backslash C$, the point x is a regular value of F_{t}. Since F_{t} is proper, $F_{t}^{-1}(\{x\})$ is compact, and therefore bounded. Pick $R>0$ such that

$$
F_{t}^{-1}(\{x\}) \subset B(0, R)
$$

By (17) and Lemma 3.2 b) applied to the map $g: y \mapsto F_{t}(y)-x$

$$
\# F_{t}^{-1}(\{x\})=\#\left(F_{t}^{-1}(\{x\}) \cap B(0, R)\right) \text { is odd }
$$

which proves e).
When $U^{\text {in }}$ is not of class C^{1}, the arguments used to prove Proposition 3.3 are no longer valid. However one can still obtain some information on the number $\mathcal{N}(t, x)$ of solutions y of the equation $F_{t}(y)=x$ by a completely different method, involving the area - or co-area formula.

Assume that $U^{i n} \in C\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ satisfies (11) and that its gradient (in the sense of distributions) $D U^{i n}$ satisfies the condition

$$
\begin{equation*}
\left.\partial_{l} U_{k}^{i n}\right|_{\Omega} \in L^{N, 1}(\Omega) \text { for each bounded open } \Omega \subset \mathbf{R}^{N}, \tag{18}
\end{equation*}
$$

for all $k, l=1, \ldots, N$. We recall that a measurable function $f: \Omega \rightarrow \mathbf{R}$ belongs to the Lorentz space $L^{N, 1}(\Omega)$ if

$$
\int_{0}^{\infty}\left(\mathscr{L}^{N}(\{x \in \Omega| | f(x) \mid \geq \lambda\})\right)^{1 / N} d \lambda<\infty
$$

By Theorem B in [14], the vector field $U^{i n}$ is differentiable a.e. on \mathbf{R}^{N}. Let E be the \mathscr{L}^{N}-negligible set defined as

$$
\begin{equation*}
E:=\left\{y \in \mathbf{R}^{N} \mid U^{i n} \text { is not differentiable at } y\right\} . \tag{19}
\end{equation*}
$$

By the chain rule, the absolute value of the Jacobian determinant

$$
\begin{array}{r}
J_{t}(y)=\left|\operatorname{det}\left(D_{x} X_{t}\left(y, U^{i n}(y)\right)+D_{\xi} X_{t}\left(y, U^{i n}(y)\right) D U^{i n}(y)\right)\right| \\
\text { is defined for all }(t, y) \in \mathbf{R} \times\left(\mathbf{R}^{N} \backslash E\right) . \tag{20}
\end{array}
$$

Henceforth, the notation $J_{t}^{-1}(\{0\})$ designates the set

$$
\begin{equation*}
J_{t}^{-1}(\{0\}):=\left\{y \in \mathbf{R}^{N} \backslash E \mid J_{t}(y)=0\right\}, \tag{21}
\end{equation*}
$$

and we shall also consider the set

$$
\begin{equation*}
Z_{t}:=J_{t}^{-1}(\{0\}) \cup E . \tag{22}
\end{equation*}
$$

Theorem 3.4. [Rough case] Assume that $U^{\text {in }} \in C\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ satisfies (11) and (18).
a) for all $t \in \mathbf{R}$, the function $J_{t} \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$;
b) for all $t \in \mathbf{R}$, there are finitely many solutions y of the equation

$$
\begin{equation*}
F_{t}(y)=x \tag{23}
\end{equation*}
$$

for a.e. $x \in \mathbf{R}^{N}$ - in other words, $\mathcal{N}(t, x)$ is finite for a.e. $x \in \mathbf{R}^{N}$, for all $t \in \mathbf{R}$;
c) for each bounded $B \subset \mathbf{R}^{N}$, denote by $\mathcal{N}_{B}(t, x)$ the number of solutions $y \in B$ of (23); then, whenever B is bounded, for each $t \in \mathbf{R}$ and each $n \in \mathbf{N}$, one has

$$
\begin{aligned}
\mathscr{L}^{N}\left(\left\{x \in \mathbf{R}^{N} \mid \mathcal{N}_{B}(t, x) \geq n\right\}\right) & \leq \frac{1}{n} \int_{B} J_{t}(y) d y \\
& \leq \frac{1}{n} e^{N \kappa|t|}\left\|1+\left(1-e^{-\kappa|t|}\right)\right\| D U^{i n} \|_{L^{N}(B)}^{N}
\end{aligned}
$$

d) let $t \in \mathbf{R}$; then for a.e. $x \in \mathbf{R}^{N}$, all solutions y of (23) satisfy

$$
y \in \mathbf{R}^{N} \backslash E \text { and } J_{t}(y)>0
$$

e) for all $T>0$

$$
\mathscr{H}^{1}\left(\left\{(t, y) \in[-T, T] \times \mathbf{R}^{N} \mid F_{t}(y)=x\right\}\right)<+\infty
$$

for a.e. $x \in \mathbf{R}^{N}$.

Remarks.

a) By the first statement in Proposition 3.1, $\mathcal{N}(t, x)=\mathcal{N}_{\mathbf{R}^{N}}(t, x) \geq 1$ for all $(t, x) \in \mathbf{R} \times \mathbf{R}^{N}$.
b) Even in the smooth case, i.e. assuming in addition that $U^{i n} \in C^{1}\left(\mathbf{R}^{N}\right)$, statement c) in Theorem 3.4 provides information on the number of folds of Λ_{t}, that is the image under Φ_{t} of the graph of $U^{i n}$, which seems to be new at the time of this writing.

Proof. By the second estimate in Lemma 2.1
(24) $\left|D_{x} X_{t}\left(y, U^{i n}(y)\right)+D_{\xi} X_{t}\left(y, U^{i n}(y)\right) \cdot D U^{i n}(y)\right| \leq e^{\kappa|t|}+\left(e^{\kappa|t|}-1\right)\left|D U^{i n}(y)\right|$
so that

$$
\begin{align*}
J_{t}(y) & =\left|\operatorname{det}\left(D_{x} X_{t}\left(y, U^{i n}(y)\right)+D_{\xi} X_{t}\left(y, U^{i n}(y)\right) \cdot D U^{i n}(y)\right)\right| \\
& \leq e^{N \kappa|t|}\left(1+\left(1-e^{-\kappa|t|}\right)\left|D U^{i n}(y)\right|\right)^{N} \tag{25}
\end{align*}
$$

by Hadamard's inequality. Since $U^{i n}$ satisfies (18) and since $L^{N, 1}(\Omega) \subset L^{N}(\Omega)$, this inequality implies statement a).

Since the map F_{t} is proper by Proposition 3.1, the set $K_{t, R}=F_{t}^{-1}(\overline{B(0, R)})$ is compact for each $R>0$. By the area formula (see Theorem 3.4 in [20] and Theorem A in [14])

$$
\int_{\mathbf{R}^{N}} \#\left(F_{t}^{-1}(\{x\}) \cap K_{t, R}\right) d x=\int_{K_{t, R}} J_{t}(y) d y<+\infty
$$

Therefore $\# F_{t}^{-1}(\{x\})<\infty$ for a.e. $x \in \overline{B(0, R)}$; since this is true for all $R \in \mathbf{N}$, one concludes that $\# F_{t}^{-1}(\{x\})<\infty$ for a.e. $x \in \mathbf{R}^{N}$, so that b) holds.

Let B be a measurable subset of \mathbf{R}^{N}; applying again the area formula shows that

$$
\int_{\mathbf{R}^{N}} \mathcal{N}_{B}(t, x) d x=\int_{B} J_{t}(y) d y
$$

By the Bienaymé-Chebyshev inequality, for each $n \geq 1$

$$
\mathscr{L}^{N}\left(\left\{x \in \mathbf{R}^{N} \mid \mathcal{N}_{B}(t, x) \geq n\right\}\right) \leq \frac{1}{n} \int_{B} J_{t}(y) d y
$$

which is precisely the first inequality in c). The second inequality follows from (25) and Hölder's inequality.

Let $n=1$ and $Z_{t}:=J_{t}^{-1}(\{0\}) \cup E$. Let $B=Z_{t} \cap K_{t, R}$; the set B is measurable and bounded. Then

$$
\int_{B} J_{t}(y) d y=0
$$

since $J_{t}(y)=0$ for all $y \in B \backslash E$ and $\mathscr{L}^{N}(E)=0$. Applying c) shows that

$$
\mathscr{L}^{N}\left(\left\{x \in \mathbf{R}^{N}| | x \mid \leq R \text { and } \mathcal{N}_{Z_{t}}(t, x) \geq 1\right\}\right)=0
$$

which entails d) by monotone convergence, letting $R \in \mathbf{N}$ tend to infinity.
Consider next the continuous map

$$
F:[-T, T] \times \mathbf{R}^{N} \ni(t, y) \mapsto F(t, y) \in \mathbf{R}^{N} .
$$

In view of (16), $|F(t, y)| \rightarrow \infty$ as $|y| \rightarrow+\infty$ uniformly in $t \in[-T, T]$. Therefore, the set $K_{R}:=F^{-1}(\overline{B(0, R)})$ is compact for each $R>0$. Then, for each $t \in[-T, T]$ and each $y \in \mathbf{R}^{N} \backslash E$, the Jacobian $D F(t, y)$ is the column-wise partitioned matrix

$$
D F(t, y)=[V(t, y), M(t, y)]
$$

with

$$
V(t, y)=\nabla_{\xi} H\left(\Phi_{t}\left(y, U^{i n}(y)\right)\right)
$$

and

$$
M(t, y):=D_{x} X_{t}\left(y, U^{i n}(y)\right)+D_{\xi} X_{t}\left(y, U^{i n}(y)\right) D U^{i n}(y)
$$

Therefore,

$$
D F(t, y) D F(t, y)^{T}=V(t, y) V(t, y)^{T}+M(t, y) M(t, y)^{T}
$$

so that, by the co-area formula (Theorem 1.3 in [21])

$$
\begin{aligned}
\int_{\mathbf{R}^{N}} \mathscr{H}^{1}(& \left.F^{-1}(\{x\}) \cap K_{R}\right) d x \\
& =\int_{K_{R}} \sqrt{\operatorname{det}\left(V(t, y) V(t, y)^{T}+M(t, y) M(t, y)^{T}\right)} d t d y
\end{aligned}
$$

By Lemma 2.1, $(t, x, \xi) \mapsto \Phi_{t}(x, \xi)$ is of class C^{1} on $\mathbf{R} \times \mathbf{R}^{N} \times \mathbf{R}^{N}$, so that the map $(t, y) \mapsto V(t, y)$ is continuous on $\mathbf{R} \times \mathbf{R}^{N}$, and therefore bounded on the compact K_{R}. On the other hand, by (24)

$$
\sup _{|t| \leq T}|M(t, y)| \leq e^{\kappa T}+\left(e^{\kappa T}-1\right)\left|D U^{i n}(y)\right| \in L_{l o c}^{N}\left(\mathbf{R}^{N}\right)
$$

since $U^{i n}$ satisfies (18). Denoting

$$
K_{R}^{\prime}:=\left\{y \in \mathbf{R}^{N} \mid \text { there exists } t \in[-T, T] \text { s.t. }(t, y) \in K_{R}\right\}
$$

that is compact in \mathbf{R}^{N} (being the projection of the compact K_{R} on the second factor in $\mathbf{R} \times \mathbf{R}^{N}$), one has

$$
\begin{aligned}
\left\|V V^{T}+M M^{T}\right\|_{L^{N / 2}\left(K_{R}\right)}^{N / 2} & \leq 2^{N / 2-1}\|V\|_{L^{\infty}\left(K_{R}\right)}^{N} \mathscr{L}^{N+1}\left(K_{R}\right)+2^{N / 2} T\|M\|_{L^{N}\left(K_{R}^{\prime}\right)}^{N} \\
& <\infty .
\end{aligned}
$$

Therefore $\mathscr{H}^{1}\left(F^{-1}(\{x\}) \cap K_{R}\right)<+\infty$ is finite for a.e. $x \in \overline{B(0, R)}$, and since this is true for all $R \in \mathbf{N}$, one concludes that $\mathscr{H}^{1}\left(F^{-1}(\{x\})\right)<+\infty$ for a.e. $x \in \mathbf{R}^{N}$, which is statement e).

Theorem 3.4 suggests considering the sets

$$
\begin{equation*}
C_{t}^{\prime}=\left\{x \in \mathbf{R}^{N} \mid F_{t}^{-1}(\{x\}) \text { is infinite }\right\} \tag{26}
\end{equation*}
$$

for all $t \in \mathbf{R}$.
On the other hand, the definition of the caustic (15) in the smooth case should be modified as follows when the continuous vector field $U^{i n}$ is not of class C^{1} but satisfies (11) and (18):

$$
\begin{align*}
C_{t} & :=\left\{x \in \mathbf{R}^{N} \mid F_{t}^{-1}(\{x\}) \cap Z_{t} \neq \varnothing\right\} \\
C & :=\bigcup_{t \in \mathbf{R}} C_{t} \tag{27}
\end{align*}
$$

where Z_{t} is defined in (22). Notice that this definition coincides with (15) whenever $U^{i n}$ is differentiable everywhere. However we do not know whether C or C_{t} are closed whenever $U^{i n}$ is not of class C^{1}.

The first part of statement c) in Proposition 3.3 is equivalent to the inclusion

$$
\begin{equation*}
C_{t}^{\prime} \subset C_{t} \quad \text { for all } t \in \mathbf{R} \tag{28}
\end{equation*}
$$

Statements b) and d) in Theorem 3.4 can be recast as follows

$$
\begin{equation*}
\mathscr{L}^{N}\left(C_{t}^{\prime}\right)=0 \text { and } \mathscr{L}^{N}\left(C_{t}\right)=0, \quad \text { for all } t \in \mathbf{R} \tag{29}
\end{equation*}
$$

This is the analogue of statement a) in Proposition 3.3 in the case of a rough $U^{i n}$. Notice that (29) is a consequence of the area formula while statement a) in Proposition 3.3 follows from Sard's theorem (see Remark 2.97 on pp. 103-104 in [3], discussing the relation between Sard's theorem and the co-area formula).

4. Some examples

While the notion of caustic C naturally occurs in studying the geometry of Λ_{t} in the smooth case, its relation to the number of solutions y of the equation $F_{t}(y)=x$ is slightly less obvious, as shown by the following examples. In all these examples, the Hamiltonian is

$$
H(x, \xi)=\frac{1}{2} \xi^{2}
$$

generating the free flow

$$
\Phi_{t}: \mathbf{R} \times \mathbf{R} \ni(x, \xi) \mapsto(x+t \xi, \xi) \in \mathbf{R} \times \mathbf{R}
$$

Thus

$$
F_{t}: \mathbf{R} \ni y \mapsto y+t U^{i n}(y) \in \mathbf{R}
$$

The first example below shows that the set $F_{t}^{-1}(\{x\})$ may be finite even if $x \in C_{t}$. In other words, it may happen that the inclusion (28) is strict for all $t \in \mathbf{R}$.
Example 1. Set $N=1$, and let $U^{i n}$ be real analytic on \mathbf{R} and satisfy (11). Therefore F_{t} is real analytic on \mathbf{R} for each $t \in \mathbf{R}$. For each $x \in \mathbf{R}$, the set $F_{t}^{-1}(\{x\})$ is the set of zeros of the analytic function $y \mapsto F_{t}(y)-x$. Since $U^{i n}$ satisfies (11), one has $F_{t}(y) \sim y$ as $|y| \rightarrow \infty$, so that, for each $t \in \mathbf{R}$, the function F_{t} is not a constant. Therefore the zeros of $y \mapsto F_{t}(y)-x$ are isolated for each $(t, x) \in \mathbf{R} \times \mathbf{R}$. Equivalently, the set $F_{t}^{-1}(\{x\})$ consists of isolated points. On the other hand, for each $(t, x) \in \mathbf{R}^{2}$, the set $F_{t}^{-1}(\{x\})$ is compact since F_{t} is proper by Proposition 3.1. Therefore the set $F_{t}^{-1}(\{x\})$ is finite for all $(t, x) \in \mathbf{R}^{2}$.

The next example shows that the set $F_{t}^{-1}(\{x\})$ may be infinite for infinitely many times t - in this case, for all t in a nonempty, open interval of \mathbf{R}.

Example 2. Set $N=1$, and let $U^{i n}$ be defined by

$$
U^{i n}(z):= \begin{cases}\tanh (z) \sin (\ln |z|) & \text { if } z>0 \\ 0 & \text { if } z=0\end{cases}
$$

Clearly $U^{\text {in }} \in C^{1}\left(\mathbf{R}^{*}\right)$ and, for all $z \in \mathbf{R}^{*}$, one has

$$
\left(U^{i n}\right)^{\prime}(z)=\left(1-\tanh ^{2}(z)\right) \sin (\ln |z|)+\frac{\tanh (z)}{z} \cos (\ln |z|) .
$$

Observe that $\left(U^{i n}\right)^{\prime}(z)=\sqrt{2} \sin \left(\ln |z|+\frac{\pi}{4}\right)+O\left(z^{2}\right)$ does not have a limit for $z \rightarrow 0$, so that $U^{i n} \notin C^{1}(\mathbf{R})$. On the other hand

$$
\sup _{z \in \mathbf{R}}\left|U^{i n}(z)\right|=1 \quad \text { and } \sup _{z \neq 0}\left|\left(U^{i n}\right)^{\prime}(z)\right| \leq 2
$$

so that $U^{i n}$ is Lipschitz continuous on \mathbf{R} and the map F_{t} is proper on \mathbf{R}.
Let $x=0$; for each t such that $|t|>1$, the set $F_{t}^{-1}(\{0\})$ is infinite.
Indeed, the set $F_{t}^{-1}(\{0\})$ obviously contains $z=0$; besides, $F_{t}^{-1}(\{0\})$ contains also a decreasing sequence $y_{n} \rightarrow 0$ as $n \rightarrow+\infty$, which satisfies

$$
\sin \left(\ln \left|y_{n}\right|\right) \rightarrow-1 / t \quad \text { as } n \rightarrow \infty .
$$

Therefore $F_{t}^{-1}(\{0\})$ is countably infinite whenever $|t|>1$.
Notice that, in example 2, whenever $T>1$

$$
\left\{(t, y) \in[-T, T] \times \mathbf{R} \mid F_{t}(y)=0\right\}=([-T,-1] \cup[1, T]) \times\left(\{0\} \cup\left\{y_{n} \mid n \geq 1\right\}\right)
$$

so that

$$
\mathscr{H}^{1}\left(\left\{(t, y) \in[-T, T] \times \mathbf{R} \mid F_{t}(y)=0\right\}\right)=+\infty .
$$

In other words, the set of points x for which

$$
\mathscr{H}^{1}\left(\left\{(t, y) \in[-T, T] \times \mathbf{R} \mid F_{t}(y)=x\right\}\right)=+\infty
$$

while \mathscr{L}^{1}-negligible by statement e) of Theorem 3.4 , may be non empty.
There is another interesting observation in connection with Example 2. Observe that $0 \in C_{t}^{\prime}$ and that

$$
F_{t}^{-1}(\{0\})=\{0\} \cup\left\{y_{n} \mid n \geq 1\right\}, \quad \text { whenever }|t|>1
$$

Nevertheless, for each $n \geq 1$

$$
\left(U^{i n}\right)^{\prime}\left(y_{n}\right)=\sin \left(\ln \left|y_{n}\right|\right)+\cos \left(\ln \left|y_{n}\right|\right)+O\left(\left|y_{n}\right|^{2}\right) \rightarrow-\frac{1}{t}+\sqrt{1-\frac{1}{t^{2}}} \neq-\frac{1}{t}
$$

if $|t|>1$, and F_{t} is not differentiable at $y=0$. Thus $y=0$ is in the exceptional set E where the Lipschitz continuous function $U^{i n}$ is not differentiable, so that $0 \in C_{t}$ with the definition (27) although

$$
F_{t}^{-1}(\{0\}) \cap J_{t}^{-1}(\{0\})=\varnothing,
$$

so that 0 would not belong to C_{t} had we kept the classical definition (15) in the case of non everywhere differentiable $U^{i n}$ profiles.

The next two examples show that $F_{t}^{-1}(\{x\})$ can even be uncountably infinite, even for a smooth profile $U^{i n}$.

Example 3. Set $N=1$, and let $U^{i n}$ be defined by

$$
U^{i n}(z):= \begin{cases}+1 & \text { if } z<-1 \\ -z & \text { if }|z| \leq 1 \\ -1 & \text { if } z>1\end{cases}
$$

Consider the equation

$$
F_{t}(y):=y+t U^{i n}(y)=x
$$

with unknown y; for $t<1$, its solution is unique and given by

$$
y= \begin{cases}x-t & \text { if } x<t-1 \\ \frac{x}{1-t} & \text { if }|x| \leq 1-t \\ x+t & \text { if } x>1-t\end{cases}
$$

For $t=1$, the solution is

$$
y= \begin{cases}x-t & \text { if } x<0 \\ \text { any } y \in[-1,1] \\ x+1 & \text { if } x=0 \\ \text { if } x>0\end{cases}
$$

For $t>1$, the solution is

$$
y= \begin{cases}x-t & \text { if } x<1-t \\ x-t, \frac{x}{1-t} \text { and } x+t & \text { if } 1-t \leq x \leq t-1 \\ x+t & \text { if } x>t-1\end{cases}
$$

Now $F_{t}^{-1}(\{x\})$ is finite for all $x \in \mathbf{R}$ whenever $t \neq 1$, while $F_{1}^{-1}(\{0\})=[-1,1]$.
Example 4. In the previous example, $U^{i n}$ is Lipschitz continuous but not of class C^{1}. Yet the same phenomenon can be observed by smoothing $U^{\text {in }}$ near $z= \pm 1$. Regularize $U^{i n}$ and obtain $U_{\epsilon}^{i n} \in C^{\infty}(\mathbf{R})$ so that

$$
\begin{aligned}
& \operatorname{supp}\left(U_{\epsilon}^{i n}-U^{i n}\right) \subset[-1-\epsilon,-1+\epsilon] \cup[1-\epsilon, 1+\epsilon], \quad \text { and } \\
& U_{\epsilon}^{i n} \leq U^{i n} \text { on }[-1-\epsilon,-1+\epsilon] \text { and } U^{i n} \leq U_{\epsilon}^{i n} \text { on }[1-\epsilon, 1+\epsilon]
\end{aligned}
$$

In that case

$$
F_{1}^{-1}(\{0\})=[-1+\epsilon, 1-\epsilon] .
$$

Indeed, since $U_{\epsilon}^{i n} \leq U^{i n}$ on $[-1-\epsilon,-1+\epsilon]$, all the points on the graph of $U_{\epsilon}^{i n}$ with abscissa in $(-1-\epsilon,-1+\epsilon)$ will reach $x=0$ after $t=1$. The same is true of the points on the graph of $U_{\epsilon}^{i n}$ with abscissa in $(1-\epsilon, 1+\epsilon)$. Thus the regularization does not affect the dynamics of the points with abscissa in $(-1+\epsilon, 1-\epsilon)$ for all $t \in[0,1]$, and in particular for $t=1$.

5. On the structure of $\mu(t)$

Throughout this section, we assume that $U^{i n} \in C\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ satisfies the sublinearity condition (11) at infinity and the regularity condition (18).

Consider a monokinetic measure $\mu^{i n}$ of the form (3) with $\rho^{i n} \in L^{1}\left(\mathbf{R}^{N}\right)$, whose action on a test function $\chi \in C_{b}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ is given by the formula

$$
\left\langle\mu^{i n}, \chi\right\rangle:=\int_{\mathbf{R}^{N}} \chi\left(y, U^{i n}(y)\right) \rho^{i n}(y) d y
$$

In other words

$$
\mu^{i n}=\mathscr{L}_{x}^{N} \otimes \rho^{i n}(x) \delta_{U^{i n}(x)}^{i n}
$$

Let $H \in C^{2}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ satisfy (7), and let Φ_{t} be the Hamiltonian flow generated by H.

For all $t \in \mathbf{R}$, let $\mu(t)=\Phi_{t} \# \mu^{i n}$ be the push-forward of $\mu^{i n}$ under Φ_{t}, defined as follows: for each test function $\chi \in C_{b}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$,

$$
\begin{equation*}
\langle\mu(t), \chi\rangle:=\left\langle\mu^{i n}, \chi \circ \Phi_{t}\right\rangle=\int_{\mathbf{R}^{N}} \chi\left(\Phi_{t}\left(y, U^{i n}(y)\right)\right) \rho^{i n}(y) d y \tag{30}
\end{equation*}
$$

Finally, let $\rho(t)$ be the measure on \mathbf{R}^{N} defined as

$$
\begin{equation*}
\rho(t):=\Pi \# \mu(t) \tag{31}
\end{equation*}
$$

where $\Pi: T^{*} \mathbf{R}^{N} \simeq \mathbf{R}^{N} \times \mathbf{R}^{N} \ni(x, \xi) \mapsto x \in \mathbf{R}^{N}$ is the canonical projection. In other words, for each test function $\phi \in C_{b}\left(\mathbf{R}^{N}\right)$

$$
\begin{equation*}
\langle\rho(t), \phi\rangle=\int_{\mathbf{R}^{N}} \phi\left(X_{t}\left(y, U^{i n}(y)\right) \rho^{i n}(y) d y\right. \tag{32}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
\rho(t)=F_{t} \# \rho^{i n} . \tag{33}
\end{equation*}
$$

We shall also use the following definition

$$
\begin{equation*}
P_{t}:=\left\{y \in \mathbf{R}^{N} \backslash E \mid J_{t}(y)>0\right\} . \tag{34}
\end{equation*}
$$

Our main result in this section bears on the structure of the measures $\mu(t)$ and its projection $\rho(t)$.

Theorem 5.1. Under the assumptions above, let $\rho^{i n} \in L^{1}\left(\mathbf{R}^{N}\right)$ be such that $\rho^{i n} \geq$ 0 a.e. on \mathbf{R}^{N}.
a) for each $t \in \mathbf{R}$,

$$
\rho^{i n} \mathbf{1}_{P_{t}} \mathscr{L}^{N} \ll J_{t} \mathscr{L}^{N}, \quad \text { and } \rho^{i n} \mathbf{1}_{Z_{t}} \mathscr{L}^{N} \perp J_{t} \mathscr{L}^{N}
$$

b) for each $t \in \mathbf{R}$,

$$
\mu(t)=\mu_{a}(t)+\mu_{s}(t) \quad \text { with } \mu_{a}(t) \perp \mu_{s}(t)
$$

where

$$
\left\{\begin{array}{l}
\mu_{a}(t):=\mathscr{L}_{x}^{N} \otimes \sum_{y \in F_{t}^{-1}(\{x\})} \frac{\rho^{i n} \mathbf{1}_{P_{t}}}{J_{t}}(y) \delta_{\Xi_{t}\left(y, U^{i n}(y)\right)} \\
\mu_{s}(t):=\Phi_{t} \#\left(\mathscr{L}_{x}^{N} \otimes \rho^{i n}(x) \mathbf{1}_{Z_{t}}(x) \delta_{U^{i n}(x)}\right)
\end{array}\right.
$$

Moreover
c) for each $t \in \mathbf{R}$, one has

$$
\operatorname{supp}(\mu(t)) \subset \Lambda_{t}:=\Phi_{t}\left(\left\{\left(y, U^{i n}(y)\right) \mid y \in \mathbf{R}^{N}\right\}\right)
$$

d) for each $t \in \mathbf{R}$, the measure

$$
\rho_{a}(t):=\Pi \# \mu_{a}(t) \ll \mathscr{L}^{N} ;
$$

with

$$
\frac{d \rho_{a}(t)}{d \mathscr{L}^{N}}(x)=\mathbf{1}_{\mathbf{R}^{N} \backslash C_{t}^{\prime}}(x) \sum_{y \in F_{t}^{-1}(\{x\})} \frac{d\left(\rho^{i n} \mathbf{1}_{P_{t}} \mathscr{L}^{N}\right)}{d\left(J_{t} \mathscr{L}^{N}\right)}(y)
$$

where C_{t}^{\prime} is defined in (26);
e) for each $t \in \mathbf{R}$, the measure

$$
\rho_{s}(t):=\Pi_{\#} \mu_{s}(t) \text { is carried by } C_{t} ;
$$

in particular

$$
\rho_{a}(t) \perp \rho_{s}(t) .
$$

A few remarks are in order before we give the proof of Theorem 5.1. In the smooth case - i.e. whenever $U^{i n} \in C^{1}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ and satisfies (11), we recall that C_{t} is closed in \mathbf{R}^{N} for each $t \in \mathbf{R}$, by statement b) of Proposition 3.3. For any given $t \in \mathbf{R}$, let $\chi \equiv \chi(x, \xi)$ be a test function in $C_{c}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ such that $\Pi \operatorname{supp}(\chi) \cap C_{t}=\varnothing$. By (30)

$$
\langle\mu(t), \chi\rangle=\int_{\mathbf{R}^{N}} \chi\left(\Phi_{t}\left(y, U^{i n}(y)\right)\right) \rho^{i n}(y) d y
$$

Since $\Pi(\operatorname{supp}(\chi))$ is compact and included in the open set $\mathbf{R}^{N} \backslash C_{t}$, it intersects at most finitely many connected components of $\mathbf{R}^{N} \backslash C_{t}$. Assume without loss of generality that $\Pi(\operatorname{supp}(\chi))$ is connected, so that it intersect exactly one connected component Ω of $\mathbf{R}^{N} \backslash C_{t}$; on Ω, the integer-valued function \mathcal{N} is a constant denoted by \mathcal{N}^{Ω}, by statement c) of Proposition 3.3. With the notation used in that proposition, for each $x \in \Pi(\operatorname{supp}(\chi)) \subset \Omega$

$$
F_{t}^{-1}(\{x\})=\left\{y_{j}(t, x) \mid j=1, \ldots, \mathcal{N}^{\Omega}\right\}
$$

and

$$
y_{j}(t, \cdot) \in C^{1}(\Omega) \text { for all } j=1, \ldots, \mathcal{N}^{\Omega}
$$

Therefore $y_{j}(t, \cdot)$ is a C^{1}-diffeomorphism from Ω on its image O_{j}, with inverse F_{t}. Thus

$$
F_{t}^{-1}(\Omega)=\bigcup_{j=1}^{\mathcal{N}^{\Omega}} O_{j} \quad \text { and } O_{i} \cap O_{j}=\varnothing \text { if } i \neq j
$$

so that

$$
\iint_{\Omega \times \mathbf{R}^{N}} \chi(t, x) \mu(t, d x d \xi)=\sum_{j=1}^{\mathcal{N}^{\Omega}} \int_{O_{j}} \chi\left(F_{t}(y), \Xi_{t}\left(y, U^{i n}(y)\right)\right) \rho^{i n}(y) d y
$$

In each of the integrals on the right hand side, F_{t} is a C^{1}-diffeomorphism mapping O_{j} on Ω, so that, changing variables, we see that

$$
\begin{aligned}
\int_{O_{j}} & \chi\left(F_{t}(y), \Xi_{t}\left(y, U^{i n}(y)\right)\right) \rho^{i n}(y) d y \\
& =\int_{\Omega} \chi\left(x, \Xi_{t}\left(y_{j}(t, x), U^{i n}\left(y_{j}(t, x)\right)\right)\right) \rho^{i n}\left(y_{j}(t, x)\right)\left|\operatorname{det}\left(\nabla_{x} y_{j}(t, x)\right)\right| d x
\end{aligned}
$$

Since

$$
\left|\operatorname{det}\left(D_{x} y_{j}(t, x)\right)\right|=J_{t}\left(y_{j}(t, x)\right)^{-1}
$$

we conclude that the restriction of $\mu(t)$ to $\left(\mathbf{R} \times \mathbf{R}^{N}\right) \backslash C$ is a measure-valued function of (t, x) given by the following formula:

$$
\begin{equation*}
\mu(t, x, \cdot):=\sum_{j=1}^{\mathcal{N}(t, x)} \frac{\rho^{i n}\left(y_{j}(t, x)\right.}{J_{t}\left(y_{j}(t, x)\right)} \delta_{\Xi_{t}\left(y_{j}(t, x), U^{i n}\left(y_{j}(t, x)\right)\right)} \tag{35}
\end{equation*}
$$

whenever $(t, x) \notin C$. This formula is strikingly similar to the one giving $\mu_{a}(t)$ in statement b) of Theorem 5.1. There are however subtle differences, which we shall
discuss in more detail in the next section. At this point, it suffices to say that Theorem 5.1 provides a formula for $\mu(t)$ that holds globally on $\mathbf{R}^{N} \times \mathbf{R}^{N}$ instead of $\left(\mathbf{R}^{N} \backslash C_{t}\right) \times \mathbf{R}^{N}$, and that the argument above requires more regularity on $U^{i n}$ than assumed in Theorem 5.1.

Proof of Theorem 5.1. Let $A \subset \mathbf{R}^{N}$; then the condition

$$
\int_{A} J_{t}(y) d y=0 \text { implies that } J_{t}(y)=0 \text { for a.e. } y \in A \text {. }
$$

Therefore $\mathscr{L}^{N}\left(P_{t} \cap A\right)=0$ so that

$$
\int_{A}\left(\rho^{i n} \mathbf{1}_{P_{t}}\right)(y) d y=\int_{P_{t} \cap A} \rho^{i n}(y) d y=0
$$

Thus $\rho^{i n} \mathbf{1}_{P_{t}} \mathscr{L}^{N} \ll J_{t} \mathscr{L}^{N}$.
On the other hand, for each $t \in \mathbf{R}$

$$
\mathbf{R}^{N}=P_{t} \cup Z_{t} \quad \text { with } P_{t} \cap Z_{t}=\varnothing \text {. }
$$

Since

$$
J_{t}(y)=0 \text { for } y \in Z_{t} \backslash E \quad \text { i.e. } \mathscr{L}^{N} \text {-a.e. on } Z_{t}
$$

while

$$
\rho^{i n}(y) \mathbf{1}_{Z_{t}}(y)=0 \quad \text { for all } y \in P_{t}
$$

we conclude that $\rho^{i n} \mathbf{1}_{Z_{t}} \mathscr{L}^{N} \perp J_{t} \mathscr{L}^{N}$, which proves a).
Define

$$
\begin{aligned}
& \mu_{a}^{i n}:=\mathscr{L}_{x}^{N} \otimes\left(\rho^{i n} \mathbf{1}_{P_{t}}\right)(x) \delta_{U^{i n}(x)}^{i n} \\
& \mu_{s}^{i n}:=\mathscr{L}_{x}^{N} \otimes\left(\rho^{i n} \mathbf{1}_{Z_{t}}\right)(x) \delta_{U^{i n}(x)}^{i n}
\end{aligned}
$$

and, for each $t \in \mathbf{R}$

$$
\mu_{a}(t):=\Phi_{t} \# \mu_{a}^{i n}, \quad \mu_{s}(t):=\Phi_{t} \# \mu_{s}^{i n},
$$

so that one has indeed

$$
\mu_{a}(t)+\mu_{s}(t)=\Phi_{t} \#\left(\mu_{a}^{i n}+\mu_{s}^{i n}\right)=\Phi_{t} \# \mu^{i n}=\mu(t) .
$$

Then there exists a unique $b \in L^{1}\left(\mathbf{R}^{N} ; J_{t} \mathscr{L}^{N}\right)$ such that

$$
\rho^{i n} \mathbf{1}_{P_{t}} \mathscr{L}^{N}=b J_{t} \mathscr{L}^{N}
$$

by the Radon-Nikodym theorem. Thus, for each $\chi \in C_{c}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$, by the area formula (see Theorem 3.4 in [20] and Theorem A in [14])

$$
\begin{aligned}
\left\langle\mu_{a}(t), \chi\right\rangle & =\int_{\mathbf{R}^{N}} \chi\left(F_{t}(y), \Xi_{t}\left(y, U^{i n}(y)\right)\right) b(y) J_{t}(y) d y \\
& =\int_{\mathbf{R}^{N}}\left(\sum_{y \in F_{t}^{-1}(\{x\})} b(y) \chi\left(x, \Xi_{t}\left(y, U^{i n}(y)\right)\right)\right) d x \\
& =\int_{\mathbf{R}^{N}}\left(\sum_{y \in F_{t}^{-1}(\{x\})} b(y)\left\langle\delta_{\Xi_{t}\left(y, U^{i n}(y)\right)}, \chi(x, \cdot)\right\rangle\right) d x .
\end{aligned}
$$

In the formula above

$$
b:=\frac{d\left(\rho^{i n} \mathbf{1}_{P_{t}} \mathscr{L}^{N}\right)}{d\left(J_{t} \mathscr{L}^{N}\right)}
$$

is the Radon-Nikodym derivative of $\rho^{i n} \mathbf{1}_{P_{t}}$ with respect to $J_{t} \mathscr{L}^{N}$. Since $J_{t}>0$ on the set P_{t}

$$
\begin{equation*}
b=\frac{\rho^{i n} \mathbf{1}_{P_{t}}}{J_{t}} \text { a.e. on } \mathbf{R}^{N} \tag{36}
\end{equation*}
$$

which proves b).
Formula (3) obviously implies that

$$
\operatorname{supp}\left(\mu^{i n}\right) \subset \Lambda_{0}:=\left\{\left(y, U^{i n}\right) \mid y \in \mathbf{R}^{N}\right\}
$$

Since $\mu(t)=\Phi_{t} \# \mu^{i n}$, one has

$$
\operatorname{supp}(\mu(t)) \subset \Phi_{t}\left(\left\{\left(y, U^{i n}\right) \mid y \in \mathbf{R}^{N}\right\}\right)=\Lambda_{t}
$$

which is precisely statement c).
In view of the first formula in b) and of the definition $\rho_{a}(t)=\Pi \# \mu_{a}(t)$ of the measure $\rho_{a}(t)$, one has

$$
\rho_{a}(t)=\left(\sum_{y \in F_{t}^{-1}(\{x\})} b(y)\right) \mathscr{L}^{N}
$$

with b as in (36). The set $F_{t}^{-1}(\{x\})$ can obviously be infinite, in which case the sum above can be undefined. However, this occurs only if $x \in C_{t}^{\prime}$ as defined in (26). Since C_{t}^{\prime} is \mathscr{L}^{N}-negligible

$$
\rho_{a}(t)=f_{t} \mathscr{L}^{N}
$$

with

$$
f_{t}(x):=\mathbf{1}_{\mathbf{R}^{N} \backslash C_{t}^{\prime}}(x)\left(\sum_{y \in F_{t}^{-1}(\{x\})} b(y)\right)
$$

Thus, $\rho_{a}(t)$ is of the form $\rho_{a}(t)=f_{t} \mathscr{L}^{N}$ with $f_{t} \geq 0$ measurable on \mathbf{R}^{N}. Besides

$$
\left.0 \leq \rho_{a}(t) \leq \rho(t) \quad \text { and } \int_{\mathbf{R}^{N}} \rho(t, d x)=\int_{\mathbf{R}^{N}} \rho^{i n}(x) d x\right)<\infty
$$

which implies in particular that $\rho_{a}(t) \ll \mathscr{L}^{N}$ with the formula for the RadonNikodym derivative as in d).

Consider the measurable set $A:=\mathbf{R}^{N} \backslash C_{t}$. By (33) applied to $\rho^{i n} \mathbf{1}_{Z_{t}}$ instead of $\rho^{i n}$, one has

$$
\rho_{s}(t)(A)=\int_{F_{t}^{-1}(A)} \rho^{i n}(y) \mathbf{1}_{Z_{t}}(y) d y=\int_{F_{t}^{-1}(A) \cap Z_{t}} \rho^{i n}(y) d y=0
$$

Indeed, by definition of C_{t}, one has $F_{t}^{-1}(A) \cap Z_{t}=\varnothing$. In other words, $\rho_{s}(t)$ is carried by C_{t}.

Finally, since $\rho_{a}(t) \ll \mathscr{L}^{N}$ and $\rho_{s}(t)$ is carried by C_{t} which is \mathscr{L}^{N}-negligible by (29), we conclude that $\rho_{a}(t) \perp \rho_{s}(t)$ which is precisely statement e).

6. On THE CAUSTIC AND OTHER EXCEPTIONAL SETS

In the case of a smooth $U^{\text {in }}$ profile - i.e. when $U^{i n} \in C^{1}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ satisfies (11), the caustic C is the only exceptional set - C_{t} being equivalently defined as the image under the projection Π of the set of points in the manifold Λ_{t} in (12) where the restriction $\left.\Pi\right|_{\Lambda_{t}}$ is not differentiable.

When $U^{i n}$ is not everywhere differentiable, this definition of C_{t} does not make sense in general since Λ_{t} is not a differentiable manifold in the first place. In such cases, it is more natural to consider the measures $\mu(t)$ and $\rho(t)$ instead of the sets Λ_{t} and C_{t} - all the more so since C_{t} may not even be closed in \mathbf{R}^{N}. Thus, even though $\rho_{s}(t)$ is concentrated on C_{t}, one cannot say that C_{t} is the support of $\rho_{s}(t)$ as C_{t} may not be closed. On the other hand, the inclusion $\operatorname{supp} \rho_{s}(t) \subset \overline{C_{t}}$ is of little interest as C_{t} might be dense in some domain of \mathbf{R}^{N}. Although $\rho_{s}(t)$ is concentrated on C_{t}, this obviously does not characterize C_{t} (if a measure is concentrated on a set, it is also concentrated on the complement in that set of any negligible set for that same measure).

There are analogous difficulties with the absolutely continuous part of the measure $\rho_{a}(t)$. In formula (35), the restriction of $\mu_{a}(t)$ to $\left(\mathbf{R}^{N} \backslash C_{t}\right) \times \mathbf{R}^{N}$ is viewed as a function of $x \in \mathbf{R}^{N} \backslash C_{t}$ with values in the set of Radon measures in the variable $\xi \in \mathbf{R}^{N}$. This viewpoint is obviously not appropriate if $U^{i n}$ is not at least of class C^{1} - for instance, if the set C_{t} is dense in some domain of \mathbf{R}^{N}. In Theorem 5.1, the measure μ is a weakly continuous function of the time variable t with values in the space of Radon measures in the variables (x, ξ), and is therefore globally defined on $\mathbf{R}_{x}^{N} \times \mathbf{R}_{\xi}^{N}$. Obviously, the ratio $\rho^{i n} \mathbf{1}_{P_{t}} / J_{t}$ is just one possible choice of the Radon-Nikodym derivative $d\left(\rho^{i n} \mathbf{1}_{P_{t}} \mathscr{L}^{N}\right) / d\left(J_{t} \mathscr{L}^{N}\right)$ and could be modified arbitrarily on any set of $J_{t} \mathscr{L}^{N}$-measure 0 - which could be of positive \mathscr{L}^{N}-measure, as in Examples 3-4 above. The difference induced in the expression

$$
\begin{equation*}
\sum_{y \in F_{t}^{-1}(\{x\})} \frac{d\left(\rho^{i n} \mathbf{1}_{P_{t}} \mathscr{L}^{N}\right)}{d\left(J_{t} \mathscr{L}^{N}\right)}(y) \delta_{U^{i n}(y)} \tag{37}
\end{equation*}
$$

by two different choices of the Radon-Nikodym derivative $d\left(\rho^{i n} \mathbf{1}_{P_{t}} \mathscr{L}^{N}\right) / d\left(J_{t} \mathscr{L}^{N}\right)$ is of the form

$$
\sum_{y \in F_{t}^{-1}(\{x\})} m(y) \delta_{U^{i n}(y)}
$$

with $m \geq 0$ being a $J_{t} \mathscr{L}^{N}$-measurable function such that $m=0$ a.e. on $\mathbf{R}^{N} \backslash Z_{t}$. Therefore

$$
\int_{\mathbf{R}^{N}} m(y) J_{t}(y) d y=0=\int_{\mathbf{R}^{N}}\left(\sum_{y \in F_{t}^{-1}(\{x\})}|m(y)|\right) d x
$$

so that

$$
\sum_{y \in F_{t}^{-1}(\{x\})} m(y)=0 \quad \mathscr{L}^{N}-\text { a.e. on } \mathbf{R}^{N}
$$

and

$$
\mathscr{L}^{N} \otimes \sum_{y \in F_{t}^{-1}(\{x\})} m(y) \delta_{U^{i n}(y)}=0
$$

as a measure on $\mathbf{R}^{N} \times \mathbf{R}^{N}$.

On the other hand, even in the smooth case, formula (35) is not enough to define completely $\mu(t)$, as it fails to capture singular parts of the measure carried by $C_{t} \times \mathbf{R}^{N}$. For instance, in Example 4, for $t=1$, if one computes the restriction of the measure $\mu(1)$ to ($\left.\mathbf{R}^{N} \backslash C_{1}\right) \times \mathbf{R}^{N}$ by formula (35), one obtains

$$
\begin{aligned}
\int_{\mathbf{R}^{N} \backslash C_{1}}\left(\int_{\mathbf{R}^{N}} \mu(t, x, d \xi)\right) d x & =\int_{-\infty}^{-1+\epsilon} \rho^{i n}(y) d y+\int_{1-\epsilon}^{+\infty} \rho^{i n}(y) d y \\
& \neq \int_{\mathbf{R}^{N}} \rho^{i n}(y) d y=\int_{\mathbf{R}^{N}}\left(\int_{\mathbf{R}^{N}} \mu^{i n}(x, d \xi)\right) d x
\end{aligned}
$$

unless $\rho^{i n}=0$ on $[-1+\epsilon, 1-\epsilon]=J_{1}^{-1}(\{0\})$. Since this is obviously incompatible with the conservation of the total mass of the measure

$$
\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \mu(t, d x d \xi)=\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \Phi_{t} \# \mu^{i n}(d x d \xi)=\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \mu^{i n}(d x d \xi)
$$

by the transportation under the flow Φ_{t}, this example confirms that (35) alone is not enough to compute $\mu(t)$.

The expression involved in the formula for μ_{a} in Theorem 5.1, i.e.

$$
\begin{equation*}
\sum_{y \in F_{t}^{-1}(\{x\})} \frac{\rho^{i n} \mathbf{1}_{P_{t}}}{J_{t}}(y) \delta_{U^{i n}(y)} \tag{38}
\end{equation*}
$$

which is analogous to formula (35) a priori makes sense only if $x \in \mathbf{R}^{N} \backslash C_{t}^{\prime}$. In the rough case, i.e. if $U^{\text {in }}$ satisfies only the regularity properties in Theorem 3.4 or Theorem 5.1, it might on principle happen that

$$
C_{t}^{\prime} \cap\left(\mathbf{R}^{N} \backslash C_{t}\right) \neq \varnothing
$$

Whenever this is the case, the sum in formula (38) above may fail to be defined everywhere on $\mathbf{R}^{N} \backslash C_{t}$, as would occur for $U^{i n}$ of class C^{1}, by statement c) in Proposition 3.3, or (28). Since this may occur at most on a \mathscr{L}^{N}-negligible set, the expression for μ_{a} in Theorem 5.1 is well defined as a measure on $\mathbf{R}^{N} \times \mathbf{R}^{N}$ while the one in (38) may not be defined everywhere on $\mathbf{R}^{N} \backslash C_{t}$ as a function of x with values in the space of measures in the variable $\xi \in \mathbf{R}^{N}$.

Another strategy is to abandon the idea of viewing the caustic C as an exceptional set unambiguously defined by the measure $\rho(t)$, and to investigate those exceptional sets that can be uniquely defined in terms of this measure.

This leads for instance to consider the set

$$
\begin{equation*}
C_{t}^{\prime \prime}:=\left\{x \in \mathbf{R}^{N} \mid \mathscr{L}^{N}\left(F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}(\{0\})>0\right\}\right. \tag{39}
\end{equation*}
$$

which is of particular interest, as shown by the following result.
Theorem 6.1. Assume that $H \in C^{2}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ satisfies the conditions (7), while $U^{\text {in }} \in C\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ satisfies the sublinearity condition (11) at infinity and the regularity condition (18). Then
a) $C_{t}^{\prime \prime} \subset C_{t} \cap C_{t}^{\prime}$ for each $t \in \mathbf{R}$;
b) for each $t \in \mathbf{R}$ and each $x \in C_{t}^{\prime \prime}$, there exists $\rho^{i n} \in L^{1}\left(\mathbf{R}^{N}\right)$ such that $\rho^{i n} \geq 0$ a.e. and the projected measure $\rho(t)=\Pi \# \mu(t)$ satisfies

$$
\rho(t)(\{x\})>0
$$

c) $C_{t}^{\prime \prime}$ is at most countable for each $t \in \mathbf{R}$;
d) if $\rho^{i n} \in L^{1}\left(\mathbf{R}^{N}\right)$ is such that $\rho^{n} \geq 0$ a.e. on \mathbf{R}^{N} and $\rho^{i n}=0$ a.e. on $J_{t}^{-1}\left(\mathbf{R}_{+}^{*}\right)$ while $\left\|\rho^{i n}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}>0$, then

$$
\left.\rho(t)(\{x\})>0 \quad \text { if and only if }\left(\rho^{i n} \mathscr{L}^{N}\right)\left(F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}(\{0\})\right)\right)>0 .
$$

Proof. If $x \in C_{t}^{\prime \prime}$, then $\mathscr{L}^{N}\left(F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}(\{0\})>0\right.$ so that in particular the intersection $F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}\left(\{0\}\right.$ is infinite, which implies that $x \in C_{t} \cap C_{t}^{\prime}$, thereby proving a).

Let $R>0$; since F_{t} is proper by Proposition 3.1, $F_{t}^{-1}(\overline{B(0, R)})=K_{R}$ is a compact subset of \mathbf{R}^{N}. Pick $\rho^{i n}=\mathbf{1}_{K_{R}}$; obviously $\rho^{i n} \in L^{1}\left(\mathbf{R}^{N}\right)$ and $\rho^{i n} \geq 0$ a.e.. Set $\mu^{i n}=\mathscr{L}^{N} \otimes\left(\mathbf{1}_{K_{R}} \delta_{U^{i n}}\right)$, let $\mu(t)=\Phi \# \mu^{i n}$ be the push-forward of $\mu^{i n}$ under the Hamiltonian flow and let $\rho(t)=\Pi \# \mu(t)$ be the projected measure. As explained above $\rho(t)=F_{t} \#\left(\mathbf{1}_{K_{R}} \mathscr{L}^{N}\right)$ so that, whenever $x \in \overline{B(0, R)} \cap C_{t}^{\prime \prime}$,

$$
\begin{aligned}
\rho(t)(\{x\})=\left(\mathbf{1}_{K_{R}} \mathscr{L}^{N}\right)\left(F_{t}^{-1}(\{x\})\right) & =\mathscr{L}^{N}\left(K_{R} \cap F_{t}^{-1}(\{x\})\right) \\
& =\mathscr{L}^{N}\left(F_{t}^{-1}(\{x\})\right) \\
& \geq \mathscr{L}^{N}\left(F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}(\{0\})\right)>0 .
\end{aligned}
$$

This immediately implies both b) and c). Indeed, b) is satisfied with $\rho^{i n}=\mathbf{1}_{K_{R}}$ for each $R>0$ such that $x \in C_{t}^{\prime \prime} \cap \overline{B(0, R)}$. On the other hand, for each $R>0$, all the points in $C_{t}^{\prime \prime} \cap \overline{B(0, R)}$ are atoms of the same Borel measure $F_{t} \#\left(\mathbf{1}_{K_{R}} \mathscr{L}^{N}\right)$ on \mathbf{R}^{N}, which implies c).

As for d), one has again $\rho(t)=F_{t} \#\left(\rho^{i n} \mathscr{L}^{N}\right)$, so that

$$
\begin{aligned}
\rho(t)(\{x\})=\left(\rho^{i n} \mathscr{L}^{N}\right)\left(F_{t}^{-1}(\{x\})\right) & =\left(\rho^{i n} \mathscr{L}^{N}\right)\left(F_{t}^{-1}(\{x\}) \cap E\right) \\
& +\left(\rho^{i n} \mathscr{L}^{N}\right)\left(F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}(\{0\})\right) \\
& +\left(\rho^{i n} \mathscr{L}^{N}\right)\left(F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}\left(\mathbf{R}_{+}^{*}\right)\right)
\end{aligned}
$$

where E is the \mathscr{L}^{N}-negligible set where F_{t} is not differentiable. The conclusion follows from the fact that $\mathscr{L}^{N}(E)=0$ and $\rho^{i n}=0$ a.e. on $J_{t}^{-1}\left(\mathbf{R}_{+}^{*}\right)$, so that

$$
\rho(t)(\{x\})=\left(\rho^{i n} \mathscr{L}^{N}\right)\left(F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}(\{0\})\right)
$$

If $\rho^{i n} \in L^{1}\left(\mathbf{R}^{N}\right)$ satisfies $\rho^{i n} \geq 0$ a.e. on \mathbf{R}^{N} and $\rho^{i n}=0$ a.e. on $J_{t}^{-1}\left(\mathbf{R}_{+}^{*}\right)$ while $\left\|\rho^{i n}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}>0$, one has $\left(\rho^{i n} \mathscr{L}^{N}\right) \perp\left(J_{t} \mathscr{L}^{N}\right)$, so that the projected measure $\rho(t)=\Pi \# \mu(t)$ satisfies $\rho(t) \perp \mathscr{L}^{N}$ by statement b) in Theorem 5.1. By statement d) in Theorem 6.1, the measure $\rho(t)$ is diffuse if and only if

$$
\left.\left(\rho^{i n} \mathscr{L}^{N}\right)\left(F_{t}^{-1}(\{x\}) \cap J_{t}^{-1}(\{0\})\right)\right)=0 \text { for all } x \in C_{t} .
$$

This may indeed happen, as shown by the following example.
Example 5. Assume $N=1$, and set $H(x, \xi)=\frac{1}{2} \xi^{2}$, which generates the free flow $\Phi_{t}:(x, \xi) \mapsto(x+t \xi, \xi)$. By regularity of the Lebesgue measure, there exists a compact set $K \subset(0,1) \backslash \mathbf{Q}$ such that $\frac{1}{2}<\mathscr{L}^{1}(K)<1$. Let $\Omega=(0,1) \backslash K$; since Ω is open in $(0,1)$ and contains $(0,1) \cap \mathbf{Q}$, it is a countably infinite union of disjoint nonempty open intervals:

$$
\Omega=\bigcup_{n \in \mathbf{N}} I_{n}, \quad \text { so that } \mathscr{L}^{1}(\Omega)=\sum_{n \in \mathbf{N}} \mathscr{L}^{1}\left(I_{n}\right) .
$$

In particular $\lambda:=\mathscr{L}^{1}(\Omega)>0$ since $\mathscr{L}^{1}\left(I_{n}\right)>0$ for each $n \in \mathbf{N}$ (indeed each I_{n} is an open interval that contains at least one rational). Set $t=1$ and

$$
F_{1}(y):= \begin{cases}y, & \text { if } y \leq 0 \\ \int_{0}^{y} \mathbf{1}_{\Omega}(z) d z, & \text { if } y \in(0,1) \\ \lambda+(y-1), & \text { if } y \geq 1\end{cases}
$$

Define

$$
U^{i n}(y):=F(y)-y
$$

The function F_{1} is Lipschitz continuous on \mathbf{R}, being the indefinite integral of a bounded measurable function. Therefore $U^{i n}$ is also Lipschitz continuous on \mathbf{R}.

The function F_{1} is increasing on \mathbf{R} - this being obvious on \mathbf{R}_{-}^{*} and on $(1, \infty)$. Indeed, if $0<y_{1}<y_{2}<1$, the interval (y_{1}, y_{2}) contains at least one rational number r, so that

$$
F_{1}\left(y_{2}\right)-F_{1}\left(y_{1}\right)=\mathscr{L}^{1}\left(\Omega \cap\left(y_{1}, y_{2}\right)\right)>0,
$$

since the open set $\Omega \cap\left(y_{1}, y_{2}\right)$ contains the intersection of the connected component of r in Ω with (y_{1}, y_{2}), which is a nonempty open interval. Since $F_{1}(y) \rightarrow \pm \infty$ as $y \rightarrow \pm \infty$, we conclude that $F_{1}: \mathbf{R} \rightarrow \mathbf{R}$ is one-to-one and onto.

By the Lebesgue differentiation theorem (Theorem 7.11 in [22]), F_{1} is differentiable a.e. on \mathbf{R} (in fact it is even of class C^{∞} on $\left.\mathbf{R}_{-}^{*} \cup(1, \infty)\right)$ and $F_{1}^{\prime}(y)=\mathbf{1}_{\Omega}(y)$ for a.e. $y \in(0,1)$. Thus, denoting by E the \mathscr{L}^{1}-negligible set on which F_{1} is not differentiable, one has $\left(F_{1}^{\prime}\right)^{-1}(\{0\}) \cup E=K$. Since F_{1} is one-to-one and onto, $C_{1}=F_{1}(K)$.

Let $\rho^{\text {in }}=\mathbf{1}_{K}$; thus $\left\|\rho^{i n}\right\|_{L^{1}}=\mathscr{L}^{1}(K)>0$, so that $\left(\rho^{i n} \mathscr{L}^{1}\right) \perp\left(\left|F_{1}^{\prime}\right| \mathscr{L}^{1}\right)$. The measure $\rho(t)=\Pi \# \mu(t)$ where $\mu(t)=\Phi \# \mu^{i n}$ with $\mu^{i n}:=\mathscr{L}_{x}^{1} \otimes \rho^{i n}(x) \delta_{U^{i n}(x)}$ satisfies $\rho(1) \perp \mathscr{L}^{N}$ by statement b) in Theorem 5.1

$$
\rho(1)(\mathbf{R})=\rho(1)\left(C_{1}\right)=\left\|\rho^{i n}\right\|_{L^{1}}^{2}=\mathscr{L}^{1}(K)>0
$$

On the other hand, since F_{1} is one-to-one and onto, for each $x \in \mathbf{R}$, one has $\# F_{1}^{-1}(\{x\})=1$. In particular, for each $x \in C_{1}=F_{1}(K)$, one has
$F_{1}^{-1}(\{x\}) \subset\left(F_{1}^{\prime}\right)^{-1}(\{0\}) \quad$ so that $\#\left(F_{1}^{-1}(\{x\}) \cap\left(F_{1}^{\prime}\right)^{-1}(\{0\})\right)=\# F_{1}^{-1}(\{x\})=1$.
In particular, for each $x \in C_{1}$, by statement d) of Theorem 6.1, one has

$$
\left(\rho^{i n} \mathscr{L}^{1}\right)\left(F_{1}^{-1}(\{x\}) \cap\left(F_{1}^{\prime}\right)^{-1}(\{0\})\right)=0
$$

so that

$$
\rho(1)(\{x\})=0 .
$$

Hence $\rho(1) \perp \mathscr{L}^{1}$ and is diffuse, while $\rho(1) \neq 0$ since $\rho(1)\left(C_{1}\right)>0$.

7. Application to the classical limit of Quantum mechanics

In this section, we apply the results obtained above to the classical limit of the Schrödinger equation.
7.1. The classical scaling. Consider the evolution Schrödinger equation

$$
i \hbar \partial_{t} \psi=-\frac{\hbar^{2}}{2 m} \Delta_{x} \psi+V(x) \psi
$$

for the wave function ψ of a point particle of mass m subject to the action of an external potential $V \equiv V(x) \in \mathbf{R}$.

Choosing "appropriate" units of time T and length L, we recast the Schrödinger equation in terms of dimensionless variables $\hat{t}:=t / T$ and $\hat{x}:=x / L$. We define a rescaled wave function $\hat{\psi}$ and a rescaled, dimensionless potential \hat{V} by the formulas

$$
\hat{\psi}(\hat{t}, \hat{x}):=\psi(t, x) \quad \text { and } \hat{V}(\hat{x}):=\frac{T^{2}}{m L^{2}} V(x)
$$

In these dimensionless variables, the Schrödinger equation takes the form

$$
i \partial_{\hat{t}} \hat{\psi}=-\frac{\hbar T}{2 m L^{2}} \Delta_{\hat{x}} \hat{\psi}+\frac{m L^{2}}{\hbar T} \hat{V}(\hat{x}) \hat{\psi}
$$

The dimensionless number $2 \pi \hbar T / m L^{2}$ is the ratio of the Planck constant to $m L^{2} / T$, that is (twice) the action of a classical particle of mass m moving at speed L / T on a distance L. If the scales of time T and length L have been chosen conveniently, L / T is the typical order of magnitude of the particle speed, and L is the typical length scale on which the particle motion is observed. The classical limit of quantum mechanics is defined by the scaling assumption $2 \pi \hbar \ll m L^{2} / T$ - i.e. the typical action of the particle considered is large compared to \hbar. Equivalently, $m L / T$ is the order of magnitude of the particle momentum, so that $2 \pi \hbar T / m L$ is its de Broglie wavelength; the scaling assumption $2 \pi \hbar T / m L \ll L$ means that the de Broglie wavelength of the particle under consideration is small compared to the observation length scale L.

Introducing the small, dimensionless parameter $\epsilon=\hbar T / m L^{2}$ and dropping hats in the dimensionless variables as well as on the rescaled wave function and dimensionless potential, we arrive at the following formulation for the Schrödinger equation in dimensionless variables

$$
\begin{equation*}
i \epsilon \partial_{t} \psi=-\frac{1}{2} \epsilon^{2} \Delta_{x} \psi+V(x) \psi \tag{40}
\end{equation*}
$$

The WKB ansatz postulates that, at time $t=0$, the wave function is of the form

$$
\psi(t, x)=a^{i n}(x) e^{i S^{i n}(x) / \hbar}, \quad x \in \mathbf{R}^{N}
$$

Consistently with the scaling argument above, we set

$$
\hat{a}^{i n}(\hat{x}):=a^{i n}(x) \text { and } \hat{S}^{i n}(\hat{x}):=T S^{i n}(x) / m L^{2}
$$

- since $S^{i n}$ has the dimension of an action - so that

$$
\begin{equation*}
\hat{\psi}(0, \hat{x})=\hat{a}^{i n}(\hat{x}) e^{i \hat{S}^{i n}(\hat{x}) / \epsilon} \tag{41}
\end{equation*}
$$

Dropping hats in the initial data as well as in the Schrödinger equation, one arrives at the following Cauchy problem for the Schrödinger equation in dimensionless variables:

$$
\left\{\begin{array}{l}
i \epsilon \partial_{t} \psi_{\epsilon}=-\frac{1}{2} \epsilon^{2} \Delta_{x} \psi_{\epsilon}+V(x) \psi_{\epsilon}, \quad x \in \mathbf{R}^{N}, t \in \mathbf{R} \tag{42}\\
\psi_{\epsilon}(0, x)=a^{i n}(x) e^{i S^{i n}(x) / \epsilon}
\end{array}\right.
$$

The problem of the classical limit of the Schrödinger equation is to describe the wave function ψ_{ϵ} in the limit as $\epsilon \rightarrow 0^{+}$.
7.2. The WKB method. The traditional procedure for describing the classical limit of the Schrödinger equation is the WKB method recalled below. First we recall some mathematical tools and elements of notation used in the presentation of that method.

Assume that $V \in C^{\infty}\left(\mathbf{R}^{N}\right)$ satisfies

$$
\begin{equation*}
\partial^{\alpha} V \in L^{\infty}\left(\mathbf{R}^{N}\right) \text { for each multi-index } \alpha \in \mathbf{N}^{N} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{V(x)}{|x|} \rightarrow 0 \text { as }|x| \rightarrow+\infty \tag{44}
\end{equation*}
$$

Then the Hamiltonian

$$
H(x, \xi):=\frac{1}{2}|\xi|^{2}+V(x)
$$

satisfies (7) and therefore generates a global flow

$$
\mathbf{R}^{N} \times \mathbf{R}^{N} \ni(x, \xi) \mapsto\left(X_{t}(x, \xi), \Xi_{t}(x, \xi)\right) \in \mathbf{R}^{N} \times \mathbf{R}^{N}
$$

by Lemma 2.1.
Assume further that

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{N}} \int_{\mathbf{R}^{N}} \Gamma_{\eta}(x-y) V^{-}(y) d y \rightarrow 0 \text { as } \eta \rightarrow 0 \quad \text { if } N \geq 2 \tag{45}
\end{equation*}
$$

with

$$
\Gamma_{\eta}(z)= \begin{cases}\mathbf{1}_{[0, \eta]}(|z|)|z|^{2-N} & \text { if } N \geq 3 \\ \mathbf{1}_{[0, \eta]}(|z|) \ln (1 /|z|) & \text { if } N=2\end{cases}
$$

while

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{N}} \int_{x-1}^{x+1} V^{-}(y) d y<\infty \quad \text { if } N=1 \tag{46}
\end{equation*}
$$

Under assumptions (45)-(46), the operator $-\frac{1}{2} \epsilon^{2} \Delta_{x}+V$ has a self-adjoint extension on $L^{2}\left(\mathbf{R}^{N}\right)$ that is bounded from below.

Under assumption (43), there exists a FIO that is a parametrix for the operator

$$
G_{\epsilon}(t):=e^{i \frac{t}{\epsilon}\left(\frac{1}{2} \epsilon^{2} \Delta_{x}-V\right)}
$$

see for instance Theorem 2.1 in [17], whose main features are recalled below.
Consider the action

$$
\begin{equation*}
S(t, x, \xi):=\int_{0}^{t}\left(\frac{1}{2}\left|\Xi_{s}(x, \xi)\right|^{2}-V\left(X_{s}(x, \xi)\right)\right) d s \tag{47}
\end{equation*}
$$

Given $T>0$, we shall have to deal with the class of phase functions

$$
\left.\varphi \equiv \varphi(t, x, y, \eta) \in C \text { of class } C^{\infty} \text { on }[0, T) \times \mathbf{R}^{N} \times \mathbf{R}^{N} \times \mathbf{R}^{N}\right)
$$

satisfying the conditions

$$
\left\{\begin{array}{l}
\varphi\left(t, X_{t}(y, \eta), y, \eta\right)=S(t, y, \eta) \tag{48}\\
D_{x} \varphi\left(t, X_{t}(y, \eta), y, \eta\right)=\Xi_{t}(y, \eta) \\
i D_{x}^{2} \varphi(t, x, y, \eta) \leq 0 \text { is independent of } x \\
\operatorname{det}\left(D_{x \eta} \varphi\left(t, X_{t}(y, \eta), y, \eta\right)\right) \neq 0 \text { for each }(t, y, \eta) \in[0, T) \times \mathbf{R}^{N} \times \mathbf{R}^{N}
\end{array}\right.
$$

Pick $\chi \in C_{c}^{\infty}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ and $T>0$. Then, for any phase function φ satisfying (48) and any $n \geq 0$, there exists $A_{n} \equiv A_{n}(t, y, \eta, \epsilon) \in C_{c}^{\infty}\left([0, T] \times \mathbf{R}^{N} \times \mathbf{R}^{N}\right)[\epsilon]$ such that the FIO $G_{n}(t)$ with Schwartz kernel

$$
G_{\epsilon, n}(t, x, y)=\int A_{n}(t, y, \eta, \epsilon) e^{i \varphi(t, x, y, \eta) / \epsilon} \frac{d \eta}{(2 \pi \epsilon)^{N}}
$$

satisfies

$$
\sup _{0 \leq t \leq T}\left\|\left(G_{\epsilon}(t)-G_{\epsilon, n}(t)\right) \chi\left(x,-i \epsilon \partial_{x}\right)\right\|_{\mathcal{L}\left(L^{2}\left(\mathbf{R}^{N}\right)\right)} \leq C[V, T, \chi] \epsilon^{n-2 N}
$$

In this inequality the notation $\chi\left(x,-i \epsilon \partial_{x}\right)$ designates the pseudo-differential operator defined by the formula

$$
\chi\left(x,-i \epsilon \partial_{x}\right) \phi(x):=\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} e^{i(x-y) \cdot \eta / \epsilon} \chi(x, \eta) \phi(y) \frac{d y d \eta}{(2 \pi \epsilon)^{N}}
$$

Taking Theorem 2.1 in [17] for granted, one arrives at the following description of the classical limit of (42). It is stated without proof in Appendix 11 of [6] or as Theorem 5.1 in [4].

Let $U^{i n}=\nabla S^{i n}$ and let C be defined as in (15); let $\mathcal{N}(t, x)$ and $y_{j}(t, x)$ be defined as in Proposition 3.3 for each $(t, x) \in \mathbf{R} \times \mathbf{R}^{N} \backslash C$. Let $J_{t}(y)$ be defined as in (14).
Proposition 7.1. Let $a^{i n} \in C_{c}^{m}\left(\mathbf{R}^{N}\right)$ and $S^{\text {in }} \in C^{m+1}\left(\mathbf{R}^{N}\right)$ with $m>6 N+4$. For all $\epsilon>0$ and all $(t, x) \in \mathbf{R}_{+} \times \mathbf{R}^{N} \backslash C$, set

$$
\begin{equation*}
\Psi_{\epsilon}(t, x)=\sum_{j=1}^{\mathcal{N}(t, x)} \frac{a^{i n}\left(y_{j}(t, x)\right)}{J_{t}\left(y_{j}(t, x)\right)^{1 / 2}} e^{i S_{j}(t, x) / \epsilon} e^{i \pi \nu_{j}(t, x) / 2}, \tag{49}
\end{equation*}
$$

where

$$
S_{j}(t, x):=S^{i n}\left(y_{j}(t, x)\right)+S\left(t, y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right)\right), \quad j=1, \ldots, \mathcal{N}(t, x)
$$

$S(t, y, \xi)$ is given by (47) and $\nu_{j}(t, x) \in \mathbf{Z}$ for all $(t, x) \in \mathbf{R}_{+} \times \mathbf{R}^{N} \backslash C$ is constant on each connected component of $\mathbf{R} \times \mathbf{R}^{N}$ where $j \leq \mathcal{N}$.

Then the solution ψ_{ϵ} of the Cauchy problem (42) satisfies

$$
\begin{equation*}
\psi_{\epsilon}(t, x)=\Psi_{\epsilon}(t, x)+R_{\epsilon}^{1}(t, x)+R_{\epsilon}^{2}(t, x) \tag{50}
\end{equation*}
$$

for all $T>0$, where

$$
\sup _{0 \leq t \leq T}\left\|R_{\epsilon}^{1}\right\|_{L^{2}(B(0, R))}=O(\epsilon) \text { for all } R>0
$$

and

$$
\sup _{(t, x) \in K}\left|R_{\epsilon}^{2}(t, x)\right|=O(\epsilon) \text { for each compact } K \subset \mathbf{R}_{+} \times \mathbf{R}^{N} \backslash C
$$

as $\epsilon \rightarrow 0^{+}$.
A self-contained proof of Proposition 7.1 based on the parametrix construction of [17] is given in Appendix A .

The integer $\nu_{j}(t, x)$ in (49) is defined precisely in the proof (see formula 66 below). How this integer is related to the Morse index of the path

$$
[0, t] \ni s \mapsto X_{s}\left(y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right)\right)
$$

is not needed in the sequel and will not be discussed here. We refer to [4] for more details concerning this point.
7.3. The Wigner transform. Alternately, the asymptotic limit of ψ_{ϵ} can also be investigated with the help of Wigner's transform [26, 18].

For each $\Psi \in L^{2}\left(\mathbf{R}^{N}\right)$, one defines the Wigner transform of Ψ at scale ϵ by the formula

$$
W_{\epsilon}[\Psi](x, \xi):=\int_{\mathbf{R}^{N}} e^{-i y \cdot \xi} \Psi\left(x+\frac{1}{2} \epsilon y\right) \overline{\Psi\left(x-\frac{1}{2} \epsilon y\right)} \frac{d y}{(2 \pi)^{N}} .
$$

Let us define the ϵ-Fourier transform \mathcal{F}_{ϵ} as follows:

$$
\mathcal{F}_{\epsilon} \Psi(\xi):=\frac{1}{(2 \pi \epsilon)^{N / 2}} \int_{L^{2}\left(\mathbf{R}^{N}\right)} \Psi(x) e^{i \frac{x \xi}{\epsilon}} d x .
$$

Given $b \equiv b(x, \xi)$ in the Schwartz space $\mathcal{S}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$, we recall that the ϵ pseudodifferential operator B_{ϵ} with Weyl symbol b is the integral operator with integral kernel

$$
(x, y) \mapsto \int_{\mathbf{R}^{N}} b\left(\frac{x+y}{2}, \xi\right) e^{i \xi \cdot(x-y) / \epsilon} \frac{d \xi}{(2 \pi \epsilon)^{N}}
$$

Straightforward computations lead to the following identities: for each $\Psi \in$ $\mathcal{S}\left(\mathbf{R}^{N}\right)$

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} W_{\epsilon}[\Psi](x, \xi) d \xi=|\Psi(x)|^{2}, \quad \int_{\mathbf{R}^{N}} W_{\epsilon}[\Psi](x, \xi) d x=\left|\mathcal{F}_{\epsilon} \Psi(\xi)\right|^{2} \tag{51}
\end{equation*}
$$

Likewise, for each $\Psi \in L^{2}\left(\mathbf{R}^{N}\right)$ and each ϵ-pseudodifferential B_{ϵ} operator with Weyl symbol $b(x, \xi)$ in the Schwarts space $\mathcal{S}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$, one has

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} W_{\epsilon}[\Psi](x, \xi) b(x, \xi) d x d \xi=\left\langle\Psi, B_{\epsilon} \Psi\right\rangle_{L^{2}\left(\mathbf{R}^{N}\right)} \tag{52}
\end{equation*}
$$

Lemma 7.2. Let $a^{i n} \in L^{2}\left(\mathbf{R}^{N}\right)$ and $S^{i n} \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N}\right)$. Then

$$
W_{\epsilon}\left[a^{i n} e^{i S^{i n} / \epsilon}\right](x, \xi) \rightarrow\left(a^{i n}\right)^{2}(x) \delta\left(\xi-\nabla S^{i n}(x)\right) \text { in } \mathcal{S}^{\prime}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)
$$

as $\epsilon \rightarrow 0$.
See Example III. 5 in [18].
Proposition 7.3 ([18]). Assume that $V \in C^{1,1}\left(\mathbf{R}^{N}\right)$ satisfies (45)-(46)-(43)-(44). Let

$$
\mu_{\epsilon}(t, x, \xi):=W_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right](x, \xi)
$$

for each $\epsilon>0$ and each $t \in \mathbf{R}$, and for a.e. $(x, \xi) \in \mathbf{R}^{N} \times \mathbf{R}^{N}$.
Then the family $\mu_{\epsilon}(t)$ converges in $\mathcal{S}^{\prime}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ uniformly in $|t| \leq T$ for each $T \geq 0$ as $\epsilon \rightarrow 0$ to the unique solution of the Liouville equation

$$
\left\{\begin{array}{l}
\partial_{t} \mu+\xi \cdot \nabla_{x} \mu-\nabla_{x} V(x) \cdot \nabla_{\xi} \mu=0, \quad x, \xi \in \mathbf{R}^{N}, t \in \mathbf{R} \tag{53}\\
\mu(0, x, \xi):=a^{i n}(x)^{2} \delta_{\nabla S^{i n}(x)}(\xi)
\end{array}\right.
$$

In particular, $\mu \in C_{b}\left(\mathbf{R}, w-\mathcal{M}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)\right)$ and $\mu(t)$ is a positive Radon measure for all $t \in \mathbf{R}$ satisfying

$$
\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \mu(t, d x d \xi)=1
$$

for each $t \in \mathbf{R}$.

This proposition is stated as Theorem IV. 1 in [18], to which we refer for a complete proof.

Therefore, the structure of the measure $\mu(t)$ is given by Theorem 5.1 with

$$
\rho^{i n}=\left(a^{i n}\right)^{2} \quad \text { and } \quad U^{i n}=\nabla S^{i n}
$$

Likewise, Theorem 6.1 provides a precise description of the exceptional sets associated to $\mu(t)$.
7.4. WKB vs. monokinetic measures: the case of rough phases. The WKB asymptotic solution (49) obviously contains more information than the regular part $\mu_{a}(t)$ of the Wigner measure $\mu(t)$ that is the solution of the Liouville equation (53) - for the definition of $\mu_{a}(t)$ and its structure, see Theorem 5.1.

For instance, the (finitely many) phase functions $S_{j}(t, x)$ appearing in (49) define velocity fields $U_{j}(t, x):=\nabla_{x} S_{j}(t, x)$ as in the formula giving $\mu_{a}(t)$ in Theorem 5.1. On the contrary, the nonnegative integers $\nu_{j}(t, x)$ do not appear in the formula for $\mu_{a}(t)$.

One can go a little further, and compute the Wigner measure associated to the WKB asymptotic solution (49), under the assumptions used in Proposition 7.1.

Let $t \in \mathbf{R}$; for each $x \in \mathbf{R}^{N} \backslash C_{t}$ and $j \in\{1, \ldots, \mathcal{N}(t, x)\}$, one has

$$
\begin{array}{r}
\nabla_{x} S_{j}(t, x)=D S^{i n}\left(y_{j}(t, x)\right) D_{x} y_{j}(t, x)+D_{y} S\left(t, y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) D_{x} y_{j}(t, x) \\
+D_{\eta} S\left(t, y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) D^{2} S^{i n}\left(y_{j}(t, x) D_{x} y_{j}(t, x)\right. \\
=\Xi_{t}\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) \cdot\left(D_{y} X_{t}\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) D_{x} y_{j}(t, x)\right. \\
+ \\
\left.D_{\eta} X_{t}\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) D^{2} S^{i n}\left(y_{j}(t, x)\right) D_{x} y_{j}(t, x)\right)
\end{array}
$$

in view of formulas (3.1-2) in [17] recalled above (see (61)). By definition

$$
\begin{equation*}
X_{t}\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right)=x, \quad j=1, \ldots, \mathcal{N}(t, x), \tag{54}
\end{equation*}
$$

so that

$$
\begin{array}{r}
D_{y} X_{t}\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) D_{x} y_{j}(t, x) \\
+D_{\eta} X_{t}\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) D^{2} S^{i n}\left(y_{j}(t, x)\right) D_{x} y_{j}(t, x)=I
\end{array}
$$

which implies in turn that

$$
\begin{equation*}
\nabla_{x} S_{j}(t, x)=\Xi_{t}\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right), \quad j=1, \ldots, \mathcal{N}(t, x) . \tag{55}
\end{equation*}
$$

Because of (54) and of the condition

$$
y_{j}(t, x) \neq y_{k}(t, x) \quad \text { if } 1 \leq j<k \leq \mathcal{N}(t, x),
$$

one has

$$
\begin{aligned}
\nabla_{x} S_{j}(t, x) & =\Xi_{t}\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) \\
& \neq \Xi_{t}\left(y_{k}(t, x), D S^{i n}\left(y_{k}(t, x)\right)\right)=\nabla_{x} S_{k}(t, x) \quad \text { if } 1 \leq j<k \leq \mathcal{N}(t, x),
\end{aligned}
$$

by uniqueness of the solution of the Cauchy problem for Hamilton's equations.
Applying Proposition 1.5 in [10] implies that

$$
W_{\epsilon}\left[\Psi_{\epsilon}(t, \cdot)\right] \rightarrow \mu(t) \quad \text { in } \mathcal{D}^{\prime}\left(\left(\mathbf{R}^{N} \backslash C_{t}\right) \times \mathbf{R}^{N}\right)
$$

as $\epsilon \rightarrow 0$, where

$$
\mu(t, x, d \xi):=\sum_{j=1}^{\mathcal{N}(t, x)} \frac{\left|a^{i n}\left(y_{j}(t, x)\right)\right|^{2}}{J_{t}\left(y_{j}(t, x)\right)} \delta_{\nabla_{x} S_{j}(t, x)} .
$$

The expression in the right hand side of the equality above coincides with the regular part $\mu_{a}(t)$ of the Wigner measure $\mu(t)$ in Theorem 5.1.

Obviously Theorem 5.1 (bearing on Wigner measures) holds under assumptions on the phase of the WKB type initial condition much weaker than in Proposition 7.1 (bearing on solutions of the Schrödinger equation). How much information on solutions of the Schrödinger equation can be extracted from Theorem 5.1 is therefore a natural question. Since the Wigner measure is the limit of the Wigner transform as $\epsilon \rightarrow 0$ and the Wigner transform is quadratic in the wave function, it is natural to expect that Theorem 5.1 carries information on the vanishing ϵ limit of appropriate quadratic expressions in the solution of the Schrödinger equation (42) with rough initial data.

Using (51) and (52), we arrive at the following statement.
Proposition 7.4. Let ψ_{ϵ} the solution of the Schrödinger equation (42) where $a^{i n} \in$ $L^{2}\left(\mathbf{R}^{N}\right)$ satisfies $\left\|a^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}=1$ and $S^{i n} \in C^{1}\left(\mathbf{R}^{N}\right)$ is such that $U^{i n}:=\nabla S^{i n}$ satisfies (11) and the regularity condition (18). Assume that the potential $V \in$ $C^{1,1}\left(\mathbf{R}^{N}\right)$ satisfies (45)-(46)-(43)-(44). Then
a) for each ϵ-pseudodifferential operator B_{ϵ} of Weyl symbol $b \equiv b(x, \xi)$ in the Schwartz class $\mathcal{S}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ and for each $t \in \mathbf{R}$, one has

$$
\lim _{\epsilon \rightarrow 0}\left\langle\psi_{\epsilon}, B_{\epsilon} \psi_{\epsilon}\right\rangle_{L^{2}\left(\mathbf{R}^{N}\right)}=\int_{\mathbf{R}^{N} \times \mathbf{R}^{N}} b(x, \xi) \mu(t, d x d \xi)
$$

where $\mu(t)$ is the Wigner measure described in Theorem 5.1;
b) for each $t \in \mathbf{R}$ and each $\chi \in C_{b}\left(\mathbf{R}^{N}\right)$ satisfying

$$
\chi(x)=0 \quad \text { for all } x \in C_{t}
$$

one has

$$
\int_{\mathbf{R}^{N}} \chi(x)\left|\psi_{\epsilon}(t, x)\right|^{2} d x \rightarrow \int_{\mathbf{R}^{N}} \chi(x) \sum_{y \in F_{t}^{-1}(\{x\})} \frac{\left|a^{i n}\right|^{2} \mathbf{1}_{P_{t}}}{J_{t}}(y) d x
$$

as $\epsilon \rightarrow 0$;
c) for each $t \in \mathbf{R}$ and each $\chi \in C_{b}\left(\mathbf{R}^{N}\right)$ satisfying

$$
\chi\left(\Xi_{t}\left(y, \nabla S^{i n}(y)\right)=0 \quad \text { for all } y \in F_{t}^{-1}\left(C_{t}\right)\right.
$$

one has

$$
\int_{\mathbf{R}^{N}} \chi(\xi)\left|\mathcal{F}_{\epsilon} \psi_{\epsilon}(t, \xi)\right|^{2} d \xi \rightarrow \int_{\mathbf{R}^{N}} \sum_{y \in F_{t}^{-1}(\{x\})} \chi\left(\Xi_{t}\left(y, \nabla S^{i n}(y)\right)\right) \frac{\left|a^{i n}\right|^{2} \mathbf{1}_{P_{t}}}{J_{t}}(y) d x
$$

as $\epsilon \rightarrow 0$. (Recall that C_{t} is defined in (27) - see also (22) and (19) - while P_{t}, J_{t}, Ξ_{t} and F_{t} are as in Theorem 5.1.)

Compared with statement a), statements b) and c) involve a tightness issue, i.e. the fact that $W_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right]$ is small at infinity uniformly in $\epsilon \in(0,1)$. This is discussed in [18] after the statement of Theorem IV.1; see also the end of the proof of Theorem 2.1 on p. 337 in [10]. We give the proof of Proposition 7.4 below for the sake of being complete.

Proof. Statement a) follows from formula (52) and Proposition 7.3.
Now for statements b) and c). Denote

$$
g_{\epsilon}(x):=\frac{1}{(\pi \epsilon)^{N / 2}} e^{-|x|^{2} / \epsilon}, \quad G_{\epsilon}(x, \xi):=g_{\epsilon}(x) g_{\epsilon}(\xi)
$$

Defining

$$
\Psi_{\epsilon}^{x_{0}, \xi_{0}}(x)=(\pi \epsilon)^{-N / 4} e^{-\left|x-x_{0}\right|^{2} / 2 \epsilon} e^{i \xi_{0} \cdot x / \epsilon}
$$

one has

$$
W_{\epsilon}\left[\Psi_{\epsilon}^{x_{0}, \xi_{0}}\right]=G_{\epsilon} .
$$

Along with the Wigner transform $W_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right]$, we consider the Husimi transform

$$
\widetilde{W}_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right]=W_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right] \star_{x, \xi} G_{\epsilon}
$$

Applying (52) with $b=G_{\epsilon}$ and $\Psi=\psi_{\epsilon}(t, \cdot)$, one finds that

$$
B_{\epsilon}=\frac{1}{(2 \pi \epsilon)^{N}}\left|\Psi_{\epsilon}^{x_{0}, \xi_{0}}\right\rangle\left\langle\Psi_{\epsilon}^{x_{0}, \xi_{0}}\right|
$$

so that, for each $x_{0}, \xi_{0} \in \mathbf{R}^{N}$ and each $\epsilon>0$

$$
\widetilde{W}_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right]\left(x_{0}, \xi_{0}\right)=\frac{1}{(2 \pi \epsilon)^{N}}\left|\left\langle\Psi_{\epsilon}^{x_{0}, \xi_{0}} \mid \psi_{\epsilon}(t, \cdot)\right\rangle\right|^{2} \geq 0
$$

Elementary computations based on this formula show that

$$
\begin{align*}
\int_{\mathbf{R}^{N}} \widetilde{W}_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right]\left(x_{0}, \xi_{0}\right) d \xi_{0} & =\left(g_{\epsilon} \star\left|\psi_{\epsilon}(t, \cdot)\right|^{2}\right)\left(x_{0}\right) \\
\int_{\mathbf{R}^{N}} \widetilde{W}_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right]\left(x_{0}, \xi_{0}\right) d x & =\left(g_{\epsilon} \star\left|\mathcal{F}_{\epsilon} \psi_{\epsilon}(t, \cdot)\right|^{2}\right)\left(\xi_{0}\right) \tag{56}
\end{align*}
$$

so that

$$
\begin{array}{r}
\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \widetilde{W}_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right]\left(x_{0}, \xi_{0}\right)=\iint_{\mathbf{R}^{N} \mathbf{R}^{N}} g_{\epsilon}\left(x-x_{0}\right)\left|\psi_{\epsilon}(t, x)\right|^{2} d x d x_{0} \\
=\left\|\psi_{\epsilon}(t, \cdot)\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}=\left\|\psi_{\epsilon}^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}=\left\|a^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}=1
\end{array}
$$

On the other hand

$$
\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \mu(t, d x d \xi)=\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \mu(0, d x d \xi)=\left\|a^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}=1
$$

since $\mu(t)$ is the push-forward of the probability measure $\mu(0)$ under the Hamiltonian flow of $\frac{1}{2}|\xi|^{2}+V(x)$.

Since $\widetilde{W}_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right] \geq 0$ and

$$
\begin{equation*}
\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \widetilde{W}_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right](x, \xi) \chi(x, \xi) d x d \xi \rightarrow \iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \chi(x, \xi) \mu(t, d x d \xi) \tag{57}
\end{equation*}
$$

for each $\chi \in C_{c}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ while

$$
\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \widetilde{W}_{\epsilon}\left[\psi_{\epsilon}(t, \cdot)\right](x, \xi) d x d \xi=1=\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \mu(t, d x d \xi)
$$

we conclude that (57) holds for each $\chi \in C_{b}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$ (see for instance Theorem 6.8 in chapter II of [19]).

On the other hand, for each $\chi \in C_{b}^{1}\left(\mathbf{R}^{N}\right)$

$$
\begin{array}{r}
\left|\int_{\mathbf{R}^{N}} \chi(x)\left(\left|\psi_{\epsilon}(t, x)\right|^{2}-\left|\psi_{\epsilon}(t, \cdot)\right|^{2} \star g_{\epsilon}(x)\right) d x\right| \\
\leq \int_{\mathbf{R}^{N}}\left|\chi(x)-\chi \star_{x} g_{\epsilon}(x)\right|\left|\psi_{\epsilon}(t, x)\right|^{2} d x \\
\quad \leq \sqrt{\epsilon}\|\nabla \chi\|_{L^{\infty}} \int_{\mathbf{R}^{N}}|y| g_{1}(y) d y \rightarrow 0
\end{array}
$$

and likewise

$$
\left|\int_{\mathbf{R}^{N}} \chi(\xi)\left(\left|\mathcal{F}_{\epsilon} \psi_{\epsilon}(t, \xi)\right|^{2}-\left|\mathcal{F}_{\epsilon} \psi_{\epsilon}(t, \cdot)\right|^{2} \star g_{\epsilon}(\xi)\right) d \xi\right| \rightarrow 0
$$

We conclude that, for each $\chi \in C_{b}^{1}\left(\mathbf{R}^{N}\right)$

$$
\begin{align*}
\int_{\mathbf{R}^{N}} \chi(x)\left|\psi_{\epsilon}(t, x)\right|^{2} d x & \rightarrow \iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \chi(x) \mu(t, d x d \xi) \\
\int_{\mathbf{R}^{N}} \chi(\xi)\left|\mathcal{F}_{\epsilon} \psi_{\epsilon}(t, \xi)\right|^{2} d \xi & \rightarrow \iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \chi(\xi) \mu(t, d x d \xi) \tag{58}
\end{align*}
$$

as $\epsilon \rightarrow 0$. On the other hand,

$$
1=\int_{\mathbf{R}^{N}}\left|\psi_{\epsilon}(t, x)\right|^{2} d x=\int_{\mathbf{R}^{N}}\left|\mathcal{F}_{\epsilon} \psi_{\epsilon}(t, \xi)\right|^{2} d \xi=\int_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \mu(t, d x d \xi)
$$

so that (58) holds for each $\chi \in C_{b}\left(\mathbf{R}^{N}\right)$ by a standard density argument.
Statement b) follows from the first convergence statement in (58): by Theorem 5.1 e),

$$
\iint_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \chi(x) \mu(t, d x d \xi)=\int_{\mathbf{R}^{N}} \chi(x) \rho(t, d x)=\int_{\mathbf{R}^{N}} \chi(x) \rho_{a}(t, d x)
$$

if the test function χ vanishes on C_{t}. One concludes with the formula for ρ_{a} in Theorem 5.1 d) with $\rho^{i n}=\left|a^{i n}\right|^{2}$, the restriction to $\mathbf{R}^{N} \backslash C_{t}^{\prime}$ being unessential since $\mathscr{L}^{N}\left(C_{t}^{\prime}\right)=0$.

On the other hand, if $\chi\left(\Xi_{t}\left(y, \nabla S^{\text {in }}(y)\right)\right)=0$ for all $y \in F_{t}^{-1}\left(C_{t}\right)$, then

$$
\int_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \chi(\xi) \mu(t, d x d \xi)=\int_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \chi(\xi) \mathbf{1}_{\mathbf{R}^{N} \backslash C_{t}}(x) \mu(t, d x d \xi)
$$

by Theorem 5.1 c$)$. By Theorem 5.1 b) and e), since $\mu(t)$ is a positive measure, its singular part $\mu_{s}(t)$ is carried by $C_{t} \times \mathbf{R}^{N}$, and therefore

$$
\begin{array}{r}
\int_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \chi(\xi) \mathbf{1}_{\mathbf{R}^{N} \backslash C_{t}}(x) \mu(t, d x d \xi)=\int_{\mathbf{R}^{N} \times \mathbf{R}^{N}} \chi(\xi) \mathbf{1}_{\mathbf{R}^{N} \backslash C_{t}}(x) \mu_{a}(t, d x d \xi) \\
=\int_{\mathbf{R}^{N}} \sum_{y \in F_{t}^{-1}(x)} \chi\left(\Xi_{t}\left(y, \nabla S^{i n}(y)\right) \frac{\left|a^{i n}\right|^{2} \mathbf{1}_{P_{t}}}{J_{t}}(y) d x .\right.
\end{array}
$$

This proves statement c).
7.5. Conclusions and perspectives. Although Proposition 7.1 can be improved by adding extra assumptions on $a^{i n}$ and $S^{i n}$, in full generality the approximation stated there holds in $\mathbf{R} \times \mathbf{R}^{N} \backslash C$, and only after localization in compact subsets of $\mathbf{R} \times \mathbf{R}^{N} \backslash C$. In particular, the approximation of the wave function ψ_{ϵ} by the WKB ansatz Ψ_{ϵ} is not uniform as (t, x) approaches C. (For more on this well known fact in a different, yet related context, we refer the reader to the last paragraph in $\S 55$ and on the problem in $\S 59$ in [15].)

On the contrary, the result obtained in Theorem 5.1 is global, holds in the sense of measures and does not involve the caustic C as explained in the previous sections.

Even in the case of rough phase functions, statements b) and c) of Proposition 7.4 show that our approach provides information on the solution ψ_{ϵ} of the Schrödinger equation(specifically, on $\left|\psi_{\epsilon}\right|$ and $\left.\left|\mathcal{F}_{\epsilon} \psi_{\epsilon}\right|\right)$ consistent with a WKB ansatz, in a situation where the approximation (50) by a WKB asymptotic solution of the form (49) is not justified at the time of this writing.

Appendix A. Proof of Proposition 7.1

Let $\chi(x, \xi)=\chi_{1}(x) \chi_{2}(\xi)$ with $\chi_{1}, \chi_{2} \in C_{c}^{\infty}\left(\mathbf{R}^{N}\right)$, satisfying

$$
\mathbf{1}_{B(0, R)}(x) \leq \chi_{1}(x) \leq \mathbf{1}_{B(0, R+1)} \text { and } \mathbf{1}_{B(0, Q)}(\xi) \leq \chi_{2}(\xi) \leq \mathbf{1}_{B(0, Q+1)}
$$

for all $x, \xi \in \mathbf{R}^{N}$, where $R>0$ and Q is to be chosen later. Pick $n>2 N$; then

$$
\begin{aligned}
\psi_{\epsilon}(t, \cdot)-G_{\epsilon, n}(t) \chi\left(x,-i \epsilon \partial_{x}\right) \psi_{\epsilon}^{i n} & =G_{\epsilon}(t)\left(1-\chi\left(x,-i \epsilon \partial_{x}\right)\right) \psi_{\epsilon}^{i n} \\
& +\left(G_{\epsilon}(t)-G_{\epsilon, n}(t)\right) \chi\left(x,-i \epsilon \partial_{x}\right) \psi_{\epsilon}^{i n}
\end{aligned}
$$

Since $G_{\epsilon}(t)$ is a unitary group on $L^{2}\left(\mathbf{R}^{N}\right)$

$$
\begin{array}{r}
\left\|\psi_{\epsilon}(t, \cdot)-G_{\epsilon, n}(t) \chi\left(x,-i \epsilon \partial_{x}\right) \psi_{\epsilon}^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq\left\|\left(1-\chi\left(x,-i \epsilon \partial_{x}\right)\right) \psi_{\epsilon}^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \\
+\left\|\left(G_{\epsilon}(t)-G_{\epsilon, n}(t)\right) \chi\left(x,-i \epsilon \partial_{x}\right) \psi_{\epsilon}^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \\
\leq\left\|\left(1-\chi\left(x,-i \epsilon \partial_{x}\right)\right) \psi_{\epsilon}^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \\
+C_{T, Q} \epsilon^{n-2 N}\left\|a^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}
\end{array}
$$

for all $t \in[0, T]$, where $C_{Q, T}=C[V, T, \chi]$.
Now, $\chi\left(x,-i \epsilon \partial_{x}\right) \psi_{\epsilon}^{i n}=\chi_{1}(x) \chi_{2}\left(\left(-i \epsilon \partial_{x}\right) \psi_{\epsilon}^{i n}\right.$ and since $\operatorname{supp}\left(a^{i n}\right) \subset B(0, R)$

$$
\begin{aligned}
&\left\|\left(1-\chi\left(x,-i \epsilon \partial_{x}\right)\right) \psi_{\epsilon}^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}=\left\|\chi_{1}\left(1-\chi_{2}\left(-i \epsilon \partial_{x}\right)\right) \psi_{\epsilon}^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \\
& \leq\left\|\left(1-\chi_{2}\left(-i \epsilon \partial_{x}\right)\right) \psi_{\epsilon}^{i n}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \\
&=(2 \pi)^{-N}\left\|\left(1-\chi_{2}(\epsilon \xi)\right) \widehat{\psi_{\epsilon}^{i n}}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)} \\
& \leq(2 \pi)^{-N}\left\|\mathbf{1}_{[Q / \epsilon, \infty)}(|\xi|) \widehat{\psi_{\epsilon}^{i n}}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}
\end{aligned}
$$

Since

$$
\widehat{\psi_{\epsilon}^{i n}}(\zeta / \epsilon)=\int_{\mathbf{R}^{N}} e^{-i\left(\zeta \cdot x-S^{i n}(x)\right) / \epsilon} a^{i n}(x) d x
$$

we conclude from estimate (7.7.1') in [12] that

$$
\widehat{\mid \psi_{\epsilon}^{i n}}(\zeta / \epsilon) \left\lvert\, \leq \frac{C\left\|a^{i n}\right\|_{W^{m, \infty}\left(\mathbf{R}^{N}\right)}}{\left(|\zeta|-\left\|\nabla S^{i n}\right\|_{L^{\infty}(B(0, R)}\right)^{m}} \epsilon^{m}\right.
$$

provided that $\operatorname{supp}\left(a^{i n}\right) \subset B(0, R)$ and $|\zeta|>1+\left\|\nabla S^{i n}\right\|_{L^{\infty}(B(0, R)}$. Therefore

$$
\begin{align*}
\| \psi_{\epsilon}(t, \cdot)-G_{\epsilon, n}(t) \chi(x,- & \left.i \epsilon \partial_{x}\right) \psi_{\epsilon}^{i n}\left\|_{L^{2}\left(\mathbf{R}^{N}\right)} \leq C_{T, Q}\right\| a^{i n} \|_{L^{2}\left(\mathbf{R}^{N}\right)} \epsilon^{n-2 N} \\
& +C\left\|(1+|\zeta|)^{-m}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}\left\|a^{i n}\right\|_{W^{m, \infty}\left(\mathbf{R}^{N}\right)} \epsilon^{m} \tag{59}
\end{align*}
$$

for all $m>N / 2$.
Next we analyze the term (60)

$$
\begin{aligned}
G_{\epsilon, n}(t) & \chi\left(x,-i \epsilon \partial_{x}\right) \psi_{\epsilon}^{i n}(x) \\
& =\iiint \int A_{n}(t, y, \eta, \epsilon) a^{i n}(z) \chi_{2}(\zeta) e^{i\left(\varphi(t, x, y, \eta)+\zeta \cdot(y-z)+S^{i n}(z)\right) / \epsilon} \frac{d z d \zeta d y d \eta}{(2 \pi \epsilon)^{2 N}}
\end{aligned}
$$

with the stationary phase method.
Choose φ of the form

$$
\varphi(t, x, y, \eta)=S(t, y, \eta)+\left(x-X_{t}(y, \eta)\right) \cdot \Xi_{t}(y, \eta)+i B:\left(x-X_{t}(y, \eta)\right)^{\otimes 2}
$$

where the matrix $B=B^{T}>0$ is constant (see formula (2.7) [17] and the following Remark 2.1). Critical points of the phase in the oscillating integral (60) are defined by the system of equations

$$
\left\{\begin{array}{l}
-\zeta+D S^{i n}(z)=0 \\
y-z=0 \\
\partial_{y} S(t, x, y)-\Xi_{t}(y, \eta) \cdot D_{y} X_{t}(y, \eta)+\left(x-X_{t}(y, \eta)\right) \cdot D_{y} \Xi_{t}(y, \eta) \\
-i B:\left(x-X_{t}(y, \eta)\right) \otimes D_{y} X_{t}(y, \eta)+\zeta=0 \\
\partial_{\eta} S(t, x, y)-\Xi_{t}(y, \eta) \cdot D_{\eta} X_{t}(y, \eta)+\left(x-X_{t}(y, \eta)\right) \cdot D_{\eta} \Xi_{t}(y, \eta) \\
-i B:\left(x-X_{t}(y, \eta)\right) \otimes D_{\eta} X_{t}(y, \eta)+\zeta=0
\end{array}\right.
$$

At this point, we recall formulas (3.1-2) from [17]

$$
\begin{align*}
\partial_{y} S(t, x, y) & =\Xi_{t}(y, \eta) \cdot D_{y} X_{t}(y, \eta)-\eta \\
\partial_{\eta} S(t, x, y) & =\Xi_{t}(y, \eta) \cdot D_{\eta} X_{t}(y, \eta) \tag{61}
\end{align*}
$$

together with the following definitions

$$
\begin{aligned}
Y(t, y, \eta) & :=D_{y} \Xi_{t}(y, \eta)-i B D_{y} X_{t}(y, \eta), \\
Z(t, y, \eta) & :=D_{\eta} \Xi_{t}(y, \eta)-i B D_{\eta} X_{t}(y, \eta) .
\end{aligned}
$$

Thus the critical points of the phase in (60) are given by

$$
\left\{\begin{array}{l}
\zeta=D S^{i n}(z) \\
y=z \\
\left(x-X_{t}(y, \eta)\right)^{T} Y(t, y, \eta)+\zeta=\eta \\
\left(x-X_{t}(y, \eta)\right)^{T} Z(t, y, \eta)=0
\end{array}\right.
$$

Since the matrix Z is invertible by Lemma 4.1 of [17], we conclude that the system of equations above is equivalent to

$$
\left\{\begin{array}{l}
\zeta=D S^{i n}(z) \\
y=z \\
\zeta=\eta \\
x=X_{t}(y, \eta)
\end{array}\right.
$$

In other words,

$$
F_{t}(z)=x, \quad y=z, \quad \zeta=\eta=D S^{i n}(z) .
$$

Assuming that $(t, x) \notin C$, we apply Proposition 3.3 and conclude that the set of critical points of the phase in (60) is of the form

$$
\left\{\begin{array}{l}
y=z=y_{j}(t, x), \\
\zeta=\eta=D S^{i n}\left(y_{j}(t, x)\right),
\end{array} \quad j=1, \ldots, \mathcal{N}(t, x)\right.
$$

At this point, we apply the stationary phase method (Theorem 7.7.5 in [12]). First we need to compute the Hessian of the phase in (60) at its critical points. One finds

$$
H_{j}(t, x):=\left(\begin{array}{cccc}
D^{2} S^{i n} & -I & 0 & 0 \\
-I & 0 & +I & 0 \\
0 & +I & -Y D_{y} X_{t} & -Y D_{\eta} X_{t}-I \\
0 & 0 & -Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right)_{\substack{y=y_{j}(t, x) \\
\eta=D \operatorname{Sin}^{\sin \left(y_{j}(t, x)\right)}}}
$$

and it remains to compute $\operatorname{det}\left(H_{j}(t, x)\right)$. Adding the first row of $H_{j}(t, x)$ to the third row, one finds that

$$
\begin{aligned}
\operatorname{det} H_{j}(t, x) & =\left|\begin{array}{cccc}
D^{2} S^{\text {in }} & -I & 0 & 0 \\
-I & 0 & +I & 0 \\
D^{2} S^{\text {in }} & 0 & -Y D_{y} X_{t} & -Y D_{\eta} X_{t}-I \\
0 & 0 & -Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right|_{\substack{y=y_{j}(t, x) \\
\eta=D S^{\operatorname{in}\left(y_{j}(t, x)\right)}}} \\
& =(-1)^{N}\left|\begin{array}{ccc}
-I & +I & 0 \\
D^{2} S^{i n} & -Y D_{y} X_{t} & -Y D_{\eta} X_{t}-I \\
0 & -Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right| \begin{array}{c}
y=y_{j}(t, x) \\
\eta=D \operatorname{Sin}^{2 n}\left(y_{j}(t, x)\right) \\
\end{array} \\
& =(-1)^{N}\left|\begin{array}{ccc}
-I & 0 & 0 \\
D^{2} S^{i n} & -Y D_{y} X_{t}+D^{2} S^{i n} & -Y D_{\eta} X_{t}-I \\
0 & -Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right|_{\substack{y=y_{j}(t, x) \\
\eta=D S^{i n}\left(y_{j}(t, x)\right)}}
\end{aligned}
$$

where the last equality follows from adding the first column in the right hand side of the second equality to the second column. Eventually, one finds that

$$
\operatorname{det} H_{j}(t, x)=\left|\begin{array}{cc}
-Y D_{y} X_{t}+D^{2} S^{i n} & -Y D_{\eta} X_{t}-I \\
-Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right|_{\substack{y=y_{j}(t, x) \\
\eta=D \operatorname{Sin}^{i n}\left(y_{j}(t, x)\right)}}
$$

which is computed as follows. First

$$
\left|\begin{array}{cc}
I & -Y Z^{-1} \\
0 & I
\end{array}\right|\left|\begin{array}{cc}
-Y D_{y} X_{t}+D^{2} S^{i n} & -Y D_{\eta} X_{t}-I \\
-Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right|=\left|\begin{array}{cc}
D^{2} S^{i n} & -I \\
-Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right|
$$

so that

$$
\operatorname{det} H_{j}(t, x)=\left|\begin{array}{cc}
D^{2} S^{i n} & -I \\
-Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right|_{\substack{y=y_{j}(t, x) \\
\eta=D \operatorname{Sin}^{2}\left(y_{j}(t, x)\right)}}
$$

On the other hand

$$
\begin{aligned}
\left|\begin{array}{cc}
D^{2} S^{i n} & -I \\
-Z D_{y} X_{t} & -Z D_{\eta} X_{t}
\end{array}\right| & =\operatorname{det}\left(Z D_{y} X_{t}+Z D_{\eta} X_{t} D^{2} S^{i n}\right) \\
& =\operatorname{det}(Z) \operatorname{det}\left(D_{y} X_{t}+D_{\eta} X_{t} D^{2} S^{i n}\right)
\end{aligned}
$$

by the following elementary lemma (that is a variant of the Schur complement formula in a special case: see for instance Proposition 3.9 on pp. 40-41 in [23]).

Lemma A.1. Let $A, B, C, D \in M_{N}(\mathbf{C})$. If $A B=B A$, one has

$$
\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|=\operatorname{det}(D A-C B)
$$

Therefore

$$
\begin{align*}
\operatorname{det} H_{j}(t, x) & =\left.\operatorname{det}(Z) \operatorname{det}\left(D_{y} X_{t}+D_{\eta} X_{t} D^{2} S^{i n}\right)\right|_{y=y_{j}(t, x), \eta=D \operatorname{Sin}^{\text {in }}\left(y_{j}(t, x)\right)} \tag{62}\\
& =\operatorname{det}\left(Z\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) \operatorname{det}\left(D F_{t}\left(y_{j}(t, x)\right)\right)\right.
\end{align*}
$$

where F_{t} is defined in (13) with $U^{i n}=D S^{i n}$.
Pick a nonempty closed ball $B \subset \mathbf{R} \times \mathbf{R}^{N} \backslash C$, let $\mathcal{N}_{B}=\mathcal{N}(t, x)$ for all $(t, x) \in B$, and let

$$
K_{j}=\left\{\left(y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right)\right) \mid(t, x) \in B\right\}, \quad j=1, \ldots, \mathcal{N}_{B}
$$

Assuming that B is of small enough radius, $K_{j} \cap K_{k}=\varnothing$ for $j \neq k \in\left\{1, \ldots, \mathcal{N}_{B}\right\}$. Let $\kappa_{j} \in C_{c}^{\infty}\left(\mathbf{R}^{2 N}\right)$ for all $j=1, \ldots, \mathcal{N}_{B}$, such that

$$
\left\{\begin{array}{c}
\kappa_{j} \geq 0 \text { and }\left.\kappa_{j}\right|_{K_{j}}=1, \quad j=1, \ldots, \mathcal{N}_{B} \\
\text { while } \kappa_{j} \kappa_{k}=0 \text { for } j \neq k \in\left\{1, \ldots, \mathcal{N}_{B}\right\}
\end{array}\right.
$$

Applying Theorem 7.7.1 in [12] shows that

$$
\begin{array}{r}
\sup _{(t, x) \in B} \left\lvert\, \iiint \int A_{n}(t, y, \eta, \epsilon) a^{i n}(z) \chi_{2}(\zeta) e^{i\left(\varphi(t, x, y, \eta)+\zeta \cdot(y-z)+S^{i n}(z)\right) / \epsilon} \frac{d z d \zeta d y d \eta}{(2 \pi \epsilon)^{2 N}}\right. \tag{63}\\
-\sum_{j=1}^{\mathcal{N}_{B}} \iiint \int A_{n}(t, y, \eta, \epsilon) a^{i n}(z) \chi_{2}(\zeta) \kappa_{j}(y, \eta) \kappa_{j}(z, \zeta) \\
\left.e^{i\left(\varphi(t, x, y, \eta)+\zeta \cdot(y-z)+S^{i n}(z)\right) / \epsilon} \frac{d z d \zeta d y d \eta}{(2 \pi \epsilon)^{2 N}} \right\rvert\,=O(\epsilon)
\end{array}
$$

as $\epsilon \rightarrow 0$.
Next we set

$$
\begin{aligned}
I_{j}(t, x, \epsilon):=\iiint \int & A_{n}(t, y, \eta, \epsilon) a^{i n}(z) \chi_{2}(\zeta) \kappa_{j}(y, \eta) \kappa_{j}(z, \zeta) \\
& \times e^{i\left(\varphi(t, x, y, \eta)+\zeta \cdot(y-z)+S^{i n}(z)\right) / \epsilon} \frac{d z d \zeta d y d \eta}{(2 \pi \epsilon)^{2 N}}
\end{aligned}
$$

for $j=1, \ldots, \mathcal{N}_{B}$. By Theorem 7.7.5 in [12], we conclude that

$$
\begin{array}{r}
\sup _{(t, x) \in B} \mid I_{j}(t, x, \epsilon)-A_{0}\left(t, y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right), 0\right) a^{i n}\left(y_{j}(t, x)\right) \chi_{2}\left(\nabla S^{i n}\left(y_{j}(t, x)\right)\right) \tag{64}\\
\times e^{i\left(\varphi\left(t, x, y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right)\right)+S^{i n}\left(y_{j}(t, x)\right)\right) / \epsilon}\left(\operatorname{det} H_{j}(t, x)\right)^{-1 / 2} \mid=O(\epsilon)
\end{array}
$$

as $\epsilon \rightarrow 0$. Our choice of χ_{2} and φ implies that $\chi_{2}\left(\nabla S^{i n}\left(y_{j}(t, x)\right)\right)=1$ and

$$
\varphi\left(t, x, y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right)\right)=S\left(t, y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right)\right)
$$

so that

$$
\left(\varphi\left(t, x, y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right)\right)+S^{i n}\left(y_{j}(t, x)\right)\right)=S_{j}(t, x)
$$

By formula (2.13) in [17]

$$
\begin{equation*}
A_{0}\left(t, y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right), 0\right)=\sqrt[c o n t]{\operatorname{Det}\left(Z\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right)\right.} \tag{65}
\end{equation*}
$$

where the notation $\sqrt[\operatorname{cont}]{z}$ designates the analytic continuation of the square-root along the path $t \mapsto \operatorname{Det}\left(Z\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right.\right.$. This analytic continuation is uniqueley defined since $\operatorname{Det}\left(Z\left(y_{j}(t, x), D S^{i n}\left(y_{j}(t, x)\right)\right) \neq 0\right.$ for all t : see for instance section 1.3 in chapter 8 of [1]. According to (65), (62), Lemma 5.1 and formula (5.15) in [17], we have

$$
\begin{array}{r}
A_{0}\left(t, y_{j}(t, x), \nabla S^{i n}\left(y_{j}(t, x)\right), 0\right)\left(\operatorname{det} H_{j}(t, x)\right)^{-1 / 2} \\
=\left|\operatorname{det}\left(D F_{t}\left(y_{j}(t, x)\right)\right)\right|^{-1 / 2} e^{i \pi \nu_{j}(t, x) / 2}=J\left(y_{j}(t, x)\right)^{-1 / 2} e^{i \pi \nu_{j}(t, x) / 2} \tag{66}
\end{array}
$$

where $\nu_{j}(t, x)$ is an integer.
Putting together (59)-(63)-(64)-(66) concludes the proof of Proposition 7.1.
Proof of Lemma A.1. If A is nonsingular and $A B=B A$, one has

$$
\begin{aligned}
\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|=(-1)^{N}\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|\left|\begin{array}{cc}
A^{-1} & B \\
0 & -A
\end{array}\right| & =(-1)^{N}\left|\begin{array}{cc}
I & 0 \\
C A^{-1} & C B-D A
\end{array}\right| \\
& =(-1)^{N} \operatorname{det}(C B-D A)=\operatorname{det}(D A-C B) .
\end{aligned}
$$

Since both sides of the identity above are continuous functions of A and the set of nonsingular matrices $G L_{N}(\mathbf{C})$ is dense in $M_{N}(\mathbf{C})$, this identity holds for all $A \in M_{n}(\mathbf{C})$ such that $A B=B A$.

Acknowledgement. P. Markowich thanks the Fondation des Sciences Mathématiques de Paris for its support during the preparation of this paper.

References

[1] L.V. Ahlfors: "Complex Analysis", McGraw Hill, 2nd edition, New York 1966.
[2] L. Ambrosio, A. Figalli, G. Friesecke, J. Giannoulis, T. Paul: Semiclassical limit of quantum dynamics with rough potentials and well posedness of transport equations with measure initial data, Comm. Pure Appl. Math. 64 (2011), 1199-1242.
[3] L. Ambrosio, N. Fusco, D. Pallara: "Functions of Bounded Variations and Free Discontinuity Problems", Oxford University Press, Oxford 2000.
[4] V.I. Arnold: Characteristic class entering in quantization condition, Func. Anal. Appl. 1 (1967), 1-14.

5] V.I. Arnold: "Geometrical methods of the theory of ordinary differential equations", SpringerVerlag, New York 1997.
[6] V.I. Arnold: "Mathematical Methods of Classical Mechanics", Springer-Verlag, New York 1989.
[7] Y. Brenier, U. Frisch, M. Hnon, G. Loeper, S. Matarrese, R. Moyhayaee, A. Sobolevskii: Reconstruction of the early Universe as a convex optimization problem, Mon. Not. Royal. Astron. Soc.
[8] Y. Brenier, E. Grenier: Sticky particles and scalar conservation laws, SIAM J. Numer. Anal. 35 (1998), 2317-2328.
[9] W. E, Y. Rykov, Ya. Sinai: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.
[10] P. Gérard, P. Markowich, N. Mauser, F. Poupaud: Homogenization limit and Wigner Transforms, Comm. on Pure and App. Math. 50 (1997), 323-379.
[11] V. Guillemin, S. Sternberg: "Geometric Asymptotics", Amer. Math. Soc., Providence 1977.
[12] L. Hörmander: "The analysis of linear partial differential operators I", Springer-Verlag, Berlin, Heidelberg 1983, 1990.
[13] L. Hörmander: "The analysis of linear partial differential operators II", Springer-Verlag, Berlin, Heidelberg 1983, 1990.
[14] J. Kauhannen, P. Koskela, J. Malý: On functions with derivatives in a Lorentz space, Manuscripta Math. 100 (1999), 87-101.
[15] L. Landau, E. Lifshitz: "The Classical Theory of Fields", Butterworth-Heinemann, Oxford, 1976.
[16] L. Landau, E. Lifshitz: "Quantum Mechanics Nonrelativistic Theory", ButterworthHeinemann, Oxford, 1977.
[17] A. Laptev, I. Sigal: Global Fourier Integral Operators and Semiclassical Asymptotics, Review of Math. Phys. 12 (2000), 749-766.
[18] P.-L. Lions, T. Paul: Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9 (1993), 553618.
[19] P. Malliavin, H. Airault, G. Letac, L. Kay: "Integration and Probability", Springer-Verlag, New York 1995.
[20] J. Malý: Absolutely Continuous Functions of Several Variables, J. Math. Anal. Appl. 231 (1999), 492-508.
[21] J. Malý, D. Swanson, W. Ziemer: The Co-Area Formula for Sobolev Mappings, Trans. Amer. Math. Soc. 355 (2002), 477-492.
[22] W. Rudin: "Real and Complex Analysis", McGraw Hill, Singapore, 1986.
[23] D. Serre: "Matrices", Springer-Verlag, 2nd edition, New York 2010.
[24] J. Smoller: Shock Waves and Reaction-Diffusion Equations"; Springer-Verlag, New York, 1983.
[25] C. Sparber, P. A. Markowich, N. Mauser: Wigner Functions versus WKB-Methods in Multivalued Geometrical Optics, Asymptot. Anal., 33 (2003), 153-187.
[26] E. Wigner: On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev. 40 (1932), 749-759.
[27] Ya. Zeldovich: Gravitational instability: An approximate theory for large density perturbations, Astron. Astrophys. 5 (1970), 84-89.
(C.B.) Université Paris-Diderot, Laboratoire J.-L. Lions, BP187, 4 place Jussieu, 75252 Paris Cedex 05 France

E-mail address: claude.bardos@gmail.com
(F.G.) Ecole Polytechnique, Centre de Mathématiques L. Schwartz, 91128 Palaiseau Cedex, France \& Université Paris-Diderot, Laboratoire J.-L. Lions, BP187, 4 place Jussieu, 75252 Paris Cedex 05 France

E-mail address: francois.golse@math.polytechnique.fr
(P.M.) King Abdullah University of Science and Technology (KAUST), MCSE Division, Thuwal 23955-6900, Saudi Arabia

E-mail address: Peter.Markowich@kaust.edu.sa
(T.P.) CNRS and Ecole Polytechnique, Centre de Mathématiques L. Schwartz, 91128 Palaiseau Cedex, France

E-mail address: thierry.paul@math.polytechnique.fr

[^0]: 1991 Mathematics Subject Classification. 81Q20, 81S30, 35Q40, 35L03, 28A75.
 Key words and phrases. Wigner measure, Liouville equation, Schrödinger equation, WKB method, Caustic, Area formula, Coarea formula .

