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* Tokyo Institute of Technology, Graduate School of Sciences and Engineering, Department of Mechanical Sciences
and Engineering, Tokyo, Japan

** École Polytechnique, Laboratoire de Mécanique des Solides (CNRS UMR 7649), Palaiseau, France

The Oliver and Pharr method is the prevailing process for thin films Young’s modulus evaluation.
Introduced initially for homogeneous materials, this method does not account for the substrate
and can consequently lead to significant error, especially at large indentation depths. We suggest
here possible methods to improve the accuracy by making use of inverse analysis and finite
element computations of the one layer elastic indentation problem.

1 INTRODUCTION

The identification of Young’s moduli from the indentation test is essentially based on the ideas
proposed in 1992 by Oliver and Pharr1). Under the assumptions of an elastic unloading and small
strains, Oliver and Pharr used Sneddon’s closed form solution for the indentation of an elastic half-
space with a flat punch to evaluate the Young’s modulus of bulk materials. This method applied
to homogeneous materials usually gives identified values in a good agreement with the specimen
Young’s modulus.

Although introduced in the case of bulk materials and consequently does not account for the sub-
strate, the Oliver and Pharr method remains the most widely used method for thin films Young’s
modulus characterization. To prevent errors related to the substrate, a generally admitted rule is
to limit indentation depth to 10% of the film thickness. Nevertheless, the method demonstrates
limitations in precision for large mismatch between film and substrate properties and for ultra-thin
films where the control of indentation depth is close to the limitations of the measurement.

An improvement of the method in the case of thin-films which takes both film and substrate into
account has recently been proposed by Li and Vlassak2). They suggested to replace the Sneddon’s
solution for the half space in the method with Yu et al.s’3) semi-analytical solution of a layered
elastic half-space. The Yu’s solution is fast to obtain by numerical methods, as it is the iterative
solution of an integral equation, however the procedure is complex to implement.

In this work, we suggest some extensions to the preceding methods by Oliver and Pharr, Li and
Vlassak for estimation of thin films Young’s modulus from indentation experiments. The idea is also
based on the unloading curve combined with an inverse analysis of the data, the difference lies in
replacing the closed form solution of the methods with a finite element computation to solve the
layered indentation problem. As such the method is closed to the formulation of Li and Vlassak but
offers the advantages of the finite element method. Within the advantages we can cite the high
modularity and the easy implementation in commercially available codes and an important extension
of the underlying assumptions of the analysis: graded materials, multiple layers, friction, etc..
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This paper starts by a brief description of the Oliver and Pharr method as well as the improvement
by Li and Vlassak in order to set the proposed method back in context. The developed methods
are presented and finally applied to numerical experiments to discuss their legitimacy and further
possible improvements.

2 METHODS: STATE OF THE ART

2.1 Oliver and Pharr Method
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Fig. 1 Typical indentation load-displacement curve

Introduced in 1992 by Oliver and Pharr for homogeneous elastic-plastic materials, this method is
by far the most widely used for evaluating elastic moduli from continuous indentation test and is
generally directly incorporated in the indentation apparatus. The Young’s modulus can then be
obtained directly from the unloading part of the indentation load-displacement curve (Fig. 1). This
method takes advantage of the assumption that the early stage of the unloading can be considered
as elastic, and can thus utilize Sneddon closed form relation4) between the load and displacement
of the indenter derived for axisymmetric indenter on an indented linear elastic half-space. It makes
use of the following semi-empirical relation first established by Loubet et al.5):
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the contact stiffness at the initial stage of the unload, Ac the projected contact area

at maximum load and E ∗ the effective modulus defined in eq. (2).
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where E , ν are respectively the Young’s modulus and Poisson’s ratio of the indented sample and
Eind , νind those of the indenter.

The difficulty faced with the direct use of this relation comes from the inaccurate evaluation the
contact surface. Indeed, due to the elastic recovery and the possibility of pile-up or sink-in (see Fig.
2), the contact surface at maximum load is different from the residual imprint after unloading. If
the contact depth hc and the shape of the indenter tip are known, then Eq. (3) becomes for the
case of the three sided pyramidal Berkovitch indenter:
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To identify this contact depth, Oliver and Pharr showed first that the unloading curve is well described
by a power law of the following form:

P = A(h − hf )m (4)

where hf is the depth of the residual imprint, A and m are some constants depending on the material
and the indenter, which are obtained by fitting the above relation with the unloading curve. This

allowing a precise calculation of contact stiffness dP
dh

∣

∣

∣

hmax

.

Furthermore, they suggested that the contact depth should be estimated by subtracting the elastic
deflection to the maximum indentation depth:

hc = hmax − ǫ
Pmax

dP
dh

∣

∣

∣

hmax

(5)

where ǫ is a geometrical factor depending solely on the indenter shape, ǫ = 0.72 for a Berkovitch
indenter.

This method applied to bulk materials shows that in most cases a good estimation can be achieved
with less than 10% of error6). However, it should be noticed that this procedure does not take into
account the pile-up effect.

h hc h hc

(a) (b)

Fig. 2 Contact depth: (a) sink-in - (b) pile-up

Although first introduced for bulk materials, this method can still be applied for thin films but under
certain restrictions. In order to avoid the substrate influence on the load displacement curve, a
general practical rule is to consider that for an indentation with a maximum penetration of 10% of
the coating thickness. Though, it was pointed out in7,8) that in case of super-hard coatings this
rule is insufficient to obtain precise results. Moreover, it should be noted that, for very thin films
(few dozens of nanometers) performing an indentation at 10% of the thickness is limited by the
apparatus precision, and indenter size problems.

2.2 Li and Vlassak Impoved Method

To account for the substrate effect in the elastic modulus evaluation, Li and Vlassak introduced
recently2) a related method based here on Yu’s solution for a layered elastic half-space that can be
obtained numerically. Assuming the elastic parameters, this offers almost instantaneously a relation
between the contact area and contact stiffness of layered elastic material, and allows a generalization
of the Oliver and Pharr method.

The hypotheses followed in this approach are:

• small deformations in order to use Yu’s elastic solution

• modification of the elastic film thickness by introducing an effective thickness to integrate
the local thinning effect of the elasto-plastic film below the indenter as a consequence of the
plastic flow
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• contact radius in the elastic-plastic indentation estimated in a similar way as in the Oliver
and Pharr method, but a correction factor is introduced to represent the substrate influence.
The factor depends on the elastic properties of the film and substrate as well as the thinning
parameter described above.

The reduced modulus can then be retrieved by inverse analysis minimizing the discrepancy in the
contact radius from Yu’s solution and the experimental one. The minimization is performed with
respect to the elastic moduli and to the effective film thickness.

Although relying on inverse analysis, a fast computation is ensured considering the fact that the
relationship between contact area contact stiffness can be derived from Yu’s solution almost instan-
taneously. This allows also high precision in the computation and this independently of the film
thickness / contact radius ratio. However, this method is limited to a single layered material and
also by the implementation difficulties to compute Yu’s solution.

3 METHODS: PROPOSED EXTENSIONS

We suggest here two different methods aiming at the evaluation of thin films Young’s modulus. The
idea is essentially based on similar concepts as Oliver-Pharr1), and also as Li and Vlassak2). The
main assumption is here again:

[C1] the initial state of the unloading can be considered as elastic

The contact stiffness for homogeneous materials is well described by Eq. (6), showing a direct
relation between contact area and contact stiffness independent of the plastic properties. Therefore,
the initial slope of the unloading curve for a elastic-plastic material should match the tangent at the
load-displacement curve for an elastic material with the same elastic properties for the same contact
area (Fig. 3). This elastic contact stiffness can be obtained from finite element simulation.

1
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Using a similar reasoning applied for the case of thin film, it can be deduced that the contact stiffness
is independent of the plastic properties. Meanwhile, the material in this case does not have to be
homogeneous. The contact stiffness is depending not only on the elastic properties of the material
and the contact area but also on the deformed geometry if we assume large displacements of large
strains during the contact.

If we further assume that

[C2] the elastic and elastic-plastic deformations geometries are similar

then the conditions [C1] and [C2] are fulfilled, an estimation of the contact stiffness dP/dh for a
given set of elastic properties and contact area can be obtained from finite element simulations of
the elastic layered material indentation.

Compared to Li and Vlassak’s method described above, the coupling with finite element allows more
flexibility in the indented material model; multiple layers or continuous distribution of the elastic
parameters can be considered. These methods also contrast with usual inverse analyses applied to
the indentation experiment, which require first to infer a plastic behavior model for the materials in
the simulation in order to fit experimental data, and second to perform the identification not only for
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Fig. 3 Correspondence of plastic curve initial unloading slope (a) and tangent to the
elastic curve (b) when same contact area Ac

elastic parameters but also plastic ones leading to heavier computations and stronger hypotheses.
The two proposed methods rely on the same inverse problem approach and the major difference
lying in the evaluation of the contact stiffness which will be described in the following sections. In
the method guidelines, we propose first to perform n indentations experiments on the elastic-plastic
sample for different maximum indentation depths (subsequently different contact areas at maximum
load). Then these experimental data are used during an inverse analysis relying on the cost-function
J defined in Eq. (7). J quantifies the discrepancy between simulated elastic contact stiffness and
experimental elastic-plastic contact stiffness

J (Efilm) =
1

2

n
∑

k=1

[(

dPFEM

dh
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c ) −
dPmeas

dh
(Ak

c )

) /(
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dh
(Ak

c )

)]2

(7)

where Efilm denotes the film Young’s modulus, dPFEM/dh the tangent at the computed elastic load-
displacement curve, Ak

c the contact area at maximum load for the kth plastic indentation experiment,
and dPmeas/dh the corresponding initial slope at the unloading curve from experimental data.

The minimization of this cost-function J is performed by a gradient based algorithm (Levenberg-
Marquardt). The gradient of J being required, a fast computation is obtained by implementing a
direct differentiation technique9).

The identification process can then be formalized as follows:

(1) perform n indentation experiments and extract dPmeas

dh
(Ak

c ) and Ak
c for k from 1 to n ;

(2) assume initial value for Efilm ;

(3) compute dPFEM

dh
(Efilm, Ak

c ) for the different Ak
c ;

(4) if J (Efilm) ≤ tolerance
return Efilm ;

else update Efilm using Lenvenberg-Marquardt ;
go to step (3) ;

We shall further consider two cases for the step (3) of the algorithm which will be denoted by:
nonlinear method and linear elastic method.

3.1 Nonlinear Method

The finite element computation of the contact stiffness dPFEM/dh is performed here for the problem
indentation layered elastic material. An iterative procedure is necessary due to the contact conditions
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and possible large strains non-linearities. The symmetry of the problem allows to use computations
in axisymmetric conditions. Axisymmetric computations can still be used for the Berkovich indenter
(three sided pyramid) by introducing an equivalent conical indenter with an effective angle that
gives the same ratio between contact depth and contact area. Condition [C2] is assumed to be well
satisfied if the plastic flow is not too much important during the elastic-plastic indentation.

The computation time is significantly reduced compared to usual inverse analyses, however is still
sizeable compared to Vlassak’s approach. Another limitation to this method can arise depending
on the finite element solver used. Indeed, computational problems may occur at large indentation
depths due to the over-distorted mesh at near the vicinity of the indenter tip. In order to overcome
these constraints, a method using stronger approximations is outlined in the next section.

3.2 Linear Elastic Method

In the case of indentation of bulk material, the relation between Young’s modulus, contact area
and contact stiffness is independent of the indenter shape. In the case of thin films, this statement
still holds as observed by Vlassak2). From this observation, we propose to use a finite element
simulation with the simplified geometries shown in Fig.4 (b) - (d) (flat indenter and conical indenter).
The contact stiffness dPFEM/dh can now be obtained from elastic computations with imposed
displacement on the contact surface Ac . This approximation can greatly reduce the direct problem
computation time and possible mesh problems.

The calculations are limited to small strains and in order to recreate well the indented elastic-plastic
material geometry and then satisfy [C2], we make use of the concept of representative thickness
introduced by Vlassak, here denoted by hrep. Further study will be necessary for determining the
representative thickness href , nevertheless as a preliminary study we shall consider two representative
thicknesses h1

rep = hfilm and h2
rep = hfilm − (h − hcont), where hfilm, h and hcont are respectively the

film thickness, the indentation depth and the contact depth (see Fig. 4).

ac
hc

h hfilm

ac

hrep

(a) (b)

ac

hrep

ac

hrep

(c) (d)

Fig. 4 Scheme of the local deformations at maximum indentation depth (a) and corresponding
simplified model for the finite element computation: flat punch model (b), cone model 1 (c) and
cone model 2 (d)
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4 NUMERICAL RESULTS & DISCUSSIONS

All the finite element computations for simulated load-displacement curves and contact stiffness
have been performed using the finite element solver cast3m10).

4.1 Nonlinear Method

This method was previously investigated numerically9) for different sets of elastic-prefectly plastic
films and substrate. The pseudo-experimental data were obtained from finite element computations
for the ratio Efilm/Esub ranging from 1/4 to 4, and for the ratio E/σY = 1/500 and 1/50. During
the identification data corresponding to a maximum indentation depth of 1/15, 1/10 and 1/5 of
the film thickness were simultaneously used. The results were promising and where the film Young’s
modulus value was generally identified with less than 5% error.

4.2 Linear Elastic Method

To investigate the accuracy of this method, a study is conducted using pseudo-experimental load-
displacement curves. These curves are computed from finite element computations of the indentation
problem of an elastic-plastic film with kinematic hardening on elastic substrate. The film and
substrate properties are given as follows: Efilm = 2.5 GPa, νfilm = 0.34, σY

film = 69 MPa, Hfilm = 234
MPa, Esub = 0.25, 1, 2.5, 6.25 and 25 GPa, νsub = 0.33. The different values used for the substrate
Young’s modulus correspond to the ratios Efilm/Esub = 1/10, 2/5, 1, 5/2, 10 and were chosen in
order to investigate the effect of the elastic mismatch. The numerical experiments are carried with
a conical indenter of effective angle 70.3◦ representing the Berkovich indenter of semi-angle 65.3◦.

For each film substrate combination, simulations are repeated to obtain 10 simulated experimental
points corresponding to a maximum indentation depth of 10 to 100 % of the film thickness. However,
for the case of compliant film with Efilm/Esub = 2/5 and 1/10, data could be computed only up
until 70 and 60 %.

The contact areas are needed as inputs for the inverse analysis and the identification was performed
using contact areas estimated following the Oliver and Pharr method and measured from the residual
imprints. The identification is carried out for the film Young’s modulus only, all the other properties
are assumed to be known.

The Young’s modulus identification results as well as a comparison with the Oliver and Pharr method
for the different ratio of Efilm/Esub are displayed in Figs. 5 to 8. The identified values are normalized
by the film Young’s modulus used for the elastic plastic data and are plotted against the normalized
indentation depth h/hfilm. For h/hfilm = 0.2 to 0.9, each point corresponds to identification carried
out with data from three consecutive maximum indentation depth and h/hfilm refers to the mean
value of the indentation depth. For h/hfilm = 0.1 and 1.0, represents identification using data
respectively at h/hfilm = 0.1, 0.2 and 0.9, 1.0.

Figs. 5 and 6 correspond to the flat model where the contact areas are estimated respectively
from the Oliver and Pharr method and the residual imprint. The first result is that the proposed
method give more accurate results than the Oliver and Pharr (O&P in the graphs) except for the case
Efilm/Esub = 1 with contact area estimated from Oliver and Pharr. As expected the Oliver and Pharr
method is influenced by the substrate and as the indentation gets deeper, the identified values get
closer to the substrate value leading to large errors. At low indentation depth, the flat punch model
approximates well the elastic-plastic deformations and give decent results, but for deep indentations
it fails to reproduce the deformations and lead to a loss of accuracy. The identification results
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for stiffer substrate when using contact areas from residual imprint are slightly better than the ones
estimated from the Oliver and Pharr method. In these cases the substrate is not deforming much and
a large plastic flow of the film is induced by the vertical confinement, resulting to a residual imprint
area close to the one at maximum load. One can remark that the effect representative thickness
is small for stiff substrate. In this case, as the film bears most of the deformations and pile-up
will occur. The contact depth will be similar to the indentation depth and as a result h1

rep ≈ h2
rep.

Moreover, since the Young’s modulus of the film is lower than the one of the substrate, a small
change in the film thickness as a small influence on the contact stiffness.

The estimation results for the simplified cone models are presented in Figs. 7 and 8. Model 1
corresponds to Fig. 4 (c) and model 2 to Fig. 4 (d). For the model 1, the results are similar
to the simplified punch model, but for model 2 the accuracy in the estimation suddenly drops for
normalized indentation depth around 0.5. This is thought to be consequence of the sharp corner
introduce at the interface between film and substrate causing stress concentrations that have a large
impact on the computed contact stiffness. Consequently, this accuracy problem might be fixed by
introducing smooth edges in the simplified cone model.

The accuracy of the different methods with respect with the indentation depth are shown in Fig. 9.
The graphs present a comparison of the maximum indentation depth to obtain an accuracy of 10
and 20 % in the identified values, and are given as a function of the ratio Efilm/Esub. In order to
make a fair comparison with the Oliver and Pharr method, the results for the proposed extensions
are given using the Oliver and Pharr contact area estimation and the simplest relative thickness
h1

rep = hfilm. The maximum depths are obtained from interpolation and extrapolation of the results
in Fig. 5 and 7. In the results, extrapolated values of the maximum depth that were lower than 0
or greater than 1 have been set respectively to 0 and 1.

Fig. 9 shows first that the Oliver and Pharr method using 10 % rule of thumb failed to give a 20 %
accuracy for high difference between film and substrate Young’s moduli. When the ratio Efilm/Esub

get close to 1, 10 % accuracy could be achieved. Second, using the proposed extensions that accounts
for the substrate we could obtain 10 % and 20 % accuracy with maximum indentation depths around
20 % and 30 % of the film thickness independently of the Efilm/Esub ratio. Nevertheless, the influence
of the substrate is still obvious and the simpled geometry model need to be refined. Moreover, in
both methods the results are better for compliant films than stiff films. A possible reason is that
for stiffer films the substrate bears most of the deformations leading to a real contact area smaller
than the one estimated with the Oliver and Pharr method. The identified film Young’s modulus is
consequently underestimated. Thus, modification for the estimation of the contact area should also
be considered to obtain decent identified values at deeper indentation depths.
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Fig. 5 Identified Young’s modulus for the flat punch model using hrep = h1
rep and h2

rep,
and contact areas evaluated from the Oliver and Pharr method. A comparison is given
with estimated values from the Oliver and Pharr method denoted here by O&P. The
results are presented for the following film - substrate combinations: (a) Efilm/Esub =
10, (b) Efilm/Esub = 5/2, (c) Efilm/Esub = 1, (d) Efilm/Esub = 2/5 and (e) Efilm/Esub =
1/10
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Fig. 6 Identified Young’s modulus for the flat punch model using hrep = h1
rep and

h2
rep, and contact areas evaluated from the residual imprint. A comparison is given with

estimated values from the Oliver and Pharr method denoted here by O&P. The results
are presented for the following film - substrate combinations: (a) Efilm/Esub = 10, (b)
Efilm/Esub = 5/2, (c) Efilm/Esub = 1, (d) Efilm/Esub = 2/5 and (e) Efilm/Esub = 1/10
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Fig. 7 Identified Young’s modulus for each cone model using hrep = h1
rep and h2

rep, and
contact areas evaluated from the Oliver and Pharr method. A comparison is given with
estimated values from the Oliver and Pharr method denoted here by O&P. The results
are presented for the following film - substrate combinations: (a) Efilm/Esub = 10, (b)
Efilm/Esub = 5/2, (c) Efilm/Esub = 1, (d) Efilm/Esub = 2/5 and (e) Efilm/Esub = 1/10
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Fig. 8 Identified Young’s modulus for each cone model using hrep = h1
rep and h2

rep, and
contact areas evaluated from the residual imprint. A comparison is given with estimated
values from Oliver and Pharr method denoted here by O&P. The results are presented
for the following film - substrate combinations: (a) Efilm/Esub = 10, (b) Efilm/Esub =
5/2, (c) Efilm/Esub = 1, (d) Efilm/Esub = 2/5 and (e) Efilm/Esub = 1/10
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Fig. 9 Interpolated maximum indentation depth as a function of Young’s modulus ratio
Efilm/Esub that gives the following accuracy: (a) 10% and (b) 20%. The comparison
is given between the Oliver and Pharr and proposed methods for the flat punch model,
cone model 1 and cone model 2, denoted respectively O&P, flat, cone 1 and cone 2.
In these results, representative thickness h1

rep = hfilm and contact areas estimated from
the Oliver and Pharr method were used.

5 CONCLUSIONS

This paper presented procedures using inverse analysis of the indentation contact stiffness and finite
element simulation for thin films Young’s modulus identification . The proposed method extend the
techniques proposed in Oliver and Pharr and in Li and Vlassak and can take into account several
advantages of the finite element computations for indentation problems: (i) large displacements (ii)
nonlinearities (iii) Young’s modulus distribution. Moreover, by further approximations, we can quickly
compute the contact stiffness needed in the identification process by using simplified geometries in
the finite element model.

These methods were checked against numerical examples for several film and substrate Young’s
moduli ratios and showed better accuracy than with Oliver and Pharr method. Nevertheless, for
large indentation depths the rough simplified geometries and representative thickness lead to rela-
tively inaccurate identified values. Therefore, further numerical investigations of the deformations
during indentation of elastic-plastic layered materials should be considered to refine the simplified
geometries, the representative thickness and the contact area estimation to improve the results at
deep indentation depths.
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