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The scope of the well-known k-means algorithm has been broadly extended with some recent results: first, the k-means++ initialization method gives some approximation guarantees; second, the Bregman k-means algorithm generalizes the classical algorithm to the large family of Bregman divergences. The Bregman seeding framework combines approximation guarantees with Bregman divergences. We present here an extension of the k-means algorithm using the family of α-divergences. With the framework for representational Bregman divergences, we show that an α-divergence based k-means algorithm can be designed. We present preliminary experiments for clustering and image segmentation applications. Since α-divergences are the natural divergences for constant curvature spaces, these experiments are expected to give information on the structure of the data.

INTRODUCTION AND PRIOR WORK

Originally restricted to the Euclidean distance, the wellknown Lloyd's k-means algorithm [START_REF] Lloyd | Least squares quantization in PCM[END_REF] has been extended to a larger family of distortion measures, the Bregman divergences (which contains the Euclidean distance) by Banerjee et al. [START_REF] Banerjee | Clustering with Bregman divergences[END_REF]. Even if the output of the classical k-means is a local minimizer of the loss function, it is known that the result can be arbitrary far from the optimum and that the quality of the clusters is heavily dependent on the initial seeds chosen to represent the clusters: Arthur and Vassilvitskii [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF] presented the k-means++ initialization method (also known as squared Euclidean seeding) which guaranties to have a O(log k)approximation of the optimal output by carefully choosing the initial seed of the k clusters. The two results have been unified recently by Nock et al. [START_REF] Nock | Mixed Bregman clustering with approximation guarantees[END_REF] to provide a Bregman clustering algorithm with approximation guarantees.

We introduce here an extension of the previous results on the family of α-divergences. Such an extension is an important complement of the Bregman clustering since the Bregman divergences are the canonical divergences for dually flat spaces and the α-divergences are the canonical divergences for constant curvature spaces. This is not the first attempt to take into account the specificities of constant curvature spaces, Dhillon and Modha [START_REF] Dhillon | Concept decompositions for large sparse text data using clustering[END_REF] introduced the spherical kmeans algorithm which use a cosine similarity but our algorithm is more general since it allow a more precise choice of parameters and is not limited to positive curvature spaces. This new work is made possible by the representational Bregman divergences framework introduced by Nielsen and Nock [START_REF] Nielsen | The dual Voronoi diagrams with respect to representational Bregman diver-gences[END_REF]. In this framework, each α-divergence is seen as the Bregman divergence generated by some strictly convex and differentiable function (the Bregman generator) acting on an adapted representation function.

Section 2 recalls some definitions and presents the representation Bregman divergences framework. Section 3 presents the clustering algorithm itself. Section 4 presents few preliminary experiments.

REPRESENTATIONAL BREGMAN DIVERGENCES

Definitions Invariance and information monotonicity of α-divergences

We recall the definition of α-divergences [START_REF] Amari | Methods of information geometry[END_REF] that are defined on positive arrays (unnormalized discrete probabilities) for α ∈ R as:

D α (p q) =                      d i=1 4 1-α 2 1-α 2 p i + 1+α 2 q i -p 1-α 2 i q 1+α 2 i if α = ±1 d i=1 p i log pi qi + q i -p i = KL(p q) if α = -1 d i=1 p i log qi pi + p i -q i = KL(q p) if α = 1
(1) This is all the more important that in the heart of many computer vision application, we deal with histograms (e.g., SIFT descriptors [START_REF] Lowe | Object recognition from local scaleinvariant features[END_REF], GIST descriptors [START_REF] Oliva | Building the gist of a scene: The role of global image features in recognition[END_REF]) that are considered as multinomial probability distributions. Therefore, we need a distribution measure D to calculate the dissimilarity of multinomials D(p(x; θ p )||p(x; θ q )) where θ p and θ q are the histogram distributions. Symmetrized α-divergences S α (p, q) = 1 2 (D α (p q) + D α (q p)) belong to Csiszár's f -divergences and therefore retain the information monotonicity property.

From the pioneering work of Chentsov [START_REF] Chentsov | Statistical Decision Rules and Optimal Inferences[END_REF], it is known that the Fisher-Rao riemannian geometry (with the induced Levi-Civita connection) and the α-connections are the only differential geometric structures that preserve the measure of probability distributions by reparameterization. We consider the α-divergences that are a proper sub-class of Csiszár f -divergences that satisfy both reparameterization invariance (i.e., D(p(x; θ p )||p(x; θ q )) = D(p(x; λ p )||p(x; λ q )) for λ x = f (θ x ) where f is a bijective mapping) and information monotonicity [START_REF] Csiszár | Axiomatic characterizations of information measures[END_REF]: D(p(x; θ p )||p(x; θ q )) ≥ D(p(x; θ p )||p(x; θ q )) for θ a coarser partition of the histogram. That is, if we merge bins θ into coarser histograms θ , the distance measure should be less than the distance by considering the higher-resolution histograms.

Bregman divergences Given a strictly convex and differentiable function F : R d → R, we define the Bregman divergence associated with the generator F as:

B F (p q) = F (p) -F (q) -p -q, ∇F (q) (2) 
The generator

F (x) = x x = d i=1
x 2 i yields to the squared Euclidean distance. Using the Shannon negative entropy (F (x) = d i=1 x i log x i ) we get the well-known Kullbach-Leibler (KL) divergence.

Representation function

Nielsen and Nock [START_REF] Nielsen | The dual Voronoi diagrams with respect to representational Bregman diver-gences[END_REF] showed that α-divergences (but also βdivergences [START_REF] Mihoko | Robust blind source separation by beta divergence[END_REF]) are representational Bregman divergences in disguise. Let's consider decomposable Bregman divergences:

B F (p q) = d i=0 B F (p i q i ) (3) 
With a slight abuse of notation, we denote its separable generator F as F (x) = d i=0 F (x i ). We call representation function a strictly monotonous function k that introduces a (possibly non-linear) coordinate system x i = k(s i ) where each s i comes from the source coordinate system. This mapping is bijective since k is strictly monotonous and s i = k -1 (x i ). We have the following Bregman generator:

U (x) = d i=1 U (x i ) = d i=1 U (k(s i )) = F (s) (4) 
where

F = U • k.
The class of α-divergences are representational Bregman divergences for

U α (x) = 2 1 + α 1 -α 2 x 2 1-α , k α (x) = 2 2 -α x 1-α 2
(5) Notice it turns out that F may not be strictly convex [START_REF] Nielsen | The dual Voronoi diagrams with respect to representational Bregman diver-gences[END_REF] (U α • k α is linear) although U is always strictly convex.

Centroids

Like (most of) the Bregman divergences, α-divergences are not symmetrical. This yields to two different ways of defining centroids: the left-sided centroid c L and the right-sided centroid c R :

c R = arg min c∈X n i=1 B U, k (p i c) c L = arg min c∈X n i=1 B U, k (c p i ) (6) 
Closed-form formulas are given in [START_REF] Nielsen | The dual Voronoi diagrams with respect to representational Bregman diver-gences[END_REF]:

c R = k -1 ( n i=1 k(p i )) c L = k -1 (∇U * ( i ∇U (k(p i )))) (7) 
where U * is the Legendre convex conjugate of U , see [START_REF] Nielsen | Bregman Voronoi diagrams: Properties, algorithms and applications[END_REF]. In the particular case of α-divergences, we obtain:

c R = n -2 1-α p 1-α 2 i 2 1-α c L = n -2 1+α p 1+α 2 i 2 1+α (8)

CLUSTERING WITH REPRESENTATION FUNCTIONS

k-means algorithm

Banerjee et al. [START_REF] Banerjee | Clustering with Bregman divergences[END_REF] showed that the classical clustering algorithm k-means generalizes to and only to Bregman divergences. Using the representational framework of section 2.2, we extend their algorithm to the α-divergences by plugging the representation function: this is algorithm 1. (Symmetrized α-divergences S α are handled implicitly by two potential functions, similarly to [START_REF] Nock | Mixed Bregman clustering with approximation guarantees[END_REF].)

We can establish the following proposition:

Proposition 1. The representational Bregman k-means (algorithm 1) monotonically decreases the loss function L U,k .

Algorithm 1 Representational Bregman k-means

Require: A set X of n points x i of R d , a number of clusters k, a representational divergence B U,k Choose k points µ i (with some seeding method)

repeat {Assignment step} Set X h ← ∅ for 1 ≤ h ≤ k for i = 1 to n do h ← arg min h B U,k (x i ||µ h ) Add x i to X h end for {Relocation step} for h = 1 to k do µ h ← k -1 ( n i=1 k(x i )) end for until convergence Return {µ 1 , . . . , µ k } Proof. L (t) U,k = k h=1 xi∈X (t) h B U,k (x i , µ (t) h ) (9) 
≥ k h=1 xi∈X (t) h B U,k (x i , µ h (xi) ) (10) 
≥ k h=1 xi∈X (t+1) h B U,k (x i , µ h (t+1) ) (11) 
where h

(x i ) = arg min h B U,k (x i ||µ h )
The inequality [START_REF] Chentsov | Statistical Decision Rules and Optimal Inferences[END_REF] comes from the assignment step: each point is re-assigned to the cluster with the nearest centroid.

The inequality [START_REF] Csiszár | Axiomatic characterizations of information measures[END_REF] comes from the re-estimation step: the centroid of each cluster is recomputed, reducing the cost of each cluster. Thus, the Representational Bregman k-means algorithm gives a partition which is locally optimal.

Representational seeding

The Bregman seeding method presented in [START_REF] Nock | Mixed Bregman clustering with approximation guarantees[END_REF] can be generalized in a straightforward way in order to get the same approximation guarantees as in in k-means++ [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]. Algorithm 2 describes how to seed the initial cluster. The proof is omitted but can be drawn directly from the [START_REF] Nock | Mixed Bregman clustering with approximation guarantees[END_REF] one.

EXPERIMENTS

Clustering

We tried our algorithm on one of the most natural space with a positive constant curvature: the Earth. We clusterized a set of 61 cities divided in continents and described by their coordinates in a 3-dimensional space. The resulting clusters were evaluated in terms of Normalized Mutual information [START_REF] Strehl | Cluster Ensembles-A Knowledge Reuse Framework for Combining Multiple Partitions[END_REF]. We saw in our experiments that the α parameter has a little impact on clustering performance (figure 1). We explain this by the fact that the dataset used is easy and does not need a careful use of its geometry.

Segmentation

We present results on segmentation application: each image is seen as a set of points in the five dimensional RGBXY space. The quality of the segmentation is evaluated visually.

The parameter α was moved from -1000 to 1000 with a thinner step for values near 0. We use 4, 8 and 16 different clusters for segmentation.

As one can see of the examples images of the figure 2 the segmentation little depends on the α-parameter. 

CONCLUSION

The Bregman k-means algorithm presented in this paper extends well to the case of the α-divergences. This extension opens a new field of distortion measures for clustering related applications. Even if the intuition should be that a careful choice of the α could lead to improvements, this was not the case on the examples of clustering and segmentation we showed: since it was made only on one simple dataset and on two images, it can not be used to draw a general conclusion but it will need further work to better understand this result.

We intend to extend our study to synthetic datasets in order to validate the link between α-divergences and constant curvature spaces and to real datasets in order to understand at which extent it can benefit from α-clustering. It would be particularly interesting to discover the curvature of some famous image descriptors (such as GIST or SIFT).
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 21 Fig. 1. Clustering results on cities dataset
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 2 Fig. 2. Segmentation for α in {-1000, -100, -10, -1, 0, 1, 10, 100, 1000}, for 8 clusters. All these images differ only by few pixels and are very similar to the one obtained with the Kullbach-Leibler divergence (α = ±1).