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Abstract
In this study, a numerical method for the identification of the Young’s modulus of linear
elastic coated materials from continuous indentation testis first presented. The iden-
tification is based on an inverse analysis where the minimization of a cost functional
is performed by a gradient descent algorithm. The main result is the computation of
cost function gradient by using a direct differentiation technique, resulting in a time-
saving method compared to the widely used finite difference method. The validity and
illustration of this approach is shown through several numerical examples. The second
part of this article is dedicated to the identification of elasto-plastic thin films Young’s
modulus. A new method is proposed, where the inverse analysis relies only on finite
element computations for elastic materials.

Key words : indentation, thin films, Direct Differentiation Method, inverse analysis

1. Introduction

The indentation test has been first introduced for quality control on materials, using the
concept of hardness proposed by Brinell(1), (2) as the ratio between the applied forces and
effective contact surface. The technological progress has made possible the improvement of
this test apparatus and now the force and displacement of theindenter can continously and
simultaneously be recorded. The precision of the displacement measurement can actually
reach the sub-nanometer scale. The fact that indentation can be performed directly on the
surface of the material without a specimen machining, imposed the indentation test along the
atomic force microscopy as the leading mechanical test device for a large range of applications
including microelectronics, thin films, coatings, etc.

In spite of the apparent simplicity of the test, the nonlinearity of the contact condition
will induce complex mechanical strain and stress fields evenin the case of a linear material
behavior. Elastic solutions are based essentially on the fondamental Green functions stem-
ming from the rigid indenter solution proposed by Boussinesq in 1885 for a bulk material,
integral transforms as developped in the pioneering work ofSneddon(3), etc., as presented
in the monographs(1), (4). In the case of thin films, elastic solutions are based on the same
mathematical methods.

The techniques used for the elastic materials are of limitedinterest in the case of nonlin-
ear material behaviour like plasticity or viscoelasticity. The closed-form solutions are based
on plastic flow rules as proposed in the pioneering work of Prandtl(5) and the elastic solu-
tion has been only used to deduce the Young’s modulus from theunloading part of the load-∗Received 21 Dec., 2009 (No. XX-XXXX)

[DOI: 10.1299/jmmp.3.1]
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displacement curve, which can be resumed as the Oliver-Pharr(6) and the Doerner-Nix(7) meth-
ods. They are generally integrated in the indentation apparatus. These two methods assume
that the beginning of the unloading is elastic. They make useof the following semi-empirical
relation first established by Loubetet al.(8):

E∗ =
1
2

√

π

Ac
S (1)

whereS denotes the initial slope at the initial state of the unload,Ac the projected contact

area at maximum load andE∗ the effective modulus defined by1E∗ =
1−ν2

E +
1−ν2ind

Eind
in order to

take into account the non-perfect rigidity of the indenter (where the subscriptind stands for
indenter).

Fig. 1 Typical load displacement curve of the indenter

The difficulties with the direct use of this relation come from the inaccurate evaluation
of the contact surface, as when pile-up or sink-in effect at contact surface becomes important
(Fig. 2), or from the existence of a thin film which changes theapparent contact modulus at
the surface.

The above two methods propose different respective method to evaluateAc, leading to
efficient and practical way to evaluate bulk materials Young’s modulus, and in most cases an
estimation with less than 10% error can be achieved(9).

For coated materials, in order to avoid the substrate influence on the load displacement
curve, a general practical rule is to consider that, for an indentation with a maximum penetra-
tion of 10% of the coating thickness, the above methods can still be applied. Though, it was
pointed out in case of superhard coatings in(10), (11) that this rule is insufficient to obtain pre-
cise results. Moreover, it should be noted that, for very thin films (few dozens of nanometers)
performing an indentation at 10% of the thickness is limitedby the precision of the apparatus,
and indenter size problems. The projected contact area is calculated amongst others by the
assumed geometry of the indenter, however for sharp indenters, indenter tips are not perfect
and show roundness with a finite radius tip of 50 nm or more. Thus, when shallow indentation
is performed for the same order indentation depth, the contact occurs at the rounded part of
the tip leading to errors in Young’s modulus estimations.

Introduction of correction factors to improve the accuracyof those methods in case of
piling-up or substrate effect have been proposed, and more details can be found in(2).

(a) (b)

Fig. 2 Contact depthUc related to: (a) sink-in - (b) pile-up

A complementary approach to the direct identification formulae, is to try to extract the
information about the mechanical properties directly fromthe load-displacement indentation
curves, by making use of inverse analysis. Within the wide literature in this domain we can
mention e.g. for bulk material(12), (13), for thin films(14).

Inverse analyses are generally based on the minimization ofa cost function measuring
the discrepancy between experimental load-displacement curve and a simulated one. The
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minimization is then done numerically using gradient basedor exploratory algorithms. It
is equally important to notice that for this problem we do notactually dispose of a formal
proof of the uniqueness or stability of the solution with respect to input data. Although some
researchers made successful attempts to use exploratory algorithms in certain particular cases
e.g. in(14), these methods require a large number of estimations of the direct problem and this
leads to important computational time, due to the complexity of the inverse problem.

The faster option is the identification using gradient-based algorithms. Most of the stud-
ies found in literature(12) are based on the estimation of the gradient using the finite difference
method, which is straightforward to implement but can be as well time-consuming as the
number of paramaters to identify becomes important.

The gradient can also be obtained using the adjoint method(15) or the direct differentia-
tion technique. If the adjoint state method permits a directcomputation of the gradient for
a large number of parameters using only one additional computation, it presents a major in-
conveniance when applied to nonlinear problems that new adjoint constitutive laws have to be
implemented in order to perform the optimization.

The advantage of the direct differentation technique is its formal simplicity, as well as
the possibility to extend easily to nonlinear problems, both in terms of material constitutive
nonlinearity as in terms of geometric nonlinearity (large displacement and rotations).

The present work presents the computation of the gradient using the direct differentiation
method in the case of a elastic indentation problem and its application to evaluate the Young’s
modulus of thin films materials both in the case of elastic andelastoplastic materials. The
restriction to elastic problems is done only for the sake of clarity in the presentation of the
direct differentiation method and does not restrict the generality of the technique. The next
section recalls the direct problem both in the continuous and finite element formulations.
This part is followed by details of the finite element model and a brief description of the
inverse analysis. The fourth section describes in detail the direct differentiation method, and
its accuracy is illustrated by comparison with closed-formsolution derived from Sneddon(3).
Finally, numerical examples for the identification of Young’s modulus in the case of thin films
are given. In the first series of examples the materials are elastic and the identification is done
from the loading curve. In the second series of examples the materials are elastoplastic and
the identification is done on the unloading curve using a similar strategy as presented in the
closed-form solution of Doerner-Nix, Oliver-Pharr or as presented in the work of Vlassak et
al.(16) based on the analytical solution of the contact problem of axisymmetric indenter on a
layered elastic half-space.

2. Direct Problem

2.1. Continuous Formulation
The elastic material is defined by its domainΩ of boundaryΓ. This boundary can be

divided in three partsΓu, Γt andΓc forming a partition ofΓ. Γu, Γt andΓc are respectively the
surface of imposed displacement, the surface of imposed tractions and the surface where the
contact may occur.

Γ = Γt ∪ Γu ∪ Γc , Γt ∩ Γu = Γt ∩ Γc = Γc ∩ Γu = ∅ (2)

The surface where contact effectively occurs is denoted byΓe f f
c .

The indenter is considered as a rigid body and its imposed displacement is notedUk. The
above notations can be visualized from Fig. 3. Since there are no volumetric forces acting on
the material, the balance equation can be written as:

divσ = 0 in Ω (3)

The relation between displacement and strains under the assumption of small strains is
defined as:

ε (u) =
1
2

(

∇u + ∇T u
)

in Ω (4)
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For linear elastic materials, the constitutive equation isgiven by:

σ(u) = C(c) : ε(u) in Ω (5)

whereC is the fourth-order tensor of the elastic moduli andc is the tensor of material parme-
ters characterizing the spatial distribution (thickness of layers, for example) and moduli. We
recall that for isotropic materials, it is expressed as:

C = 3λI + 2GJ (6)

with λ andG are the two Lamé parameters defined asλ = νE
(1+ν)(1−2ν) andG = E

2(1−ν) , in terms
of the Young’s modulusE and Poisson’s ratioν. I andJ denote respectively the fourth-order
identity tensor (for second-order tensor) and the fourth-order tensor defining the projection on
the volumetric tensor subspace.

Boundary conditions
Two types of different boundary conditions can be imposed onΓ: displacements corre-

sponding to Dirichlet boundary conditions onΓu, and forces corresponding to Neumann type
boundary conditions, onΓt ∪ Γc. The corresponding boundary conditions are:











u = ud = 0 onΓu

σ · n = tn = 0 onΓt
(7)

For the contact surfaceΓc, the boundary conditions can be expressed by the Signorini
contact conditions. With the following notations,un = u · n, σn(u) = σ(u) · n · n (n is the
normal unit vector to the surface), The signorini conditions are defined as:























un − g − Uk ≤ 0
σn(u) ≤ 0 onΓc

(un − g − U)σn(u) = 0
(8)

whereg ≥ 0 is the gap function, distance between the indenter and indented material before
the indentation. It represents then the shape of the indenter.

The first equation is the unilateral contact condition expressing the physical impossibility
for the indenter to penetrate into the surface of the indented material. The second one is the
mathematical traduction that the stress must be compressive. The last one implies that for the
points on the surface of the material, which are not in contact with the indenterun−g−Uk < 0
there is no stress transmission.

From the above formulations, the effective contact area is not known in advance, leading
to nonlinearity even for elastic materials, and then require the use of incremental method in the
finite element code. The imposed displacement on the indenter is then applied by increments,
such asUi+1 = Ui + ∆Ui

The computation of the gradient requires to estimate the evolution of the contact area
with respect to material parameters. It has been proven(15) that the variation can be neglected
at the first order. Therefore the differentiated problem is defined on the effective contact area
Γ

e f f
c . The differentiated problem is equivalent to an elastic problem for the indented material

with imposed displacement on the contact surface.
The differentiated equivalent problem at the stepk, corresponding to a displacementUk

of the indenter (Fig. 4), is given by the following boundary conditions:






















σ · n = tn = 0 onΓt

u = ud = 0 onΓ1
u whereΓu = Γ

1
u ∪ Γ

2
u

u = ud = Uk onΓ2
u = Γ

e f f
c

(9)

The validity of this statement is verified a posteriori by comparing the sensitivities ob-
tained by the direct differentiation method with the one provided by Sneddon analytical solu-
tion for infinite elastic half-space as described in§4.2.
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Fig. 3 Scheme of the direct problem
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Fig. 4 Scheme of the equivalent problem

2.2. Finite Element Implementation
This section describes the implementation in the finite element program of problem deal-

ing with imposed displacement conditions.
The potential energy for an elastic body defined by the previously described equivalent

problem is given by:

W(u) =
∫

Ω
ε(u) : C : ε(u)dΩ +

∫

Γt
tn · udΓ (10)

where in the considered casetn = 0 andu should satisfy the imposed displacement boundary
conditionsu ∈ U

U =
{

u ǫ H1(Ω) |u = 0 onΓ1
u andu = Uk onΓ2

u

}

U =
{

u ǫ H1(Ω) |u = ud onΓu

}

(11)

The displacement field solution of the elastic problem is theminimizer of the potential
energy. In order to solve this constrained minimization problem, it is natural to introduce
the LagrangianL associated to the constraint of the imposed displacement, where nowu is a
vector ofH1(Ω).

L(u) =
∫

Ω
ε(u) : C : ε(u)dΩ +

∫

Γt
tn · udΓ +

∫

Γu
λ · (u − ud)dΓ (12)

whereλ is the Lagrange multiplier vector related to the constraintof the imposed displacement
and correspond to the physical reaction forces this imposeddisplacement induces.

With the finite element notations, the Lagrangian can be written as:

L(V) = VT KV + FT V + λT
(

PV − Ud
)

(13)

whereV is the nodal displacement vector,K the stiffness matrix. FurthermoreK defined as:

K =
∫

Ω
BCBdΩ (14)

with B the matrix of first order derivative operator,Bu corresponding thus to the strain vector.
F is the imposed load vector defined by:

F =
∫

Γt
tndΩ (15)

λ is the Lagrange multiplier vector related to the imposed displacement constraint (reaction
forces) andP is the projection matrix on the nodes of imposed displacement conditions:

P : U 7−→ U Γu (16)

The constrained minimization of the potential energy with respect tou satisfying the
imposed displacement boundary conditions, is equivalent with finding the saddle point of the
Lagrangian for anyu ∈ H1(Ω).
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The stationarity conditions for the Lagrangian are expressed as follows:






























∂L

∂V
(U) = 0 = KU + PT

λ − F

∂L

∂λ
(U) = 0 = PU − Ud

(17)

which rearranged in a matrix form, gives:












K PT

P 0

























U
λ













=













F
Ud













(18)

The above linear system corresponds to the finite element formulation of an elastic prob-
lem with imposed displacement conditions.

3. Inverse Problem

The identification of model parameters can be seen as an inverse problem that can be
summed summarized in this case as:identifying the mechanical parameters of the material
constitutive law from the knowledge of the indentation load-displacement curve. This section
describes the choice made for the direct problem and presents the inverse analysis.

3.1. Finite Element Model of the Direct Problem
The direct problem model is computed here by finite element simulation, with the open-

source finite element software CASTEM(17). So that the computation time is decreased and
thanks to the symmetry of the problem, an axisymmetric modelis employed. We made the
following choices: films and substrate are considered to be perfectly bonded, imposed dis-
placement conditions on the indenter are used, and the indenter is assumed to be rigid.

The mesh used in the simulation was created with a refinement near the indentation
zone where the stress is maximum, and the contact surface wasrefined to ensure its precise
computation (Fig. 5).

Fig. 5 Mesh of the finite element simulation with zoom around the indentation zone

3.2. Inverse Analysis Scheme
The description of the direct problem model permits to compute a load-displacement

curve for a given set of mechanical parameters, by finite element computation. The inverse
analysis is based on the minimization of a cost functional measuring the discrepancy between
the measured data and the one computed from the direct problem model. Its expression for
the indentation test can be expressed as in Eq. (19).

J =
1
2

n
∑

k=1

(

Fcomp(Uk) − Fmeas(Uk)
)2

(19)

Fmeas andFcomp are respectively the reaction force on the indenter obtained from measurement
and computation of the direct problem.Uk is the displacement of the indenter at a chosen
incrementk.
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Several approaches can be considered for the minimization of the cost functional. Ex-
ploratory algorithms such as simplex method or genetic algorithms are only based on the
evaluation of the cost functional. These algorithms provide the global minimum, but require
a large number of computations of the direct problem. Estimating that non-uniqueness is not
the main issue in this context, a gradient based algorithm (Levenberg-Marquardt) is used here.
This type of algorithm using the information of the derivative of the cost functional is faster
than the exploratory algorithms, but if the initial guess istoo far from the solution, they can
be trapped in a local minimum. This choice of algorithm implies to decide for a gradient
computation. Three techniques are possible:
• the finite difference method
• the direct differentiation method
• the adjoint state method

A detailed description of these technique in the case of linear problems can be found
in(18). Let us mention that the finite difference method is costly as multiple computations
of the finite element problem are required to compute the gradient and that the precision is
dependent of several numerical factors which are difficult to control.

Moreover, in our case where contact boundary conditions areinvolved, the problem is
nonlinear even for a linear material behaviour and several difficulties will occur in this case.
A general discussion of the differentiation of the contact problem has been already presented
in(15), where the adjoint state method has been proposed as a technique to solve compute the
gradient.

Next we shall explore the application of thedirect differentiation method in the case of
contact boundary conditions. This is justified as this method can then easily be extended to
nonlinear material behaviour, which is not the case of the adjoint state method. In the later
case, one has to completely recompute the constitutive law (see(15)).

4. The Sensitivity Problem

4.1. Elasticity and Stiffness Matrix
This section presents the application of the direct differentiation method to the elastic

problem for the evaluation of the cost function gradient.
From the definition of the cost function in Eq. (19), one can remark that theith component

of the gradient, corresponding to the parameterci, is given by:

∂J

∂ci
(c) =

1
2

n
∑

k=1
(Fk

comp(c) − Fk
meas)
∂Fk

comp

∂ci
(c) (20)

where the upper-scriptk refers to the displacement indenterU = Uk.
As the first term on the right-hand side is known from the experimental and computed

data, the only remaining term to be computed is
∂Fk

comp

∂ci
, which is the sensitivity (partial deriva-

tive) of the computed reaction force on the indenter with respect the parameterci.
The following notation is introduced for the sensitivity with respect toci : ∂

∂ci
≡ δci

By taking the partial derivative of the linear system in Eq. (18) with respect toci and
since the imposed displacement and tractions do not depend on the parameterci:













K PT

P 0

























δciU
δciλ













= −













δci K 0
0 0

























U
λ













= −













δci KU
0













(21)

In order to solve the above linear system, the sensitivity ofthe stiffness matrixK needs to be
computed. From Eq.(14), it follows that:

δci K =
∫

Ω
BδciCBdΩ (22)

The sensitivity of the elastic moduli operatorδciC, is obtained from the definition ofC in Eq.
(6), such as:

δciC = 3δciλI + 2δciGJ (23)
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4.2. Validation of the Equivalent Problem for Contact Conditions
The sensitivity computation relative to contact conditions has been discussed in details

in several works for contacts involving friction or not(19), (20).
The objective next is to validate the proposition that the contact area does not change for

a small variation in the parameters. The validation will be done by numerical experiment and
comparing the numerical computation with the closed-form solution for an elastic half-space
proposed by Sneddon.

Under the assumption of a rigid indenter, the Sneddon relation is:

F =
2
π

tan(θ)
E

1− ν2
U2 (24)

From the above, the sensitivity ofF with respect to the Young’s modulus is given by:

∂F
∂E
=

2
π

tan(θ)
1

1− ν2
U2 (25)

The bulk material used for this simulation is a common steel with Young’s modulusE =
205 GPa and Poisson’s ratioν = 0.3. The dimensions of the specimen were 100× 100µm and
as the indented material should behave as an infinite half space, the maximum penetration of
the indenterUmax = 1.5µm was chosen.

The sensitivities with respect to the Young’s modulus obtained from finite difference,
direct differentiation and the Sneddon relation are investigated here. The application of the
direct differentiation method requires the sensitivity of the elasticmoduli operatorδciC (Eq.
(23)). For the simple case of a bulk material, it follows that:

δciC = 3
1
E
λI + 2

1
E

GJ (26)

For the finite difference method, the center difference was employed with the discretization
step∆E = E/1000, as smaller discretization steps gave the same results.

The comparison of the sensitivities obtained by the different methods is presented in
Fig. 6. It ensures the validity of the method and the equivalent problem hypothesis. As
mentioned in§3.2, the direct differentiation can give more accurate results than the finite
differences. Moreover, to obtain the load-displacement curve and compute the sensitivity of

Fig. 6 Comparison of the sensitivities from finite difference and direct differentiation

the Young’s modulus, the finite difference requires three computation of the direct problem
by finite element, each one lastingTcomp, whereas with the direct differentiation implemented
in the finite element code both of these informations were obtained in a time nearly equal to
1.2× Tcomp .

The time efficiency is more encouraging for problems with higher number of parameters.
In the following, identification for the elastic case where two parameters are to be identified,
the direct differentiation time was less than 1.4×Tcomp, which should be compared to 5×Tcomp

for the finite difference.
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5. Identification of Elastic Films Young’s modulus

5.1. Single Layer Coated Elastic Half Space
In this example, the total thickness of the indented material is h1 + h2 =100µm, with a

film thickness ofh1 = 2 µm, the radius of the indented cylindrical specimen is 100µm. The
Poissons ratios for both film and substrate are set toν = 0.3. The identification is performed
for the Young’s modulus of the film notedE1 and the Young’s modulus of the substrateE2.

The values to be identified areE1 = E2 = 205 GPa. The load-displacement curve corre-
sponding to the experimental data is generated by finite element simulation. The maximum
indentation displacement has been chosen asUmax = 1.5 µm, and the gradient is computed
by direct differentiation every ten steps. This value was determined relatively to a sensitiv-
ity study of the reaction force on the indenter with respect of the Young’s moduliE1 andE2

around the solution values (Fig.7 (b)), so to have both effects ofE1 andE2. This indicates that
for shallow indentation the effect of the film is predominant, and as the indentation gets deeper
the influence of the substrate increases and exceeds the substrate one when reachingU ≈ 0.45
of the film thickness. Fig.7 (a), (c), (d) sensibility curvesfor different ratiosE1/E2 around the
solution, show a similar evolution of the sensibility and highlight as could be expected that
the harder the film is, so is the effect of the substrate on the reaction force.
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Fig. 7 Reaction force sensitivity with respect toE1 andE2 for: (a) E1/E2 = 0.5, (a)
E1/E2 = 1, (c) E1/E2 = 2, (d) E1/E2 = 4

Gradient type minimization methods being influenced by the choice of the initial values,
identification with several different initial guesses were carried out. Two of these values are
presented in Table 1, and the identified ones in Table 2. The identified values were obtained
with less than 0.05% error and in both cases in less than 15 iterations.

Table 1 Test conditions

E1 [MPa] E2 [MPa]
Solution 205000 205000
Init. guess 1 400000 400000
Init. guess 2 400000 100000

Table 2 Identified parameters

Init. guess E1 [MPa] rel. error E2 [MPa] Rel. error
1 204907 0.0454 205002 0.000976
2 205003 0.00146 204999 0.000488

An illustration of this results is displayed in Figs. 8 and 9.Figure 8 is a representation
of the cost function for values ofE1 andE2 taken between 50 and 500 GPa. This curve was
obtained by interpolation between 49 values regularly spaced in [50, 500]× [50, 500] by a
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polynomial function. As there is only a global minimum and noflat valley, the identification
was easily performed. The identification paths in Fig. 9 showthe influence of the initial guess
and the gradient slope at this point on the number of iteration required for the identification.

Fig. 8 Topology of the cost functional Fig. 9 Cost functional with identification paths

5.2. Bi-Layer Coated Elastic Half Space
In this second example, the indented material is composed oftwo layers deposited on a

substrate. The thickness of the whole material ish1 + h2 + h3 = 5000µm. The thicknesses of
the two layers and the substrate are noted respectivelyh1, h2 andh3. h1 andh2 are not known,
but the total thicknessh1 + h2 = 100µm. E1, E2 andE3 are respectively the Young’s moduli
of the two films and the substrate, see Fig. (10). The value of the Poisson’s ratio is taken asν
= 0.3. The identification is performed for the parametersh1 andE2.

Fig. 10 Scheme for the two layers problem

The Young modulus of the substrate is supposed to be known. Asthe thickness of the
film is 100µm, by performing a very small indentation compared to this thickness the Young
modulus at the surface can be measured, and thus is also assumed to be known. The two
parameters to identify are the thickness of the upper layerh1 and the Young modulus of the
second layer.

The discontinuity of the Young’s modulus at the interface between the two films lead to
a singularity when computing the sensitivity with respect to h1 of the stiffness matrix with the
direct differentiation method. To overcome this difficulty, the indented layers and substrate
system is considered as an unique material with a Young’s modulus distribution varying with
the depth. The distribution is given by the sum of two logistic functions:

E(z) = E3 + (E1 − E2)
1+ e−kh1

1+ ek(z−h1)
+ (E2 − E3)

1+ e−kh2

1+ ek(z−h2)
(27)

k is a factor that affects the variation rate, the biggerk is the closer from a step function the
curve is. Herek = 2 is chosen. A representation of this distribution is plotted in fig. 11.
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Fig. 11 Young’s modulus distribution realized by logistic function

The derivatives of the elastic moduli tensor required for the direct differentiation are
detailed below.
(i) For E2

∂E
∂E2

(z) =
1+ e−kh2

1+ ek(z−h2)
−

1+ e−kh1

1+ ek(z−h1)
(28)

with the above relation and the eq. (6):

∂C
∂E2
= 3
∂E
∂E2

ν

(1+ ν)(1− 2ν)
I + 2

∂E
∂E2

1
2(1− ν)

J (29)

(ii) For h1

∂E
∂h1

(z) = (E1 − E2)
ke−kh1(ekz − 1)

(1+ ek(z−h1))2
(30)

and then

∂C
∂h1
= 3
∂E
∂h1

ν

(1+ ν)(1− 2ν)
I + 2

∂E
∂h1

1
2(1− ν)

J (31)

As in the one layer case, the experimental data was simulatedby finite element, and the
identification performed with two different initial guesses. The corresponding values are listed
in the Table 3 and the identified values in Table 4. The resultsare slightly different depending
of the initial guess, but the identification less than 2.2% error.

Table 3 Mechanical parameters

E2 [MPa] h1 [µm]
Solution 6250 80
Init. guess 1 5000 50
Init. guess 2 10000 10

Table 4 Identified parameters

Init. guess E2 [MPa] rel. error h1 [µm] Rel. error
1 6386 2.18 79.168 1.04
2 6251 0.016 79.996 0.005

The evolution of the sensitivity of the reaction force with respect to the parametersE2

andh1 as a function of the indentation depth normalized by the film thickness is given in
Fig.12. The sensitivity is plotted at the solution values ofE2 andh1. The sensibility curves
show that the effect of the thicknessh1 is greater than the one ofE2 at every indentation depth.
This complies with intuition, as one can expect that a changeof a few percents inh1 would
have a bigger effect on the material stiffness around the indentation zone than the same relative
change ofE2. This also suggest an explanation of the better accuracy in the identification of
h1 compared to the one ofE2.

6. Identification of Elasto-Plastic Films Young’s modulus

Usual inverse analyses are based on the minimization of a cost functional measuring the
discrepancy between the measured data and a computed load-displacement curve obtained
from finite element simulation. This requires to use plasticbehavior models for the materials
in the simulation in order to fit experimental data. So that even interested in the Young’s
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Fig. 12 Reaction force sensitivity with respect toE2 andh1

modulus, not only elastic properties but also all the plastic properties need to be identified,
leading to heavy computations.

Here we propose a time-saving method for the identification of thin films Young’s mod-
ulus, since the inverse analysis relies only on finite element computations for elastic behavior
materials.

6.1. Methodology
The method proposed next is essentially based on similar concepts as Oliver-Pharr(9),

Doerner-Nix(7) and also with Vlassak(16). An important point is that the initial slope of the
unloading curve for a plastic material should be equal to thetangent at the load-displacement
curve for an elastic material with the same Young’s modulus,if the corresponding contact area
are the same (Fig. 13). Based on this a numerical procedure isproposed, which has the ad-
vantages to directly account for the substrate effect, and not to make assumptions concerning
the possible pile-up or sink-in effect.

We thus propose to performn indentations on a sample for different maximum inden-
tation depths (subsequently different contact areas at maximum load) and to use the cost-
functionJ defined in Eq. (32).

J(E1) =
1
2

n
∑

k=1

(

∂Fcomp

∂U
(Ak

cont) − S k
meas

)2

(32)

whereE1 is the film Young’s Modulus,∂Fcomp/∂U is the tangent at the computed elastic load
displacement curve,Ak

cont is the contact area at maximum load for thekth plastic indentation
experiment, andS k

meas the corresponding initial slope of the unloading curve.
Elastic computations only being required, the gradient of this cost function can be ob-

tained by the previously described direct differentiation method, and except for the cost func-
tional the inverse analysis remains the same.

!

"

*!+####$$,-.

#!

#"
!+####$$,-.

!

"

(a) (b)

Fig. 13 Correspondance of the initial unloading slope of theplastic curve (a) and the
tangent to the elastic curve (b)

6.2. Numerical examples
The illustration and validation of this method is shown on several numerical examples

representing indentation on perfectly plastic film and substrate, where the thickness of the
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film h1=150µm and the one of the whole material ish1+h2=5000µm. Test data correspond
to three simulated indentations on elasto-plastic material, for the following maximum inden-
tation depths: 10µm, 20µm, 30µm.

Ten different sets of film and substrate were investigated numerically, whose mechanical
properties are summarized in Table 5. Material sets 1 to 5 corresponding to a ratio of 1/50 for
E/σY and for different ratiosE1/E2 ranging from 1/4 to 4, while for materials set 6 to 10 a
ratio 1/500 ratio forE/σY was chosen, as a more important pile-up effect is expected.

Table 5 Mechanical properties

Material set E1[GPa] σY
1 [MPa] E2[GPa] σY

2 [MPa]
1 3 60 12 240
2 5 100 10 200
3 7.5 150 7.5 150
4 10 200 5 100
5 12 240 3 60
6 72 144 288 576
7 120 240 240 480
8 180 360 180 360
9 240 480 120 240
10 288 576 72 144

The experimental data being generated by finite element simulation, the contact area at
maximum load was known and and first used in this method. However, this value is difficult
to reach in practical situations, so comparison while usingthe area of the residual imprint
instead of the real contact area, as well as result from the Oliver-Pharr method are provided.
The maximum indentation depth used for the Oliver-Pharr method is 10µm, so below 10% of
the film thickness.

Table 6 Identified values

Identification method
Material set Real contact area Residual imprint Oliver-Pharr

E f [GPa] Rel. error % E1[GPa] Rel. error % E1[GPa] Rel. error %
1 2.960 1.33 3.016 0.53 3.773 25.8
2 4.915 1.70 4.962 0.76 5.395 7.90
3 7.674 2.32 7.722 2.96 6.638 11.5
4 10.15 1.50 99.55 0.45 6.676 33.2
5 12.50 4.20 11.94 0.50 5.879 51.0
6 71.03 1.34 75.03 4.21 163.1 127
7 119.6 0.33 126.3 5.25 201.7 68.1
8 183.9 2.17 192.2 10.7 225.4 25.2
9 256.6 6.92 256.5 6.88 349.7 45.7
10 342.4 18.9 343.1 19.1 134.7 53.2

The results of the identification for the different methods are presented in Table 6. The
identified values obtained from the residual imprint are slightly less precise than with the real
contact area, this is more significant for theE/σY ratio of 1/500.

Apart from the material sets 5, 9, 10, the results are satisfactory. In these three cases
related to harder films, the substrate deforms more, and somelarge rotations can be predicted
for the film. The proposed method takes large displacement into account, but not the large
rotations in the direct difference computation, therefore this is thought to be the cause of the
discrepancy. These large rotations introducing geometrical non linearities could be dealt with,
by extending the method with the use of the tangent stiffness matrix.

A better accuracy was reached than with Oliver-Pharr method. This can be explained
mainly by the substrate and pile-up influence. The effect of the substrate is clearer on the
material sets 1 to 5, a harder substrate leading overestimation of modulus while soft substrate
to underestimation. For cases 6 to 9, this is balanced by the pile-up effect. As mentioned in
the introduction, the Oliver-Pharr method relies on an estimation of the contact area which
does not account for pile-up, the estimated value being smaler than the actual one, the Eq. (1)
implying thus a overestimated Young modulus. However for the case 10, it can be supposed
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that much of the deformations are carried by the substrate minimizing the pile-up effect, where
the substrate effect predominates as for material sets 1 to 5.

7. Conclusions

A numerical method for identifying the Young’s modulus of thin films by continuous in-
dentation have been adressed. Its specificity is to compute the cost function gradient required
in the inverse analysis, by a direct differentiation technique implemented directly in the finite
element code, leading to a fast and precise way to obtain thisgradient. Its validity was il-
lustrated through comparison with finite difference and different numerical examples for the
linear elastic case.

The method was addressed here in the restricted case of linear elastic materials, never-
theless its main interest is the possibility to be extended to materials with nonlinear behaviour
(viscoelasticity, plasticity) by a similar approach, but by making use of the tangent stiffness
matrix instead of the stiffness matrix.

Finally, by introducing a new cost function, a method for theevaluation of the Young’s
modulus of elasto-plastic thin films inverse analysis is suggested. Its main asset is to rely
only on a an elastic model of the direct problem model in the inverse analysis, so that no
assumption on the plastic behavior is needed, moreover the number of parameters to retrieve
and computation time can be reduced, facilitating the identification. Its application on two
numerical examples, for hard or soft coating, was discussed, showing its relevance.
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