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Abstract

In this study, a numerical method for the identification & ¥oung’s modulus of linear
elastic coated materials from continuous indentationigeBist presented. The iden-
tification is based on an inverse analysis where the minitioizapf a cost functional
is performed by a gradient descent algorithm. The main réstihe computation of
cost function gradient by using a directférentiation technique, resulting in a time-
saving method compared to the widely used finitéedence method. The validity and
illustration of this approach is shown through several nucagéexamples. The second
part of this article is dedicated to the identification ofsttaplastic thin films Young’s
modulus. A new method is proposed, where the inverse asalgbés only on finite
element computations for elastic materials.

Key words : indentation, thin films, Direct Dierentiation Method, inverse analysis

1. Introduction

The indentation test has been first introduced for qualitytrmd on materials, using the
concept of hardness proposed by BriflelP) as the ratio between the applied forces and
effective contact surface. The technological progress ha® paskible the improvement of
this test apparatus and now the force and displacement afdeater can continously and
simultaneously be recorded. The precision of the displ@cgérmeasurement can actually
reach the sub-nanometer scale. The fact that indentatiotegerformed directly on the
surface of the material without a specimen machining, ireddke indentation test along the
atomic force microscopy as the leading mechanical testddui a large range of applications
including microelectronics, thin films, coatings, etc.

In spite of the apparent simplicity of the test, the nonliitgaf the contact condition
will induce complex mechanical strain and stress fields éwehe case of a linear material
behavior. Elastic solutions are based essentially on thddmental Green functions stem-
ming from the rigid indenter solution proposed by Boussines1885 for a bulk material,
integral transforms as developped in the pioneering worBméddof?), etc., as presented
in the monograph¥ @), In the case of thin films, elastic solutions are based on dnees
mathematical methods.

The techniques used for the elastic materials are of linitttest in the case of nonlin-
ear material behaviour like plasticity or viscoelasticifyne closed-form solutions are based
on plastic flow rules as proposed in the pioneering work oh&tl&) and the elastic solu-
tion has been only used to deduce the Young's modulus fromrlaading part of the load-
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displacement curve, which can be resumed as the OliverPraard the Doerner-Ni% meth-
ods. They are generally integrated in the indentation aipar These two methods assume
that the beginning of the unloading is elastic. They makeofisiee following semi-empirical
relation first established by Loubettal .(®:
1 [n
E*==_/—S 1
5\ A (1)
whereS denotes the initial slope at the initial state of the unloagdthe projected contact
2
area at maximum load arte the efective modulus defined bg— = 1‘EV2 + ﬁ in order to
take into account the non-perfect rigidity of the indentehére the subscriphd stands for
indenter).

Displacement Ui

Fig. 1 Typical load displacement curve of the indenter

The dfficulties with the direct use of this relation come from thecmaate evaluation
of the contact surface, as when pile-up or sinkfiie€et at contact surface becomes important
(Fig. 2), or from the existence of a thin film which changesdpparent contact modulus at
the surface.

The above two methods proposéfdient respective method to evaludtg leading to
efficient and practical way to evaluate bulk materials Young&lolus, and in most cases an
estimation with less than 10% error can be achi€ed

For coated materials, in order to avoid the substrate infleem the load displacement
curve, a general practical rule is to consider that, for aeiration with a maximum penetra-
tion of 10% of the coating thickness, the above methods ¢lubstapplied. Though, it was
pointed out in case of superhard coating&%r{1? that this rule is insfiicient to obtain pre-
cise results. Moreover, it should be noted that, for veny fthins (few dozens of nanometers)
performing an indentation at 10% of the thickness is limtigdhe precision of the apparatus,
and indenter size problems. The projected contact areddslated amongst others by the
assumed geometry of the indenter, however for sharp indgntelenter tips are not perfect
and show roundness with a finite radius tip of 50 nm or more sTtmhen shallow indentation
is performed for the same order indentation depth, the cooiecurs at the rounded part of
the tip leading to errors in Young’s modulus estimations.

Introduction of correction factors to improve the accuratyhose methods in case of
piling-up or substratefect have been proposed, and more details can be fotfhd in

Fig. 2 Contact depthl. related to: (a) sink-in - (b) pile-up

A complementary approach to the direct identification folaeuyis to try to extract the
information about the mechanical properties directly fritve load-displacement indentation
curves, by making use of inverse analysis. Within the witkrditure in this domain we can
mention e.g. for bulk materi@P 13), for thin films®4).

Inverse analyses are generally based on the minimizatiencofst function measuring
the discrepancy between experimental load-displacemamecand a simulated one. The
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minimization is then done numerically using gradient base@xploratory algorithms. It
is equally important to notice that for this problem we do aotually dispose of a formal
proof of the uniqueness or stability of the solution withpest to input data. Although some
researchers made successful attempts to use exploragorjtlams in certain particular cases
e.g. if'¥, these methods require a large number of estimations ofitaet grroblem and this
leads to important computational time, due to the compjeithe inverse problem.

The faster option is the identification using gradient-lleslgorithms. Most of the stud-
ies found in literatur@? are based on the estimation of the gradient using the firfiterdnce
method, which is straightforward to implement but can be afi time-consuming as the
number of paramaters to identify becomes important.

The gradient can also be obtained using the adjoint métHant the direct dferentia-
tion technique. If the adjoint state method permits a dioechputation of the gradient for
a large number of parameters using only one additional ctettipn, it presents a major in-
conveniance when applied to nonlinear problems that neairgdjonstitutive laws have to be
implemented in order to perform the optimization.

The advantage of the directfférentation technique is its formal simplicity, as well as
the possibility to extend easily to nonlinear problemshhkatterms of material constitutive
nonlinearity as in terms of geometric nonlinearity (larggpthcement and rotations).

The present work presents the computation of the gradiémyj tise direct diferentiation
method in the case of a elastic indentation problem and piBcgtion to evaluate the Young’s
modulus of thin films materials both in the case of elastic aeladtoplastic materials. The
restriction to elastic problems is done only for the sakelafity in the presentation of the
direct diterentiation method and does not restrict the generalitheftéchnique. The next
section recalls the direct problem both in the continuous famte element formulations.
This part is followed by details of the finite element modetl anbrief description of the
inverse analysis. The fourth section describes in detaibiilect diterentiation method, and
its accuracy is illustrated by comparison with closed-featution derived from Sneddéh
Finally, numerical examples for the identification of Yotsugodulus in the case of thin films
are given. In the first series of examples the materials astieland the identification is done
from the loading curve. In the second series of examples #itenials are elastoplastic and
the identification is done on the unloading curve using alainstrategy as presented in the
closed-form solution of Doerner-Nix, Oliver-Pharr or aggented in the work of Vlassak et
al.1® based on the analytical solution of the contact problem @fyammetric indenter on a
layered elastic half-space.

2. Direct Problem

2.1. Continuous Formulation

The elastic material is defined by its doma&mnof boundaryl”. This boundary can be
divided in three partfy, I't andI' forming a partition ofl". ', I't andI; are respectively the
surface of imposed displacement, the surface of imposetidrs and the surface where the
contact may occur.

=T Ul UTl., TiNTy=[iNTe=TcNTy=0 @)

The surface where contadtectively occurs is denoted 1y .

The indenter is considered as a rigid body and its imposegudistiement is notedy. The
above notations can be visualized from Fig. 3. Since ther@awolumetric forces acting on
the material, the balance equation can be written as:

dve=0  inQ ©)

The relation between displacement and strains under thengs®n of small strains is
defined as:

e(u) = % (Vu+VTu) inQ (4)
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For linear elastic materials, the constitutive equatiogiven by:
o(u) = C(c) : g(u) inQ 5)

whereC is the fourth-order tensor of the elastic moduli anid the tensor of material parme-
ters characterizing the spatial distribution (thickneSkgers, for example) and moduli. We
recall that for isotropic materials, it is expressed as:

C=31 +2GT (6)

with 1 andG are the two Lamé parameters definedias m andG = ﬁ in terms
of the Young’s modulu& and Poisson’s ratie. 7 and. g denote respectively the fourth-order
identity tensor (for second-order tensor) and the fourtteotensor defining the projection on

the volumetric tensor subspace.

Boundary conditions

Two types of diferent boundary conditions can be imposed omisplacements corre-
sponding to Dirichlet boundary conditions by, and forces corresponding to Neumann type
boundary conditions, oFi; U I'c. The corresponding boundary conditions are:

()

u=u=0 onTy
o-n=t"=0 onT}

For the contact surfadg., the boundary conditions can be expressed by the Signorini
contact conditions. With the following notationg, = u - n, on(u) = o(u) - n- n (nis the
normal unit vector to the surface), The signorini condisiane defined as:

on(u) <0 onI (8)
(Uh—g-U)on(u)=0

whereg > 0 is the gap function, distance between the indenter andchiedematerial before
the indentation. It represents then the shape of the indente

The first equation is the unilateral contact condition espireg the physical impossibility
for the indenter to penetrate into the surface of the indkntaterial. The second one is the
mathematical traduction that the stress must be compeesEie last one implies that for the
points on the surface of the material, which are not in cantét the indentet,—g—Uy < 0
there is no stress transmission.

From the above formulations, th&ective contact area is not known in advance, leading
to nonlinearity even for elastic materials, and then regthie use of incremental method in the
finite element code. The imposed displacement on the inderiteen applied by increments,
such adJij;1 = Uj + AU;

The computation of the gradient requires to estimate théugwa of the contact area
with respect to material parameters. It has been pfé¥¢hat the variation can be neglected
at the first order. Therefore theftiirentiated problem is defined on thiéeetive contact area
Fﬁ”. The diferentiated problem is equivalent to an elastic problemtferindented material
with imposed displacement on the contact surface.

The diferentiated equivalent problem at the skejgorresponding to a displacemet
of the indenter (Fig. 4), is given by the following boundaonditions:

o-n=t"=0 onTl;
u=ui=0 onIt wherel'y, = T} UT? (9)
u=ud=Ug onr2 =r¢'f

The validity of this statement is verified a posteriori by garing the sensitivities ob-
tained by the direct dierentiation method with the one provided by Sneddon arallysiolu-
tion for infinite elastic half-space as describedh?.
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I;: Gy 1 =0 I} : 0;5-n; =0

F2:1:€ff: wl— U,

u

Q Q
T T
I, : ul=0 F“l: u?=0
Fig. 3 Scheme of the direct problem Fig. 4 Scheme of the equivalent problem

2.2. Finite Element Implementation

This section describes the implementation in the finite elerprogram of problem deal-
ing with imposed displacement conditions.

The potential energy for an elastic body defined by the preshodescribed equivalent
problem is given by:

W) = fQ &) : C: &()dQ + fr t" . odl (10)

where in the considered cast= 0 andv should satisfy the imposed displacement boundary
conditionsw € U

U= {ueHl(Q) lu=0onT%andu = Uy onl"ﬁ}
(11)
U = {UEHl(Q) lu=ud onl“u}

The displacement field solution of the elastic problem isrthieimizer of the potential
energy. In order to solve this constrained minimizationbtem, it is natural to introduce
the Lagrangiarnl associated to the constraint of the imposed displacemémennow is a
vector ofH(Q).

L) = fQ &@v) : C: &(v)dQ + fr t". pdl + fr A- (- uddr (12)

whereA is the Lagrange multiplier vector related to the constrafihe imposed displacement
and correspond to the physical reaction forces this impdsgadlacement induces.
With the finite element notations, the Lagrangian can beevrias:

L(V) =VTKV +FTV + 2" (PV - UY) (13)
whereV is the nodal displacement vectét the stitness matrix. Furthermoi¢ defined as:
K = fQ BCBdQ (14)

with B the matrix of first order derivative operat@u corresponding thus to the strain vector.
F is the imposed load vector defined by:

F= fr t'do (15)

A is the Lagrange multiplier vector related to the imposegldissment constraint (reaction
forces) andP is the projection matrix on the nodes of imposed displacem@mditions:

P:U+— Uy, (16)

The constrained minimization of the potential energy wilspect tav satisfying the
imposed displacement boundary conditions, is equivaléhtfimding the saddle point of the
Lagrangian for any € H(Q).
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The stationarity conditions for the Lagrangian are ex@eéss follows:

%(U) =0=KU+P"A-F

oV

or (17)
—_— = = —_ d

(W) =0=PU-U

which rearranged in a matrix form, gives:
K P || U F
B e ®
The above linear system corresponds to the finite elememiufiation of an elastic prob-
lem with imposed displacement conditions.

3. Inverse Problem

The identification of model parameters can be seen as arsayeoblem that can be
summed summarized in this case &tentifying the mechanical parameters of the material
congtitutive law from the knowledge of the indentation |oad-displacement curve. This section
describes the choice made for the direct problem and preteninverse analysis.

3.1. Finite Element Model of the Direct Problem

The direct problem model is computed here by finite elementikition, with the open-
source finite element software CASTENA. So that the computation time is decreased and
thanks to the symmetry of the problem, an axisymmetric medemployed. We made the
following choices: films and substrate are considered todyéeptly bonded, imposed dis-
placement conditions on the indenter are used, and thetidierassumed to be rigid.

The mesh used in the simulation was created with a refinenmeant the indentation
zone where the stress is maximum, and the contact surfacesfiasd to ensure its precise
computation (Fig. 5).

Fig. 5 Mesh of the finite element simulation with zoom aroumelindentation zone

3.2. Inverse Analysis Scheme
The description of the direct problem model permits to cotapuload-displacement
curve for a given set of mechanical parameters, by finite eferoomputation. The inverse
analysis is based on the minimization of a cost functionasneng the discrepancy between
the measured data and the one computed from the direct prohledel. Its expression for
the indentation test can be expressed as in Eq. (19).
1 n

J= 2 kg‘l(':comp(uk) - F”BaS(Uk))Z .

Fmeas andFcomp are respectively the reaction force on the indenter obdfireen measurement
and computation of the direct problerty is the displacement of the indenter at a chosen
incremenk.
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Several approaches can be considered for the minimizafitreacost functional. Ex-
ploratory algorithms such as simplex method or geneticrélgos are only based on the
evaluation of the cost functional. These algorithms prextte global minimum, but require
a large number of computations of the direct problem. Egtimgahat non-uniqueness is not
the main issue in this context, a gradient based algoritreaghberg-Marquardt) is used here.
This type of algorithm using the information of the derivatbf the cost functional is faster
than the exploratory algorithms, but if the initial guessas far from the solution, they can
be trapped in a local minimum. This choice of algorithm ireplito decide for a gradient
computation. Three techniques are possible:

e the finite diference method
e the direct dfferentiation method
e the adjoint state method

A detailed description of these technique in the case oflimpgoblems can be found
in8). Let us mention that the finite fiéerence method is costly as multiple computations
of the finite element problem are required to compute theigra@nd that the precision is
dependent of several numerical factors which afieadilt to control.

Moreover, in our case where contact boundary conditionsrardved, the problem is
nonlinear even for a linear material behaviour and sevefhtdities will occur in this case.
A general discussion of theftirentiation of the contact problem has been already predent
in%), where the adjoint state method has been proposed as agaehnisolve compute the
gradient.

Next we shall explore the application of thaect differentiation method in the case of
contact boundary conditions. This is justified as this méttan then easily be extended to
nonlinear material behaviour, which is not the case of ttjeiatstate method. In the later
case, one has to completely recompute the constitutivedaét?).

4. The Sensitivity Problem

4.1. Elasticity and Stiffness Matrix

This section presents the application of the direffedéntiation method to the elastic
problem for the evaluation of the cost function gradient.

From the definition of the cost function in Eq. (19), one canaek that thé component
of the gradient, corresponding to the parametgis given by:

NI
a_q(c) =

k

10 oF
3 2 (Feomp(©) = Firead —5= () (20)
= 1

where the upper-scrifitrefers to the displacement indentgr= UK.

As the first term on the right-hand side is known from the expental and computed
data, the only remaining term to be computegl'ih-jg“—p, which is the sensitivity (partial deriva-
tive) of the computed reaction force on the indenter witlpees the parameter.

The following notation is introduced for the sensitivityttvrespect ta; : % = Jg

By taking the partial derivative of the linear system in Eq8) with respect ta; and
since the imposed displacement and tractions do not depetiebgparamete;:

K PT][6U|_ [6cK O][U]_ [ KU (21)

P 0 S | 0o ol 2] 0
In order to solve the above linear system, the sensitivitfhefstittness matriX needs to be
computed. From Eq.(14), it follows that:

%KzLB%CMQ (22)

The sensitivity of the elastic moduli operatRyC, is obtained from the definition & in Eq.
(6), such as:



JSME
Technical Journal

Vol.3, No.3, 2009

4.2. Validation of the Equivalent Problem for Contact Condtions

The sensitivity computation relative to contact condiidras been discussed in details
in several works for contacts involving friction or &t 20,

The objective next is to validate the proposition that thetaot area does not change for
a small variation in the parameters. The validation will lb@e by numerical experiment and
comparing the numerical computation with the closed-foomtson for an elastic half-space
proposed by Sneddon.

Under the assumption of a rigid indenter, the Sneddon oglasi

F= Etan(e) u? (24)
n 1-2
From the above, the sensitivity Bfwith respect to the Young’s modulus is given by:
oF 2
— = ~tan@ u? 25
9E = 22015 (25)

The bulk material used for this simulation is a common statid Woung’s modulus =
205 GPa and Poisson’s raiia= 0.3. The dimensions of the specimen were «QM0um and
as the indented material should behave as an infinite hatesplae maximum penetration of
the indentet)ux = 1.5um was chosen.

The sensitivities with respect to the Young's modulus otsteifrom finite diference,
direct diferentiation and the Sneddon relation are investigated here application of the
direct diferentiation method requires the sensitivity of the elastaduli operatoi, C (EQ.
(23)). For the simple case of a bulk material, it follows that

6¢C = 3%1] + Zéej (26)
For the finite diference method, the centeffférence was employed with the discretization
stepAE = E/1000, as smaller discretization steps gave the same results

The comparison of the sensitivities obtained by th@edént methods is presented in
Fig. 6. It ensures the validity of the method and the equiapgoblem hypothesis. As
mentioned in§3.2, the direct dferentiation can give more accurate results than the finite
differences. Moreover, to obtain the load-displacement curdecampute the sensitivity of

4.5

4| —— Analytical solution
4 9| —— Finite difference

—— Direct Differentiation

354

i
<
L

Sensitivity x1072[N/
BN
L L

S e e S B L
Displacement [um]

Fig. 6 Comparison of the sensitivities from finitefdrence and direct fierentiation

the Young’s modulus, the finite fiiérence requires three computation of the direct problem
by finite element, each one lastifig,mp, Whereas with the direct fierentiation implemented
in the finite element code both of these informations weraiobkt in a time nearly equal to
1.2 X Teomp -

The time dficiency is more encouraging for problems with higher numibeacameters.
In the following, identification for the elastic case whem@tparameters are to be identified,
the direct diferentiation time was less tham Tcomp, which should be compared toH comp
for the finite diference.
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5. ldentification of Elastic Films Young’s modulus

5.1. Single Layer Coated Elastic Half Space
In this example, the total thickness of the indented mdteyriay + h, =100um, with a
film thickness ofh; = 2 um, the radius of the indented cylindrical specimen is 460 The
Poissons ratios for both film and substrate are setd.3. The identification is performed
for the Young’'s modulus of the film notdeh and the Young’s modulus of the substr&te
The values to be identified alEg = E, = 205 GPa. The load-displacement curve corre-
sponding to the experimental data is generated by finite@i¢simulation. The maximum
indentation displacement has been chosebgs = 1.5um, and the gradient is computed
by direct diferentiation every ten steps. This value was determinetiveliato a sensitiv-
ity study of the reaction force on the indenter with respéd¢he Young’s moduliE; andE,
around the solution values (Fig.7 (b)), so to have bdibots ofE; andE,. This indicates that
for shallow indentation thefiect of the film is predominant, and as the indentation getpatee
the influence of the substrate increases and exceeds thessalone when reaching ~ 0.45
of the film thickness. Fig.7 (a), (c), (d) sensibility curdesdifferent ratioss; /E, around the
solution, show a similar evolution of the sensibility andlilight as could be expected that
the harder the film is, so is théfect of the substrate on the reaction force.
8F , 6

—-with respect td5;
—with respect td=,

—-with respect td5;
5F |- with respect tdE,

Sensitivity x1072[N/m|
S

Sensitivity x1072[N/m|
w

............

02 04 06 08 C 02 0.4 0.6 0.8 1.C
Relative indentation depth/tjm Relative indentation depth/tjm
(@ (b)

5 Tt owith respect tdE; ’ 5 8 [~with respect tdE;

> 6 |- with respect tds; > —with respect td=,

& 5 & 6

- -

S 4 S

X X 4r

28 2

= 2 of

2 2 o

o) o) .

[0 eSS 2 e ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0.2 0.4 0.6 0.8 1.C 0.2 0.4 0.6 0.8 1.C
Relative indentation depth/tjm Relative indentation depth/tjm

(© (d)

Fig. 7 Reaction force sensitivity with respectig andE; for: (a) E;/E, = 0.5, (a)
E1/E2 =1, (C)E1/E2 =2, (d)Es/E2 = 4

Gradient type minimization methods being influenced by th@ae of the initial values,
identification with several dierent initial guesses were carried out. Two of these values a
presented in Table 1, and the identified ones in Table 2. Téwtified values were obtained
with less than 0.05% error and in both cases in less than fdidas.

Table 1 Test conditions Table 2 |dentified parameters
E; [MPa] E; [MPa] Init. guess E; [MPa] rel. error E, [MPa] Rel. error
Solution 205000 205000 1 204907 0.0454 205002  0.000976
Init. guess 1 400000 400000 2 205003  0.00146 204999  0.000488

Init. guess 2~ 400000 100000

An illustration of this results is displayed in Figs. 8 andMgure 8 is a representation
of the cost function for values d; andE, taken between 50 and 500 GPa. This curve was
obtained by interpolation between 49 values regularly egan [5Q 500] x [50,500] by a
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polynomial function. As there is only a global minimum andftad valley, the identification
was easily performed. The identification paths in Fig. 9 sttmminfluence of the initial guess
and the gradient slope at this point on the number of itematguired for the identification.

500

Tdentification paths:
Initial guess (100 400)
— Initial guess (100 400)

450

LR,
':':’9' % :::::;’: 00 400
AR
QUCRHDARCHEARAAN p
S 350
S

;

300

250

200

150

100

100 150 200 250 300 350 400 450 500
O Solution E,

Fig. 8 Topology of the cost functional Fig. 9 Cost functional with identification paths

5.2. Bi-Layer Coated Elastic Half Space

In this second example, the indented material is composédmfayers deposited on a
substrate. The thickness of the whole materihis h, + hs = 5000um. The thicknesses of
the two layers and the substrate are noted respectiyehs andhg. h; andh, are not known,
but the total thicknesk; + h, = 10Qum. E;, E; andE3 are respectively the Young’s moduli
of the two films and the substrate, see Fig. (10). The valukePoisson’s ratio is taken as
= 0.3. The identification is performed for the parametgrandE,.

hy E,
hy E,
hs E,

Fig. 10 Scheme for the two layers problem

The Young modulus of the substrate is supposed to be knowrthéAthickness of the
film is 100um, by performing a very small indentation compared to thickihess the Young
modulus at the surface can be measured, and thus is alsoessarbe known. The two
parameters to identify are the thickness of the upper layand the Young modulus of the
second layer.

The discontinuity of the Young’s modulus at the interfacensen the two films lead to
a singularity when computing the sensitivity with respedit of the stitness matrix with the
direct diferentiation method. To overcome thidfdiulty, the indented layers and substrate
system is considered as an unique material with a Young’'suledlistribution varying with
the depth. The distribution is given by the sum of two logiétinctions:

1+ e 1+ ek
17 e (B2~ B

k is a factor that fiects the variation rate, the bigderis the closer from a step function the
curve is. Here&k = 2 is chosen. A representation of this distribution is plbitefig. 11.

E(9 =E3+(E1-Ep) (27)
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12000 - B(2)

10000

8000 +

6000 +

4000 +

2000 +

Young’s modulus [MPa]

0 20 40 60 80 100 120 140 %
Depth [um)]

Fig. 11 Young’s modulus distribution realized by logistim€tion

The derivatives of the elastic moduli tensor required far threct diferentiation are
detailed below.

(i) For Ex
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with the above relation and the eq. (6):
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As in the one layer case, the experimental data was simutgtéidite element, and the
identification performed with two ffierentinitial guesses. The corresponding values are listed
in the Table 3 and the identified values in Table 4. The resuéislightly diferent depending
of the initial guess, but the identification less than 2.2%rer

Table 3 Mechanical parameters Table 4 Identified parameters

E; [MPa] hy [um] Init. guess E, [MPa] rel. error h; [um] Rel. error
Solution 6250 80 1 6386 2.18 79.168 1.04
Init. guess 1 5000 50 2 6251 0.016 79.996 0.005
Init. guess 2 10000 10

The evolution of the sensitivity of the reaction force wittspect to the parametdes
andh; as a function of the indentation depth normalized by the flickness is given in
Fig.12. The sensitivity is plotted at the solution valuesgfandh;. The sensibility curves
show that the ect of the thicknesh; is greater than the one &% at every indentation depth.
This complies with intuition, as one can expect that a charigefew percents it; would
have a biggerf@ect on the material dthess around the indentation zone than the same relative
change oft,. This also suggest an explanation of the better accuradyeiidentification of
h; compared to the one &.

6. Identification of Elasto-Plastic Films Young’s modulus

Usual inverse analyses are based on the minimization oftdwasgtional measuring the
discrepancy between the measured data and a computedipdaledment curve obtained
from finite element simulation. This requires to use plalsébavior models for the materials
in the simulation in order to fit experimental data. So thareinterested in the Young's
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Fig. 12 Reaction force sensitivity with respectdgandh;

modulus, not only elastic properties but also all the ptagtbperties need to be identified,
leading to heavy computations.

Here we propose a time-saving method for the identificatfahia films Young’s mod-
ulus, since the inverse analysis relies only on finite eldrnemputations for elastic behavior
materials.

6.1. Methodology

The method proposed next is essentially based on similazegis as Oliver-Phaf,
Doerner-Nix”) and also with Vlassdk). An important point is that the initial slope of the
unloading curve for a plastic material should be equal tddhgent at the load-displacement
curve for an elastic material with the same Young'’s moduftise corresponding contact area
are the same (Fig. 13). Based on this a numerical procedprefgsed, which has the ad-
vantages to directly account for the substrdfect, and not to make assumptions concerning
the possible pile-up or sink-irfect.

We thus propose to performindentations on a sample forfiirent maximum inden-
tation depths (subsequentlyfiidirent contact areas at maximum load) and to use the cost-
function g defined in Eq. (32).

n 2
TE) = 3 (T (R) - Sl (32)

k=1

whereE; is the film Young's ModulusyFomp/dU is the tangent at the computed elastic load
displacement curvedX.,, is the contact area at maximum load for #¥eplastic indentation
experiment, an&X ... the corresponding initial slope of the unloading curve.

Elastic computations only being required, the gradienhdf tost function can be ob-
tained by the previously described diredfdientiation method, and except for the cost func-
tional the inverse analysis remains the same.
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Fig. 13 Correspondance of the initial unloading slope ofgfastic curve (a) and the
tangent to the elastic curve (b)

6.2. Numerical examples
The illustration and validation of this method is shown oxesal numerical examples
representing indentation on perfectly plastic film and salts, where the thickness of the
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film h;=150um and the one of the whole materialig+h,=5000um. Test data correspond
to three simulated indentations on elasto-plastic matéaathe following maximum inden-
tation depths: 1@m, 20um, 30um.

Ten diferent sets of film and substrate were investigated numbgiediose mechanical
properties are summarized in Table 5. Material sets 1 to&sponding to a ratio of/50 for
E/oY and for diferent ratios=;/E, ranging from 14 to 4, while for materials set 6 to 10 a
ratio 1/500 ratio forE/oY was chosen, as a more important pile-tiiget is expected.

Table 5 Mechanical properties

Material set Ei[GPa] o [[MPa] E;[GPa] o3[MPa]

1 3 60 12 240
2 5 100 10 200
3 7.5 150 7.5 150
4 10 200 5 100
5 12 240 3 60
6 72 144 288 576
7 120 240 240 480
8 180 360 180 360
9 240 480 120 240
10 288 576 72 144

The experimental data being generated by finite elementiation, the contact area at
maximum load was known and and first used in this method. Hewéhis value is diicult
to reach in practical situations, so comparison while ushrgarea of the residual imprint
instead of the real contact area, as well as result from thee@Pharr method are provided.
The maximum indentation depth used for the Oliver-Pharhwoets 10um, so below 10% of
the film thickness.

Table 6 Identified values

Identification method

Material set Real contact area Residual imprint OliverfPha
E:[GPa] Rel. error% E;[GPa] Rel. error% E;[GPa] Rel. error %
1 2.960 1.33 3.016 0.53 3.773 25.8
2 4.915 1.70 4.962 0.76 5.395 7.90
3 7.674 2.32 7.722 2.96 6.638 115
4 10.15 1.50 99.55 0.45 6.676 33.2
5 12.50 4.20 11.94 0.50 5.879 51.0
6 71.03 1.34 75.03 4.21 163.1 127
7 119.6 0.33 126.3 5.25 201.7 68.1
8 183.9 2.17 192.2 10.7 225.4 25.2
9 256.6 6.92 256.5 6.88 349.7 45.7
10 342.4 18.9 343.1 19.1 134.7 53.2

The results of the identification for theftérent methods are presented in Table 6. The
identified values obtained from the residual imprint argttly less precise than with the real
contact area, this is more significant for #go-" ratio of 1/500.

Apart from the material sets 5, 9, 10, the results are sat@fa In these three cases
related to harder films, the substrate deforms more, and Brgerotations can be predicted
for the film. The proposed method takes large displaceméntaccount, but not the large
rotations in the direct dierence computation, therefore this is thought to be theecafithe
discrepancy. These large rotations introducing geonatnian linearities could be dealt with,
by extending the method with the use of the tangeffngtss matrix.

A better accuracy was reached than with Oliver-Pharr metfidds can be explained
mainly by the substrate and pile-up influence. Tlfea of the substrate is clearer on the
material sets 1 to 5, a harder substrate leading overesimaitmodulus while soft substrate
to underestimation. For cases 6 to 9, this is balanced byithaip dfect. As mentioned in
the introduction, the Oliver-Pharr method relies on annestion of the contact area which
does not account for pile-up, the estimated value beingertahn the actual one, the Eq. (1)
implying thus a overestimated Young modulus. However ferdase 10, it can be supposed
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that much of the deformations are carried by the substratemizing the pile-up &ect, where
the substrateféect predominates as for material sets 1 to 5.

7. Conclusions

A numerical method for identifying the Young’s modulus oiftffilms by continuous in-
dentation have been adressed. Its specificity is to compatedst function gradient required
in the inverse analysis, by a directigirentiation technique implemented directly in the finite
element code, leading to a fast and precise way to obtairgthidient. Its validity was il-
lustrated through comparison with finitefidirence and dierent numerical examples for the
linear elastic case.

The method was addressed here in the restricted case of élaestic materials, never-
theless its main interest is the possibility to be extendedaterials with nonlinear behaviour
(viscoelasticity, plasticity) by a similar approach, bytinaking use of the tangent tiess
matrix instead of the gfiness matrix.

Finally, by introducing a new cost function, a method for gvaluation of the Young’s
modulus of elasto-plastic thin films inverse analysis isgasged. Its main asset is to rely
only on a an elastic model of the direct problem model in theiise analysis, so that no
assumption on the plastic behavior is needed, moreovenimber of parameters to retrieve
and computation time can be reduced, facilitating the ifieation. Its application on two
numerical examples, for hard or soft coating, was discyssealving its relevance.
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