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Influence of prestrain on mechanical properties of highly-filled
elastomers: Measurements and modeling

Anders Thorin, Aurélie Azoug, Andrei Constantinescu

Laboratoire de Mécanique des Solides — CNRS UMR 7649, Ecole Polytechnique, 91128 Palaiseau Cedex, France

The influence of prestrain on viscoelastic properties |E" | and tan ¢ of four different HTPB composite propellants was measured using
Dynamic Mechanical Analysis (DMA). Nonlinear behaviour in terms of prestrain was observed and then modelled using a modified
generalized Maxwell model. Prestrain was introduced as a variable of the stiffness of each Maxwell element using simple two-parameter
relationships. An algorithm was proposed and numerically implemented to identify the model parameters from the measurements. The
performance of the identification method is discussed in terms of accuracy and robustness. The good match between the predictions and
the experimental measurements shows that the dependence on the uniaxial prestrain of the complex modulus of the studied composite
propellants can be described with few Maxwell elements but with good accuracy.
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1. Introduction

In engineering applications, materials are subject to
a complex combination of manufacturing and in-service
loadings. Filled elastomers are usually used both in the
large strain and small strain regions and their viscous
properties play an important role in their structural appli-
cations. Therefore, there is an interest in the viscoelastic
behaviour of these materials when a static strain is super-
imposed with an additional fluctuating smaller strain.

This situation has been discussed previously on unfilled
rubber in tensile mode [1-4], on carbon black and silica
filled elastomers in tensile and shear mode [4-11] and on
highly-filled elastomers in torsion mode [12]. In filled
elastomers, an increase in storage and loss moduli is
observed with increasing prestrain, see for instance [5,8].

A series of experimental observations was recently re-
ported in [4,10] on carbon black-filled rubbers with
different filling fraction. The results obtained using a free

oscillation technique showed that, at high prestrain levels
and for a filler content higher than 50%wt, the storage and
loss moduli increase with prestrain. Moreover, the depen-
dence of moduli on prestrain increases with increasing
filler fraction. Authors [4,10] explained the increase in loss
and storage moduli at large prestrains by considering the
molecular orientation of the polymer in combination with
the molecular slippage that takes place at the polymer filler
interface. The experiments were then extended to measure
the influence of the swelling of the materials with various
liquids. The storage and loss moduli decrease with
increasing degree of swelling. The measured behaviour
originates from the decrease in the stiffness of the rubber
matrix as well as in the effective volume fraction of the
fillers.

In propellants, the filler fraction reaches 80-90% and an
important effect of the prestrain is to be expected. In
a recent study, Azoug et al. [13] performed an extended
experimental campaign in order to understand the role of
prestrain for a series of swollen propellant specimens.
Nonlinear behaviour exhibiting an increase of both storage
and loss moduli is initiated at low prestrain. From the
physical point of view, it has been concluded, similarly to



[4,10], that both the swelling of the polymer network and
the effective filler fraction drive the viscoelastic response.
This nonlinearity depends on the contraction or extension
of the polymer chains and could be the result of particle
alignment, particularly influential in such highly-filled
materials.

The objective of this paper is to propose a simple
viscoelastic constitutive law exhibiting the expected
behaviour under prestrain, and a fast and robust method to
estimate the material parameters from the experimental
measurements.

The modelling of the nonlinear viscoelastic mechanical
behaviour exhibited by highly-filled elastomers has either
been phenomenological [ 14-16] or obtained through costly
computer homogenization techniques [17-21].

Recently, a procedure extending a finite strain visco-
elastic model to the frequency domain and taking the
prestrain into account has been proposed [22]. The method
is based on a linearization in the neighbourhood of the
prestrain and on an evaluation of the material behaviour in
the frequency-domain. The model was used to characterize
carbon black-filled elastomers in [23].

The procedure discussed here was based on a classical
generalized Maxwell model. It is shown that introducing
a simple dependence of the stiffness on prestrain is suffi-
cient to predict the evolution of storage and loss moduli.
The parameters of the model are then identified from
experimental measurements by minimising a least squares
function. A particularity of the proposed method is the
automatic detection of the number of viscoelastic elements
necessary to accurately predict the measurements.

2. Materials and experimental characterization
2.1. Materials

The four materials studied here are solid propellants,
which are a specific class of highly-filled elastomers. The
materials differ in filler fraction, NCO/OH ratio and plasti-
cizer content, as described in Table 1.

The fillers consist of ammonium perchlorate and
aluminium particles. The filler fraction varies between 86%
wt and 90%wt. The binder is based on hydroxy-terminated
polybutadiene (HTPB) prepolymer cured with a methylene
diicyclohexyl isocyanate (MDCI). The quantity of MDCI
compared to the quantity of polymer introduced corre-
sponds to the NCO/OH ratio, which evolves from 0.8 to 1.1.
This reflects the quantity of cross-linking agents available
for curing. The plasticizer was dioctyl azelate (DOZ) at
between 10%wt and 30%wt of the binder. The materials
were thermally cured for 2 weeks at 50 °C.

Table 1
Material composition in terms of filler fraction, NCO/OH ratio and plasti-
cizer fraction.

Material Filler fraction (%wt) NCO/OH ratio Plasticizer (%wt binder)

A 86 0.8 10
B 88 0.8 225
C 88 0.95 30
D 90 1.1 10

2.2. Experimental characterization

Dynamic Mechanical Analysis (DMA) was conducted
using a Metravib Viscoanalyseur VA3000. Results were
interpreted using the algorithms provided by the manu-
facturer. Dumbbell samples of length 50 mm and section
10 mm x 5 mm were used. The experimental procedure
consists in superimposing a tensile prestrain and a sinu-
soidal strain, which can be expressed as a function of time
tas:

&(t) = & + &sin(wt), (1)

where ¢; denotes the strain amplitude, ¢y denotes the
prestrain and w is the pulsation related to the frequency f
through the equation w = 27f. The tests were performed
with a strain amplitude ¢, = 0.01% and a frequency f= 5 Hz
at room temperature. Different levels of prestrain ¢p; were
reached as illustrated in Fig. 1, from 0.01% to about 10%. In
one case, failure of the specimen was reached at lower
prestrain than 10%.

The complex modulus |E'| and the loss factor tan 6 were
measured during the DMA experiments. The storage and
loss moduli, E and E’, are deduced from these measure-
ments using equations:

E' = |E'|cosd, E" = |E |sind, (2)
or alternatively:

= VE?+E7?, tand = E (3)

E -

2.3. Results and discussion

The behaviour of the mechanical parameters (|E'[, tand)
or equivalently (E,E) in terms of prestrain dependence
exhibits three zones: a linear domain, a transition zone and
a nonlinear domain, as shown in Figs. 2 and 3. The linear
domain corresponds to the plateau at low prestrain where
the viscoelastic properties do not evolve according to pre-
strain ¢. The transition phase appears at a prestrain of
approximately 1% and a nonlinearity threshold is observed.
Finally, the nonlinear domain is the part of the curve where

€0,3

€p,2

strain £ = gy + &5 5in (w 1)

€0,1

time t

Fig. 1. Schematic representation of the strain history during a prestrained
DMA experiment.
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Fig. 2. Comparison of materials A to D, storage modulus E vs prestrain &,
eq = 0.01%.

the viscoelastic properties evolve linearly with the loga-
rithmic prestrain. In the nonlinear domain, storage and loss
moduli E and E" increase with prestrain .

A line was fitted on the first four measurements at low
prestrain for each material and both moduli. The value at
g = 0.01% was chosen to be characteristic of the linear
domain. To characterize the nonlinear domain, a line was
fitted on the last 6 to 10 measurements and its slope with
respect to log(sg) quantifies the nonlinearity. Finally, the
intersection of these lines gives an evaluation of the
nonlinear threshold. This rough characterization was used
to intercompare the materials. The values obtained are
given in Table 2.

Values at low prestrain are similar for material A and C,
whereas they are significantly smaller for material B. On the
other hand, values for material D are one order of magni-
tude higher for both moduli, and failure of the sample
occurs before a prestrain of 10% could be reached.

These results show that the level of the linear domain in
loss and storage moduli increases with filler fraction and
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Fig. 3. Comparison of materials A to D, loss modulus E” vs prestrain &g,
eq = 0.01%.

Table 2
Values characterizing the linear domain, the transition phase and the
nonlinear domain for propellants A to D.

Linear domain Thresholds Slopes

E E E E E E

(MPa) (MPa) (%) (%) (MPa) (MPa)
A 174 8.2 1.92 1.22 60.1 6.7
B 9.0 4.6 534 445 2714 39.8
C 219 8.4 2.28 1.63 152.9 17.2
D 119.6 28.8 0.75 039 237.2 22.2

NCO/OH ratio from material A to D (see Table 1), excluding
material B. The influence of fillers on the moduli is attrib-
uted to the creation of filler-binder bounds in addition to
a hydrodynamic effect [24]. On a first order and neglecting
more complex interactions at the microscopic scale, the
cross-link density increases with the NCO/OH ratio.
Therefore, the storage modulus also increases with NCO/
OH ratio. Moreover, an increase in NCO/OH ratio also
decreases the number of free polymer chains. The free
polymer chains are defined as the elastically ineffective
chains which are not linked to the network. It is well-
known that free polymer chains lead to higher dissipa-
tion, and hence undercured elastomers exhibit a high loss
modulus [24]. Here, on the contrary, the loss modulus
increases with curing. The expected decrease in loss
modulus is balanced by the decrease in mesh size resulting
from the increase in cross-link density. This decrease in
mesh size leads to an increase in friction between polymer
chains and in friction between fillers and polymer chains. In
addition, the influences of filler fraction and NCO/OH ratio
are partially counteracted by plasticizing. Plasticizers
reduce the storage modulus by facilitating molecular
movements and the loss modulus by decreasing frictions
between polymer chains.

Even in the linear domain, material D exhibits extreme
behaviour compared to the other materials (Table 2). This
material contains more fillers and cross-linking agents, is
less plasticized than the others (Table 1) and is, therefore,
expected to behave differently. What is remarkable is that
the behaviour does not vary linearly with the filler, the
cross-linking agent or the plasticizer content. This is
a direct consequence of the complexity of the microstruc-
ture, i.e. the interactions between the molecules and the
fillers at the microscopic scale.

The composition of material B is an optimized combi-
nation of average filler fraction, low NCO/OH ratio and
relatively high plasticizer content (Table 1). As a conse-
quence, it contains a high fraction of free molecules, either
polymer chains or plasticizer. The presence of these
molecules explains the low storage modulus value in the
linear domain for this material. Moreover, a large mesh size
(due to low NCO/OH ratio) and a strong plasticizing effect
also tend to decrease the loss modulus value.

The thresholds of the storage and loss moduli are the
highest for material B and extremely low for material D.
Again, values for materials A and C are similar in spite of
their different composition (Table 2).

The initiation of the nonlinearity is commonly associ-
ated with the finite extensibility of the network [8-10]. This



material characteristic depends on all the parameters of the
composition which influence the structure of the network,
including filler fraction, NCO/OH ratio and plasticizer
content. Since bounds are created between the fillers and
the binder, an increase in filler fraction leads to a decrease
in mesh size. The presence of fillers also induces strain
amplification [25] which partly explains the low thresholds
of material D (Table 2).

Moreover, materials B and C contain the same fraction of
fillers and present different thresholds. The main difference
between the two propellants is the NCO/OH ratio (Table 1).
As the NCO/OH ratio increases, the network cross-link
density increases, and hence the thresholds decrease.

Finally, since the thresholds for material A are lower
than the ones measured for materials B and C, the influence
of fillers on the finite extensibility of the network is coun-
teracted by the influence of plasticizer content. First, plas-
ticizer molecules facilitate movements into the
microstructure, and hence increase the network finite
extensibility. Second, plasticizers also have an indirect
effect on the obtained network. Indeed, these molecules are
added to the premix before curing and the material is cured
in a swollen state. For a given NCO/OH ratio, adding plas-
ticizers decreases the cross-link density [26].

Slopes of the storage and loss moduli are increasing
from materials A to D, except for material B. Material B
exhibits the highest slopes (Table 2).

Slopes values increase with increasing filler fraction due
to the previously mentioned strain amplification. The
microstructure mechanism leading to the measured
nonlinearity is also linked to filler-filler interaction [21,26]
and, more precisely, to the alignment of filler in the direc-
tion of the prestrain.

Additionally, the slopes increase with increasing NCO/
OH ratio. Considering the high filler fraction, the local strain
is expected to be highly heterogeneous in the binder.
Consequently, the network finite extensibility is not
uniformly reached at a unique prestrain. The slope is then
aquantification of the rate at which the maximally extended
part of the network grows with prestrain. Hence, this value
depends on NCO/OH ratio as well as filler fraction.

The measured nonlinear behaviour also depends on the
single strain amplitude ¢4, as shown in Figs. 4 and 5 for
material B. In the linear domain, the storage and loss
moduli decrease as ¢, increases. The nonlinearity thresh-
olds are higher and the slopes decrease as the strain
amplitude increases.

The decrease of storage and loss moduli with increasing
strain amplitude, called the Payne effect, is well-known and
specific to filled elastomers [27]. The Payne effect is
generally associated with the behaviour of a filler network,
which is destroyed and reagglomerated according to strain
oscillation at a rate depending on strain amplitude [28]. The
existence of a filler network is yet to be proven in highly-
filled elastomers such as propellants, since the chemical
nature of the non-reinforcing fillers does not necessarily
involve a strong attraction between fillers or a strong
bound between the fillers surface and the polymeric binder
[29,30].

However, since the filler fraction is particularly high, the
filler organization into the microstructure has a strong
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Fig. 4. Influence of strain amplitude ¢, on nonlinearity, material B.

effect on the mechanical behaviour [21]. Hence, high
amplitude strain oscillations enable microstructural
movements, which relieve internal constraints and lead to
a more uniform strain field. This mechanism reduces the
strain amplification by the fillers. The prestrain at which
part of the network reaches its finite extensibility is then
increased while the nonlinearity of the slope decreases.
This experimental study shows that each element of the
composition has a strong influence on the nonlinear
mechanical behaviour. The interactions between the
molecules at the microstructural scale are complex and
more tests are required to accurately define and quantify
the influences of filler fraction, NCO/OH ratio and plasti-
cizer content. The aim here is to model the behaviour of
each of these four materials, which are considered to differ
enough to represent the class of highly-filled HTPB-based
propellants. The measured nonlinearity is quantitatively
dependent on material composition and strain amplitude
¢q but the behaviour is qualitatively identical. This indicates
that a model developed for one propellant and one single
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Fig. 5. Influence of strain amplitude ¢, on nonlinearity, material B.



set of experimental conditions could easily be fitted to any
other with some quantitative modifications only.

3. Modeling of the nonlinear behaviour

The generalized Maxwell model is often used to model
viscoelastic material behaviour [31]. Here, the model was
modified under the assumption of small strains to take into
account the influence of the prestrain ¢ on the response
measured by (|[E|, tan 6) or equivalently (E E").

3.1. Generalized Maxwell model

The generalized Maxwell model and the notations are
represented on Fig. 6.

Each viscoelastic element is represented by its stiffness
E; and its viscosity n; (i = 1, N). The characteristic time of
each Maxwell element is defined by: 7; = n;/E;. The stress is
related to the strain history by the following equation:

a(t) = / [ E.. +§”:Eie"n‘)>é(s)ds. (4)
- i=1

o

The continuous spectrum of relaxation times of the
material is described in a generalized Maxwell model by
the set of characteristic times (t,...,7y), which is a priori
fixed. The stiffnesses E; are identified from the experi-
mental data using the further described procedure. E.. is
fixed and determined from experimental measurements at
an extremely low strain rate.

In order to introduce the influence of prestrain on the
behaviour, we assume that the stiffness of each viscoelastic
Maxwell element is a function of prestrain:

Ei = Ei(Eo).

We shall consider two types of linear dependence of the
stiffness with prestrain, either of the form:

Ei(e0) = fi(%0)

or of the form:

with ﬁ(Eo) = 0i& +bi

0 ifeo<¢

) = 8(e0) with () = { 0o F050

as illustrated in Fig. 7. The parameters of the two models
are grouped in pairs of real positive constants for each
branch i: p; = (a;, b;) ifi=1ori=2 and p; = (a;, ¢;) if i > 3.

Ey Ey

:

n 2

Fig. 6. Generalized Maxwell model with N viscoelastic elements.

Fig. 7. Dependence of the stiffness E; of the viscoelastic element i on the
prestrain ¢o.

One can note that the element i defined by E; = g; has
a vanishing stiffness if the prestrain is smaller than c;, and
can be considered to be inactive in the model
representation.

As the characteristic times 7; are a priori fixed, the
viscosities n; evolve with prestrain in order to keep the ratio
1; = n;i/Ej constant.

The objective is to determine a modified generalized
Maxwell model which fits the evolutions of |E | and tan 6 or
E and E" with prestrain.

3.2. Identification procedure

Let us further assume that a series of measurements of
(|E'|, tand) is available for K increasing prestrain levels:
g0, < ... < gg, < ... < g, as displayed in Fig. 1. The identi-
fication procedure minimises the cost function J defined in
terms of computed and measured complex modulus and
loss factor as:

j_lET- E"* . Jeand - tams'"”2 (5)
mn2
1E 1™ tand™|
where -¢ and -™ denote the computed and measured

quantities respectively. J is denoted as a cost function in
classical optimization theory as the feasible solution
i E’| and tan ¢, Eq. (3),
applied to the generalized Maxwell model lead to the
i i © and tan 6 in

the cost function:

n 2 n . 2
Ee E.4y 2T (21'cfrl) SCLIAONR I Z 27f1; E
i-11+(27ft ) = 11+(27cfr,)
n n
tandf= 32T 2nfr | +Z 27f1;
S 2nfr)? (2nfr)?
The norm - is the standard vector distance in R¥, where k

is the maximum number of prestrain values under
consideration. More precisely, the first k measurements of
the complex modulus are:

"= [IE

and:

E

|E ‘ 501{

[N



HE " = /IE (20, +.. + |E |(e0,)™

The real constant « denotes the relative weight between
the errors in complex modulus and loss factor. It was
chosen equal to 1.

Another possible form for the cost function is obtained
by replacing |E'| and tan ¢ with E' and E' in Eq. (5). The
conversion between the different pairs of variables is
always straightforward using Eq. (2) or (3).

The complete algorithm is described in Fig. 8 and
detailed hereafter. It is initialized with two elements (n = 2)
of stiffness E; of the form f;. In STEP 1, the parameters
pi=(a;,b;) are identified starting with k = 5 given levels of
prestrain and then refined by adding iteratively the next
prestrain level.

In STEP 2, the value of the cost function J, defined by Eq.
(5), is compared with the acceptable tolerance TOL. If the
cost function is higher than the tolerance value, i.e. does
not describe the k measurements with enough accuracy,
anew Maxwell element n + 1 is added to the model and the
identification procedure (STEP 1) restarts. Otherwise an
additional measurement k + 1 corresponding to a higher
value of prestrain ¢, 1 is considered and STEP 1 is started
again. The identification procedure continues until it
includes all prestrain levels.

The identification algorithm was implemented into
Mathematica [32] using standard minimization functions.

4. Results and discussion

The stiffness of the relaxed material E.. was measured
for material B as 3.31 MPa during complementary testing at
extremely low strain rate. The same value was used for all
four materials. Updating the value of E., had a small

i) INITIALIZATION:
n = 2 viscoelastic elements
E,=fi i=1n
k = 5 prestrain levels
ii) STEP 1
Find parameters {p; | 1 <i < n} by minimizing J

STEP2: J < TOL?

FALSE
n=n+1
Add new viscoelastic element E,, = g, with ¢, =

€0y, -
Go To STEP 1
TRUE
IFk=K
stor
ELSE
k=k+1
Add new prestrain €541 to the series

GO TO STEP 1

Fig. 8. Algorithm of the identification procedure.

influence on the identification procedure at the strain rates
of the DMA experiment. The series of characteristic times 1;
was chosen as 1073 s, where i is the number of the element.
E

4.1. Identified stiffnesses and output in |E |, tan 6

The experimental measurements for material B with
strain amplitude ¢; = 0.01% are shown in Fig. 9, as well as
the model responses |E'| and tan ¢ identified with the
previously described procedure. The corresponding stiff-
nesses E; are displayed in Fig. 10, and the corresponding
parameters aj, b;, ¢; are specified in Table 3.

Three different steps of the procedure are represented.
The first corresponds to the identification on the first 5
measurements with a prestrain level of up to 0.30%, which
requires only the two first Maxwell elements of the model,
the tolerance being taken as 0.005. The second step takes
into account the first 9 measurements where ¢y reaches
3.1% and the third element is still not activated (az = 0 MPa,
c3 = 0). At the final step, egmax = 6.0% and 3 elements are
required to describe the measured behaviour on the first 16
measurements, within the given tolerance. With the
measurement corresponding to the 17th prestrain level, the
cost function value is higher than the tolerance (of 0.005).
Therefore, in accordance with the algorithm, a fourth
Maxwell element has to be activated.

The response of the identified model can be plotted in
terms of (E ,E") using Eq. (2), which is done in the following
figures. Fig. 11 shows the experimental measurements as
well as the identified model expressed in terms of storage
and loss moduli. The relative errors in E are then 0.35% for
the prestrain ¢,, 1.41% for ,, and 1.97% for ¢o,,. The relative
errors in E are 0.32%, 2.67% and 3.94%, respectively. In
other words, the identified model applied to material B
with ¢ = 0.01% and strains up to 6.0% describes the
measurements with a relative error of less than 2% in E and
less than 4% in E'.

The corresponding errors in |E’ | and tan ¢ for &,,, which
is the prestrain of 5.97%, are 1.62% and 2.83%, respectively.

4.2. Identification results in E E’ for materials A, C, D

The identification procedure was also tested on
materials A, C and D and the results are represented in

80 0.6
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Fig. 9. Model response with stiffnesses of Fig. 10 in |E'|, tan d, compared
with the measurement, material B, ¢, = 0.01%.
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Fig. 10. Identified stiffnesses at three different steps, material B, ¢, = 0.01%.

Figs. 12-14, respectively. The relative errors in E of the
last steps for materials A, C and D are 3.50%, 1.13% and
2.99%, respectively. For the loss modulus E’, their values
are 1.81%, 2.70% and 27%. The high value of the relative
error in E' for material D may be corrected by optimizing
in E' and E’ instead of |E'| and tan ¢ or by changing the
weighting factor « of the cost function.

The results show that the procedure can generate
models which describe the measurements of material A, B,
C with ¢ = 0.01% up to prestrains of 6% with maximum
relative errors of 3.5% in E and 3.9% in E'. One can note that
the eighth experimental point of material D breaks the
monotony of the curve (cf. Fig. 14). This could be one of the
reasons for the greater error in E for this material.

The identified models present slope discontinuities at
prestrains for which Maxwell elements are added. These
discontinuities are not physical, they occur at prestrains
which correspond to the end of the linear behaviour of the
composite and do not break the continuity of the material
behaviour.

4.3. Identification results with different ¢,

The algorithm was also used to describe the behaviour
of material B with different strain amplitudes ¢,. The results
with ¢5 = 0.01% are shown on Fig. 11. Fig. 15 represents the
response of the identified model for ¢, = 0.1% and Fig. 16 the
response for ¢ = 0.5%. The relative errors in E are,
respectively, 2.56% and 1.27%, and in E' they are equal to
2.30% and 3.16%. As mentioned previously, for ¢ = 0.01%
the relative errors in E and E are 1.97% and 3.94%,
respectively.

4.4. Self-adaptiveness

The procedure automatically activates additional
elements when the cost function is higher than the given

Table 3
Identified parameters of stiffnesses E; for material B, plotted on Fig. 10.

e (%) ap (MPa) by (MPa) a (MPa) b, (MPa) as(MPa) c3(%)

030 3153 10.7 106.5 5.2
3.14  190.7 10.7 245.6 5.1
597 115.06 11.1 218.6 5.1 110.1 1.76

€05 €0, €0
40 Y5 at.d 16

30 E'
A E

—  model A

20

E',E" (MPa)

»

Prestrain &g (%)

Fig. 11. Model response with stiffnesses of Fig. 10 in E E, TOL = 0.005.

tolerance. For example, with a tolerance of 0.005 for the
measurements of material B and a strain amplitude of
gq = 0.1%, the cost function reaches 0.016 > 0.005 for the
model with two elements and the eight first prestrain
levels taken into account. The relative error in E is 3.58%.
Therefore, the procedure activates an additional Maxwell
element. The new identified parameters of the three
elements fit to the measurements with a relative error of
0.36% for the same eight prestrain levels. This illustrates the
power of the algorithm, the main obstacle being that the
identification does not easily converge with more than
three elements. One solution to overcome this difficulty is
to switch to an exploratory minimization algorithm.
However, a considerable time increase has to be taken into
account in such a case.

Finally, the introduction of a new Maxwell element
corresponds physically to a change in the behaviour of the
composite and is in relation with the phase-divided
experimental results.

4.5. Sensitivity to tolerance
The tolerance used in the identification algorithm

described in Section 3.2 has to be chosen carefully. In the
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Fig. 12. Response in E E’ of the identified model for material A, e, = 0.01%,
TOL = 0.05.
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Fig. 13. Response in E E" of the identified model for material C, ¢; = 0.01%,
TOL = 0.02.

case of noisy measurements, a better match can be ob-
tained by increasing the tolerance. For example, Fig. 12 was
obtained with a tolerance of 0.05, whereas Fig. 17 was
generated with a tolerance of 0.02. If the tolerance is too
low, the algorithm will not be able to fit the noisy
measurements accurately enough. When the tolerance is
increased, it may produce a description with low relative
errors: for material A, 1.99% in E and 1.22% in E" instead of,
respectively, 3.50% and 1.81% for the tolerance of 0.05, but
the price to pay for the higher precision is that the identi-
fication was done on 12 measurements instead of 16 (cf.
Fig. 12).

4.6. Comment

The sensitivity of the results were also tested for other
parameters. Increasing or decreasing tenfold E. results in
a significant loss of quality and may lead to the non-
convergence of the optimization. Similar observations
were made for the relaxation times. This necessitates that
the values of E. and t; are physically realistic. The
requirement provides additional proof of the physical
consistency of the model.
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Fig. 14. Response in E E" of the identified model for material D, ¢, = 0.01%,
TOL = 0.05.
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Fig. 15. Response in E E" of the identified model for material B, ¢, = 0.1%,
TOL = 0.005.

The series of characteristic times 7 is a discretization
of the continuous memory kernel of viscoelasticity [31]
and is supposed to be predefined. The identification of
characteristic times translates to the inversion of
a linear problem characterized by a large condition
number (ratio between largest and smallest singular
value of the matrix to be inverted) and, implicitly, to
unstable numerical solutions which makes the identi-
fication process more difficult. This can be easily
checked on a numerical example for a viscoelastic
material.

Nevertheless, when E., t7; and the tolerance were
correctly chosen, the procedure identifies models which fit
the experiments with relative errors lower than 3.5% for
strains up to 6%, for all materials A, B, C, D and for all three
strain amplitudes of material B.

The number of Maxwell elements adapts automati-
cally. The identification procedure only lasts a few
seconds on a standard computer (in the present case, an
Intel Core 15 2.5 GHz processor with 4 Gb SDRAM DDR2).
It may not converge within the described accuracy of the
Mathematica algorithm of 6 digits for some elements
(i > 4).
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Fig. 16. Response in E E" of the identified model for material B, ¢q = 0.5%,
TOL = 0.005.
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Fig. 17. Response in E E’ of the identified model for material A, tolerance
divided by 2.5 compared to Fig. 12, ¢, = 0.01%, TOL = 0.02.

5. Conclusions

Application of a prestrain superimposed with a small
sinusoidal strain produces a nonlinear response in highly-
filled elastomers. This nonlinearity was measured and
discussed with respect to propellant composition and
sinusoidal strain amplitude. The behaviour in both linear
and nonlinear domains does not vary linearly with filler,
cross-linking agent and plasticizer contents. Alignment of
the fillers in the direction of the strain adds to the complex
interactions between the molecules at the microscopic
scale. A generalized Maxwell model was modified to
include the nonlinearity of the material with the applied
prestrain. Its relaxation times were fixed and its constant
stiffnesses changed to simple functions of two parameters
each. An automatic identification procedure was proposed
and applied for all four materials and three different pre-
strain amplitudes. The identified models simulate the
experimental observations within a relative error smaller
than 3.5% for prestrains up to 6%. For greater prestrains and
the same tolerance, new Maxwell elements have to be
considered but the algorithm did not manage to converge
to the same tolerance.
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