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Abstract

An alternative and consistent approach, not appealing to the principietaél power
and to Coleman-Noll procedure, is used to derive constitutive and gjiogeequations
involving temperature or entropy gradients, in thermomechanics of materigilsg the
balance of energy, an analysis of the dissipation naturally leads to théidafof the tem-
perature and the entropy as variational derivatives. The approaskrpes the classical
forms of the equations and yields to consistent form of the second laweatadbnduction
inequality. The framework of generalized standard materials is then suitabitefiving
admissible constitutive laws. The methodology is applied, first using entrapitagradi-

ent as state variables (with internal energy as thermodynamic potentiaBeaodd using
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temperature and its gradient (starting from the free energy).
To cite this article: M.H. Maitournam, C. R. Mecanique (2012).

Résumé

Thermomécanique avec gradients d’entropie et de températuredissipation, inégalité
de la conduction et équation de la chaleulUne approche alternative et cohérente, ne fai-
sant pas appel au principe des puissances virtuelles et a la prodéddodeman-Noll, est
utilisée pour obtenir les lois de comportement avec gradients de températliemtropie,
ainsi que les équations d'évolution en thermomécanique. En partant dudbéiaergie,
une analyse de la dissipation conduit naturellement a la définition de la tenrpéeaitie
I'entropie par des dérivées variationnelles. Tout en préservanbteses classiques des
équations, I'approche permet d'établir les formes cohérentes de llitééda I'entropie
(second principe) et de la conduction dont une nouvelle forme esbpéeplLe formalisme
standard généralisé offre ensuite un moyen commode d’établir des lois dulesiska
méthodologie est appliquée en prenant d’abord I'entropie et son gtaimmme variables
d’état (énergie interne comme potentiel), et ensuite la température et shengr@nergie

libre comme potentiel).

Pour citer cet article : M.H. Maitournam, C. R. Mecanique (2012).
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1 Introduction

The approach proposed by Coleman and Noll [1] uses the Clabsibem inequality as a tool
to select constitutive laws by requiring that this inedgtyaholds by all thermodynamic pro-
cesses. Adopting the Truesdell and Toupin’s principle eiiggsence, Coleman and Mizel [2]
used this inequality to show that all the response functaamnot depend on all the state vari-
ables; some of them must be independent of certain varialdlese precisely, assuming that
the heat flux, the specific internal energy and entropy aretiums of the temperature and the
first n spatial gradients of the temperature, they showed thatntieenial energy and the en-
tropy are independent of the temperature gradients. Thidtrss related to the forms chosen
for thermal energy exchanges only through heat flux and tiadisas they mentioned. Within
the same framework, Coleman and Gurtin [3] extended stifaigird the result to obtain the
independence of the free energy, the entropy and the stnetb®e demperature gradients in the
case of nonlinear materials with internal state variabiesvever, this result is based on certain
assumptions such as independence of stresses, or moraltyeakirreversible forces, on the
rate of temperature gradient. One way to account for thigdégnce is to add an extra term
of entropy flux [5,6,7,8,9] as constitutive quantity. Chas@ee also made in the energy bal-
ance by adding new contributions to the power of internatder Principle of virtual power
on microscopic movements or micromorphic approaches (énénand Nedjar [10], Frémond
and Nedjar [11], Frémond [12], Fried and Gurtin [13], Guitl4]) have been used by Forest
and Amestoy [15], Forest and Aifantis [16] to account forepy gradient. However, the phys-
ical meaning of the principle of virtual power involving tmal rates of variables as entropy
(in [15]) is not obvious. An extra term of entropy productimside the volume has also been
added by Ireman and Nguyen [17]. They showed that threeréiffeexpressions of this quan-
tities lead to different thermodynamical models. A vaoatl-based field description coupled

with the Generalized Standard Materials formalism for gratitemperature thermomechanics



is given by Nguyen and Andrieux [18] and Nguyen [19], follaey a justification through an
homogenization process. It can be seen as a non-local djeadrstandard model as proposed
by Lorentz and Andrieux [20,21]. The approach shows the wayerive the correct forms of
intrinsic dissipation and to restore duality between imé¢rand free energy. However, in all
these works, the classical expression of the heat conduictejuality was maintained, while
the introduction of the gradient of temperature or entrgaykely to affect its structure.

The objective of this work, is, while remaining strictly Wih the framework of the phenomeno-
logical theory of continuum thermodynamics, to derive tbastitutive equations and inequa-
tions of the gradient thermomechanics, without appealintp tthe principle of virtual power
and to the Coleman-Noll procedure and the classical heatuobiod inequality. The approach
conducts to the adoption of variational based derivatieeste definition of the temperature
and the entropy. These definitions lead to consistent fofresannd law (generalized Clausius-
Duhem inequality) and a new heat conduction inequality. Gatise laws are postulated, based
on the splitting of the dissipation in its intrinsic and timal parts. They permit to recover the
existing results on temperature and entropy gradientsnbi@echanics. The formal structure
obtained is closely related to the one from the canonicaibenechanics with dual weakly

non-local internal variables proposed by Berezovski edl].[

2 Entropy gradient: using internal energy

2.1 Energy balance

The basic principle is the energy balance (first law of thetpmamics) stating that energy
cannot be generated. The variation of the energy of a systswiely due to exchange with the
environment. The form of the energy exchanged with the datdefines therefore how to act

on the system, that is to say its control variables. For thgicoum medium, the external rate



of energy supply is generally composed of two terms:

e the power of external forceg®, associated with the primal kinematic variables (dispiaeet

and another independent variable denai@gdgiven by:

fq, vda
o0 (t) — u (1)

+/ aQa-ddQ—i—/ ase - uda
Q(t) 290(1)

wherev is the velocity,f, (resp.aq,) and f, (resp.as,) are the external body and sur-

Pe= | fo,-vd+
Q)

face forces associated with the displacement (resp. walvahiablea). Superimposed dot
denotes time-derivativex is a state variable which typically represents microscapations
as such damage associated to failure of bonds within theriagerticle [12]. This variable
can be controlled by external forces (such as radiationenctise of damage). We assume
that the external rate of energy supplies associateddce objective and the surface rate of
energy related tex depends only on the considered point, the surface norm&bivand the
time.

e The total heat supply per unit tinfé.;, associated with the thermal control variable, is given
by:

Pca|:/ rdQ + Oda | @)
Q(t) )

a0t

r is the external rate of heat supply per unit volume &nid the external rate of heat supply per

unit surface. For instance, one can have:

e asin Frémond 2002 [12],
r=RT et Q:QTT, (3)
e or, consistent with the choice of entropyas internal variable, the following form could be
proposed

r=Rs$ and Q =Qss. 4)



The balance of energy is written as:

Eve [ ppvd+ [ pon-ado= [ fo vdo+ [ f vda
Q Q QT Jon TPU
—l—/aQa'ddQ—F/ as,l-dda (5)
Q o0
+/rdQ+ Oda .
Q o0

where the internal energy is the objective and non kinetic part of the total energy efskis-
tem. The classical arguments (invariance under superpagddody motion and tetrahedron
lemma applied on the energy balance) lead to the existeres@tond order symmetric tensor

g, avectorg and also a tensok ((ordera) +1) such as:
isu:g'ﬂa Q:_gﬂu and aSa:A'Ev (6)

wheren is the outward unit normal vector at the considered poinm&avariance require-

ments may allow to precise the form Af but are not considered in the paper as they have no

direct influence on our purpose.

Using equation (6) in equation (5), one obtains:

N
<

B[ ((dvert o, -pi)n
+ (dVA +ag,—py,) & +A:Va (7)
+ (div(—q) + 1) ) dQ

We assume that the internal energy (extensive quantityggslar ;e denotes the internal en-

ergy per unit volume. With suitable regularity (smoothnessumptions for the different field

guantities and assuming also the validity of equation (7j2cemd any of its subdomains, we



obtain the local equation:

¢ = (dng+iQu—py')-y +

I

v
+(dIVA +aga — pev,) & +A:Vé (8)

+(div(—q) + )
Remark: If we use the assumption (4), the previous equation can be wstten a

é= (diva+f, —pt)-v +o:Vu
+(divA +ag, —py ) - + A:Va ©)

+H(divQ_ + Ry)s +Q Vs

2.2 Intrinsic dissipation: definition of temperature ancahéux

Entropy is the extensive heat variable, naturally assediafith the internal energy. We assume
that the volumic internal energy depends on the kinematiabke Vu , o, Va, the entropy per
unit volumes and also on the entropy gradi€iit (as in [15,19]) Vu _is the symmetric part of

Vu. The following quantities are defined:

nd d

T=es, I'=ey;, ¢ =€y, , 3" =e,q and A" = ¢ oo (10)

The non-local generalized standard approach (Nguyen amiéurx [18]) has led to the ap-
propriate expression of the intrinsic dissipation. Withmecourse to the variational derivation,
the intrinsic dissipation is defined as the part of heat rdiekvdoes not come from external
sources and exchanges. It is therefore given by the difterbetween the rate of internal en-

ergy associated with the variation of entropic (or heatjaldes(s andVs) and the rate of heat



supply from the environment,

Dl = é|{2‘,a,Vo¢} —r 4+ dIVg

(11)
= e85+ eyvs Vs —r+divg
By denoting:
T=T-dvI' and § =q+1', (12)
the following expression of the intrinsic dissipation idaibed:
Dy = (T —divI’)s —r +div(g+1's)
(13)

=Ts—r—+dvg

This form is similar to the one obtained in the classical apph (without entropy gradient),
with the definitions of temperature as the variational ddiwe of the internal energy relative
to the entropy [ = e,, —div e,vs, as defined by Gouin, Gouin and Ruggeri [23,24]) and of the

heat flux asq = ¢ + 1"3).

2.3 Second law and heat conduction inequality

To formulate the second law, we use the balance of entropyogoged in Green and Naghdi
[25] using the same assumptions while adopting the gemethtemperature and heat flux. The
external rate of supply of entropy per unit volume (resp.ypet surface) is given by the ratio
of the external rate of volume heat suppl¢resp. surface supply of he@) to the temperature

T. Denoting the rate of internal production of volumic enirdgy S;, the balance of entropy is:

=S+ L —divis (14)
T T



and the second law is thus written as:

- L fdivi >0 (15)
7 T

Let us notice that when there is no external volumic heatcso@r= 0), the internal entropy

production is reduced to:

S; = § + div (T:S) +divy (16)
T T

The proposed expression for the second law is different fituath used as a starting point by

Forest and Amestoy [15]. Indeed Forest and Amestoy [15] #eptlassical form.

One notices that the entropy production can be written irfahewing form:

4, D T
Y RN TVE v
T T T

4 7o (17)

Admitting the separation of the total dissipation in insimand thermal parts, the thermal dis-

sipation is therefore given bygq_- YT and the conduction inequality is:

T
_ VT .. V(T —divT’)
-G - — > — =
q, >0 or (g+1T's) T_dvr > (18)
which is again different from the classical heat conductr@aquality (—q - % > 0).
The generalized Clausius-Duhem inequality, in this caselge
VT . . _ VT
Dy —q,- 7 =Ts—r+dvg —q,- 7 >0 (29)
Using equations (8), the intrinsic dissipation (11) is teritas:
Dy = (divg+ f,, —pi)-v + (c—ewu ) Vv

+(diVA+aQa—pla_€,a)'d + (A —eva): Va



or:

Di= (—pi+f,, +divg) v + (¢—a"): VY
(21)
+ (=py, +aw, —a"+divA)-a + (A - A™): Va
By denoting,
id:divg—i—igu—p@7 gl=g—ag" |
(22)

a’=divA —a"+a,, —py, and A‘=A—- A"

The termfl is zero (this is the equilibrium equation, we notice thatib de obtained directly
here by using the invariance of the energy balance (Eq. 8jivelto an observer in uniform

translation). Then, one obtains:
D=0’ Vv +a’-a+A’:Va. (23)

Finally, the dissipation inequality is written as:

~:

ad:vv8+ad-a+Ad:va—qs-VT >0. (24)

2.4 Constitutive and governing equations

The following quantitied”, ", "¢, a”*, A" have already been defined constitutively by equa-

tions (10) using the internal energy.

Constitutive laws must be specified for the dissipative \dess”, a?, AY andg_. They must
allow to satisfy the second principle, or equivalently tigsgbation inequality (24). Because, in
the general case, the dissipative forces may depend ontthenall state variables, Coleman

and Noll procedure [1] is not adequate.

However, a stronger assumption we adopt here, is to requer@asitiveness of the intrinsic

10



and the thermal dissipations. In such a case, the congéitoiodel is completely determined by
specifying, on the one hand the internal energy defining tmedissipative forces and the tem-
perature, and on the second hand the dissipative forteg?and A¢ satisfying the following

intrinsic dissipation inequality,
o’ Yuv +a’ a+Al:Va>0 (25)
and the fluxg fulfilling the heat conduction inequality.

Using the Standard Generalized Materials (SGM) formalia47], a special class of material
can be constructed if one postulates the existence of twadpspotentials with the suitable
properties [18]: (i) an intrinsic dissipation potential i is function of the rate¥v_, & and
Va with the state variables as parametdigNVv , &, Va | Vu , «, s), (i) a heat potential
which is function of the entropy gradieRts and possibly of higher order gradientspfwith

the state variable and possibly their time derivatives aarpatersD,(Vs| s, Vu , ., $,...),

such as:
ate Dy, atcoD,, and A€ ID,vq , (26)
which is denoted:
¢'=Dy, , a'=D4 and A"=Dya, (27)
and
oD
i = 8 28
q, 6Vs (28)

For instance, considering a potential function of Vs andVVs (and so, not adopting the

principle of equipresence), one has:

_gs = DS?E —div (Ds,&) (29)

11



To sum up, the following field equations are obtained:

dive + f,, —po=0

divA +a,, —a—py =0 (30)
divg —r—(c?: Vo +a’- &+ A?: V&) +Ts=0
o™ = e,y o'=Dy, o=g""+g
a"=e, a’=D., a=a"+a’
(31)
And = €,Va Ad = Dan A= And + Ad
- de oD
T=— —G = —° = _T's+q
with the following boundary conditions, on the surfate:
— nd d _
ag-n=fg Or (€+c)-n=/[fg,
A-n=ag, or (A™++A%).n=ag, (32)

The set of field equations obtained in this framework can beesrin a compact manner as:

diV(e,g +D,@ )—i-iﬂu —p@: 0

div (6aVa +D’Vd) T Ay — (€>a _I_Dad) P, T 0 (33)
. 0D ‘ ' se
div 0Vs T (D’Qszﬁs + Do+ Diva-Var) — %8 =0

12



2.5 Heat equation and comparisons

As established in subsection 2.3, the heat equation is

Ts+divg —r—Dy=0 (34)
with
-~ Je ) . 0D,
T = 5o = O —dive,ys and q,= s (35)
It is also written as:
Ts+T -Vs+divg—r—D; =0 (36)

When Fourier law is adopted one recovers the form proposedduyéh [19]. This form is
different the one obtained by the micromorphic approachatst and Amestoy [15] in the
absence of intrinsic dissipation. Indeed, Forest and Aoyedis] adopt the classical forms of

the heat equation and the Fourier law
Ts+dvg—r=0 and ¢=—sVT (37)
but define the temperature with a state law

Qs

T=e,—— and b,=e,ys (38)

Using a principle of virtual work on entropy, the justificati of which is not obvious, they find

the equilibrium equation associated with the variableeadily:
divb, —as, =0 (39)

Thus, we have:

1. .
T=ce,,——divh, = e, —diV(e,ys) (40)
P Vs

which is exactly the variable denot@there, and therefore, with our notations,
q=—kVT (41)

13



which is a particular form of the law (28). More specificallyour case, by taking:

1 1
e = T()S + 5&152 —+ §GQE : E (42)

one obtainsT = Tp + a;s — asAs. The potential

=
I
=
B
<
»
<
w

|
S
<
<
w
<

Vs) (43)

leads to the generalized Fourier law (41). And finally thetleegation (34) is:
(To + a1 — asAs)é + 1 + Kk(a1As — kayA?s) =0 . (44)

The linearization of this equation gives the equation otediin [15].

3 Temperature gradient: using the Helmholtz free energy

In this section, the temperature and its gradient as ad@seaternal variables instead of the
entropy and its gradient. A complementary description éqatevious one, in term of Helmholtz
free energy, is established. It leads to the same resulteastiational formulation of Nguyen
and Andrieux [18], except for the heat conduction inequaiven here by a new inequality.
The point of departure is still the balance of energy in itsbgl and then local form (equations
(7) and (8)). Ass and Vs are no longer state variables and replacedtgnd VT, the more
convenient thermodynamic function is no longer the inteemrgy but its conjugate function
obtained by a Legendre transformation on the entropic beesa(dual variables of andVT).

These variables, denoted respectivebnds’, are related t@" andVT by:

Oe Oe
T=% and VI = 45
5 an vT 5 (45)

The thermodynamic function keeping the duality, as established by Nguyen and Andrieux
[18], is defined as:

w=e—Ts—VT-5 (46)

14



Thus:

s=-—w,r and s =—w,yr (47)

w is the Helmholtz free energy per unit volume defined in a nassital way. In this context,
itis a function ofVu , o, Ve, T and V7.

As ¢y = w|rvr , the intrinsic dissipatio®; given by (13) becomes:

Dy =Té+& VT —r+div(q)

(48)
= (5 —divs)T —r+div(g+T$)
If we sets = 5 —div(s') and g, = ¢+ 7§, we obtain
Dy =T5—r+divg, (49)

This form is similar to the one obtained in the classical apph (without temperature gradient),
with the definitions of entropy as the variational derivatdf the Helmholtz free energy relative

to the temperaturés(= w,r —divw,yr) and of the heat flux ag( = ¢ + 7's').

3.1 Second law and heat conduction inequality

Given the entropys and the total heat flux,,, the internal production of entropy; is, as

previously in section 3.1, given by:

R T U
S =3 - +div T (50)
and the second law is defined as:
k3 r . Cj
§——+div=L >0 (51)

T T

Let us notice that when there is no external volumic heatcs@r = 0), the internal entropy

15



production is reduced to:

VR '}
Si=5+58 T +d|vT (52)
which is exactly the expression proposed by Nguyen and &odrand Nguyen [19] while

Cardona et al. [15] keep the classical form.
One notices that the entropy production can be written irfadhewing form:
+div=:=——-¢.  — (53)

Admitting the separation of the total dissipation in insimand thermal parts, the thermal dis-

sipation is therefore given byg, - % and the conduction inequality is:

VT VT
~0y = >0 or —(g+T§’)-720 (54)

which is again different from the classical heat conductr@guality (¢ - % > 0).

The Clausius-Duhem inequality, in this case, reads:

T . . T
Dl—qT-vT:TS—rerlvqT—qs-vT >0 (55)

The free energy depends oVu , o, Ve, T', VT, we thus define:

nd nd nd !
g :wag , a = W)« , A =W,Va , S= —W,r and S = ~wW,vr (56)

The intrinsic dissipation is given by equation (23) and tissigative forceg?,a?, A? andg_

are defined by equation (22).

3.2 Constitutive and governing equations

The same approach as previously is used. The following diesit, 77, o"¢, A" are defined
constitutively by equation (56) using the free energy. Gturtste laws are specified for the dis-

sipative variableg?, a, A? andg . They must satisfy the second principle, or equivalentty th

16



dissipation inequality (24). Because, in the general chsedissipative forces may depend on
the rate on all state variables, Coleman and Noll procedyrie fiot adequate. The constitutive
model is completely determined by specifying, on the onedhtie internal energy defining
the non-dissipative forces and the temperature, and oneitiend hand the dissipative forces
a’,a’ and A? satisfying the positiveness @,, and the fluxj_ fulfilling the heat conduction

inequality.

Using the SGM formalism [26,27], a class of constitutive migccan be constructed using two
pseudo-potentials with the suitable properties [18]: fi)rarinsic dissipation potential which is
function of the rate§/v_, & andV & with the state variables as parametéi$Vu , &, Va | Vu , o, T),
(i) a thermal dissipation potential which is function okttemperature gradieRt7 and possi-

bly of higher order gradients d@f, with the state variable and possibly their time derivatias

parametersDr(VT | T,Vu , «, T,...),such as:

c"€dDy, , a'€dD,. and A’€0Dyvq , (57)
that we denote:
o'=Dy, , a’=Da and A'=Dyq (58)
and
i, = o7 )

For instance, considering a potentiaf- function of VI' andVVT (and so, not adopting the

principle of equipresence), one has:

—Gy = Dr,yr —dv (Dr,yvr ) (60)

17



To sum up, the following field equations are obtained:

dng—i—iﬂu—Q:O

dvA+a,—a—vy =0 (61)

-

divg, —r—(c?: Vo, +a’ - &+ A?: V&) +T5 =0

a" = w,o al= D, a=a"+a’
(62)

A = w,gq A? = D ye A =A™ Al

ow 5DT
r3 —_ 1 - 7 — —T ./ ~
S 5T QT 5ﬂ q s+ QT

with the following boundary conditions, on the surfate:
gn=f, or (¢"+ag")n=/f,
A-n=ag, or (A"+A?).n=aq, (63)

The set of field equations obtained in this framework, cdesiswith the results of [19], can be

written in a compact manner as in [19]:

div (w,& +D,2 ) +iQu —pu =0

div (w,va —|—D,va) + ay,, — (U},a —|—D,a) -, = 0 (64)

. 0Dp ) ) ow
D,y - D,o-c¢+ D,va- — T =
div <o + 7+ (Digy Vo, + Dia-é+ Diva Va) + =T =0

18



with the boundary conditions:

(wva +D7d ) N = agq (65)

3.2.1 Heat equation and comparisons
As established in subsection 3.1, the heat equation is
Ts+divg, —r—D; =0 (66)

with

< . . I\ . ~ . 6DT
§=s—dv(s) =—(w,r—divw,gyr) and I = 597 (67)
It is the equation obtained from the variational formulatad Nguyen and Andrieux [18]. Suit-

able choices of the potentials permit also to recover reslitained in [28,29].

4 Conclusion

This work is intended to give some physical insights intogh&opy and temperature gradients
thermomechanics, without using variational approachmuoai work principle. Departing from
the expression of the intrinsic dissipation, it is showrt thidnen using the variational derivation
to define temperature and entropy, the (temperature ormntgradient thermodynamics pre-
serves the classical forms of equations and leads to censistrmulations of the second law
and the heat conduction inequality. More particularly,ab&ined heat conduction inequality is
different from the classical one. Its expression is cleaglgted to the form and the nature of the

entropy fluxes. Finally, the GSM formalism can be used asesyatic tool for proposing ther-

19



modynamic admissible constitutive laws. Note that, as sstggl by Nguyen and Andrieux [18],

the extension to higher order gradient is straightforwalolding the variational derivatives.
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