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ABSTRACT

The paper recalls the concept of duality in Mathtizeaand extends it to Solid Mechanics. One
important application of duality is to restore sosy@nmetry between current fields and their adjoint
ones. This leads to many alternative schemes fmenigal analyses, different from the classical ase
used in classical variational formulation of bourydaalue problems (Finite Element Method).

Usually, Conservation laws in Fracture Mechanickenase of the current fields, displacement and
stress. Many conservation laws of this type arefre& of the source term. Consequently, one cannot
derive path-independent integrals for use in Fracillechanics.

The introduction of variables and dual or adjoiariables leads to true path-independent integrals.
Duality also introduces some anti-symmetry in coirffeelds and adjoint ones for some boundary value
problems. The symmetry is lost between fields adjdiat fields. The last notion enables us to derive

new variational formulation on dual subspaces anaxactly solve inverse problems for detecting

cracks and volume defects
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1. INTRODUCTION

This paper makes a review of some recent worksi@fatuthor and of his research groups on
these topics. The central theieality is not a new concept since it was known in Anafti
Mechanics, since Lagrange two and half centuries dgday in Engineering Mechanics,
Duality is widely used in the formulation of Boumga/alues Problems (BVP) in Elasticity,
Plasticity etc usingest functionsiIf we consider dual variables, for example st@ssd strain

€ or strain rateel] their duality can be defined by the enely=20: £ or the virtual power

o:e* respectively. The concept of virtual power, intiodd by P. Germain [1] for the
Mechanics of continuous media, is crucial in modeomputational Mechanics by considering
the variational formulation of BVP, instead of theld equations and boundary conditions
themselves. It originates from the mathematicalceph of spaces and dual spaces culminating
in the theory of Distribution of L. Schwartz [2]off which he was awarded the Fields medal,
1951). Using these concepts, P. Germain viewedstitesso as an element of the space D’
which is dual to the strain rate space D of elesientAs illustrated below, duality reveals
some symmetry between these spaces, independémhother physical symmetry existing in
materials (for example symmetrical moduli tensoelesticity).

When the constitutive law has a material symmathyich is the case of classical Elasticity, the
overall response of a solid exhibits a symmetryplaserved in the Betti-Somigliana identity.



What happens when we consider two elastic solidsnbathe same external geometry for
which the overall responses do not have symmetopgty? We can say that there is a
Symmetry losbetween two states, one for the sound body anthanone for a body with
internal defects. It is simply due to the fact B8bmigliana’s identity fails in this case. The
aim of this paper is to show that duality and syrnmniost are the right tools to solve exactly
some non-linear inverse problems, while conventiomethods of inverse problems, based of
parameter optimization, can only provide approxarstlutions.

2. DUALITY AND SYMMETRY

We quote P. GermairfFbrce is the dual of mobilitjvelocity). It belongs to the dual space V’
of the space V of velocity fields. There are ottlaal variables or fields as shown in Table |
where operators and adjoint operators acting ohelements are also listed.

Table I: Examples of duality

Dual variables and adjoint

Variables or functions | Action or results . Remarks
functions
Displacement Work Forcef, TractionT
Velocity v* Virtual power Forcd, TractionT
Strain rateg’ Power Streso
Potencial energy B(u)) | Elasticity Complementary potencial @)
J-integral (Rice) Fracture mechanics Dual l-intégra
P, P*used in

Projection P

Tomography

Back projection P*

Radon’s transform

Propagation of waves

Elastic scattering

Back prapag of waves

Forward equations
Forward problems

Reciprocity gap
functional

Adjoint equations
Inverse problems

Primal problems

Convex analysis

Dual problems

Schwartz’s spaces D, S

Distribution theag

ry DuaksgdD, S

Sobolev's space ™

Functional analysis

Dual space A" ”

VUp + Up'=1

To better see the structure of elasticity, let ossader the Tonti's diagram in the quasi-static
case [3]. Thalisplacemenmethodof solving the equilibrium equation in elasticisygiven by
the following maps:

(1)

OperatorD=-div and D* =4 (0 +0") are adjoint to each othdlr,is the elastic moduli tensor.
Thestress methot described by the following maps:

Uu-¢e=30+0U - g=Le - —divo=0 (equilib.)

2
whereB is the Beltrami symmetric second order tensbois the right curl operator defined by
RB:=—(0,B,)e' O (e’ De“)and R* is the adjoint left curl operator defined By B:=
(0,B;)(€“ Oe')Oe’'. Operator RR* is self-adjoint. In two-dimensiorB,=y/(x,, x,)e’ 0 €°,
where ¢/(x;,Xx,)is the Airy’s function. The Tonti diagram has begeneralized to elasto-
dynamics [9], as shown in Figure 1. We remark thyarators C and C* are adjoint to each

B-o0=RR*B_.¢=L"0 - RR*¢=0 (compatib)



other, as well as operators S and S*. The elastodin diagram reveals the profound
symmetry of equations independently of the physidbe body.

The displacement method of linear elasticity iscdbgd by Figure 2.
The stress method of linear elasticity is descrimgéFigure 3.

The hybrid method of Ladeveze [4] also calledeh®er in constitutive lawmethod is described
by Figure 4.

Equation of motion m =0 (zabady forcs)

m=13p+Ia (force) u (displacemeni)
F' ‘
d
C*=13,,0] C:[ ’J
D *
Physical laws l
[ pecmentu) p=-0Z pP=2v v=20dmu (velocity)
(stress) a=32+RR*E a=Lg c=D%a) (omall strain)
&

P oo gro|” o* o a,
L3, RR* Lo Rr*
(ehmasmic tensar) [ Z n=—0D%v+8,5\ Ihcompalibility
(Belirami'stensor) | B c=—RR*¢ tensors

7=0
Compatibility eguations c=0

Figure 1: Generalized diagram of Elastodynamicstvishows the symmetry between dynamics and
kinematics chains, described in opposite direct[@hsThe physical law is not necessarily lineathis
diagram.



Equation of motion m =0 (robody forcs)

m=,p+Dal (fores) u (displacement)
' ‘
7
C*=1i3,, 0] C:[ ’]
D *
Physical laws l
(mamenium) (P=p2V &0 v=du (velocity)
-— — :
{stress) a=rLe 0 L £=D%u)  (small strain)

Figure 2: The displacement finite elements methaxetd on the equation of motion..

Physical laws

{ rrormanti) p=-0Z o 0O v=plpo {velocity)
{stress) a=0,Z+AR*E5 i e= L) (emall strain)

| Do | o* g,
L3, RR* Lo RR*
{dymamic tensar) [ £ B=-D%v+3,8 Incompatibility
( Beltrami' ctensar) |\ B C=—-RRE*¢g tansors

=0
Compatibility equations =0

Figure 3: The stress finite elements method sbaris tensors (Z, B) considered as unknowns for tvhic
the equation of motion is satisfied. One has onlgxpress the compatibility equations.



u (displacement)

(2

Physical laws l

(romenium) p=-07 Min ||11 - ,-:?v" v=dmn (velacity)
a=d,Z+RR*E Min || a-1 E‘| £=I*u (srecall sireein)

(stress)

-D 0
o=
3, RR*

A

{Beltrami' siensor)

{dynamic tensar) (Z J

Figure 4: The hybrid finite elements method, alalbed the €rror in constitutive lawsmethod,
consists in the matching of the kinematical scheuitie the dynamical one, in such a way that the norm
of the error in constitutive laws is mininidl].

Remarks: In statics, there are many variational formulagioof boundary value problems of
elassticity. The displacement method consists afsiciering the kinematic charu -
g(u)=D*u - o=L(g) of Figure 2 and the minimization of the potengalergy R¢), with udK

in the kinematically admissible ensemble K such thau®. The solution of the minimization
problem satisfies the equelibrium equatioo £0 (no body force). The stress method consists
of considering, Figure 3, the chast(subject to @=0 inQ ando.n=T%on S) - &=L (o) and

the minimization of the complementary potentiab®)(The solutiore(o) is compatible.

Let us mention the mixed method, consisting in thimimization of the complementary
potential Q(LDu), expressed with displacement variabjesatisfying the equilibrium equation
DLD*u =0, in Q (no body force) and the stress boundary conditibriu.n=T¢ on S. The
solutionu is found to satisfy the displacement boundary d@don S', i.eulK.

3. CONSERVATION LAWS

Conservation laws of the typediva+b=0are found in Solid Mechanics. For example, the
equation of motion is the conservation law of thenrmentum-divo + pd,d,u=0. In Fracture
Mechanics, conservation laws of the pure divergdoa —diva =0, without source terme,

are at the origin of path-independent integralsciwhare very useful for obtaining crack tip
parameters. Most conservation laws of this typeehan energetic interpretation. They are



derived from the Noether’s theorem of invarianceéhef Lagrangian for the symmetry group of
translation, in homogeneous body. The conservddws of the energy-momentum given by
Eshelby (1951) in elastostatics, or Fletcher (19@&lasto-dynamics are indicated respectively
by the following equations, whek&(¢) is the strain energy density

a=W(e)l - (grad ‘u).o, b=0 (Eshelby) )

a=W(e)l -1 pu’l -(grad 'u).o, b=%(pu.gradu) (Fletcher) (4)

Eshelby’s law without source term leads to Ricedithgndependent J-integral in elasto-statics
along a contour around the crack tip

J=[W(e)n, - (g.n)u,lds (5)

while with Fletcher's conservation law ones hasadditional area integral over the crack tip
region

d
dyn _ _ 1 w2 — _ . !
J = L[\N (e)n,-3pun - (o.n)u,-po.u Jds+ prll P puu dA (6)

J¥" has the meaning of the derivative of the energi wéspect to the crack propagation rate.

Its value in mode | isJ®"=@1-v?)K?2f, (V)/E wheref(V) is an universal function of the

velocity V, v is the Poisson ratio, E is the Young modulus linds the stress intensity factor,
Achenbach [14].

Does a true path-independent integral exist inetymamics?

This question was solved by considering duality adbint variables. Together with the
current elasto-dynamical field(x,t), from which stress and strain are derived, @joiat field
v(x, t; 1) satisfying the same elasto-dynamical equatiodivolv] + 00,0,v =0, with final
conditions, where is a parameter

v(x,t;7)=0, for t>r (7

The true path independent integral is

H=1 J'r J'Or{n.a[u].v ~n.ov] ujdsdt (8)

has the following property (u,v) = 1-v?*)K,(u) * K, (v)/ E where the symbol (*) is the time
convolution. Using (8) one sees that the stresmsity factorK, (u) can be determined from
boundary data, and known stress-intensity factahefadjoint fieldK; (v), by solving a time
deconvolution linear problem [8]. Path independsategral H, Eq. (8), reveals some symmetry
(or rather aranti-symmetrybetween current field and its adjoint.



4. SYMMETRY LOST AND INVERSE PROBLEMS FOR CRACK
DETECTION

In the previous section, when dealing with propaggivavesu and back propagating waves
we found an anti-symmetry between curraréind adjoint fieldss, in the derivation of path-
independent integral of the form, with an arbitrpaghl” around the crack tip

H = %J'r J'Or{n.a[u].v ~n.o|v].uldsdt>0 9)

In quasi-static elasticity, one has the energyasgaate G>0, denoted here by R
R= %jr{n.a[u].v -n.olv] ulds (10)

We say that there issymmetry losbetween current field and adjoint field,. Symmetry lost
occurs when current field corresponds to a solith vdefects (cracks, inclusion etc) while
adjoint field corresponds to arbitrary fields irs@nd solid. We hav® =0 when the current
field correspond to the sound solid too, aRdlt when there is a defect in the solid.
ThereforeR has not the thermodynamic interpretation of thegneelease rate G and becomes
a defect indicator

R=0 - No defectsinsidethesolid (11)
R#0 o Existencef a defect

The method of solution reduces to the search otéhesof a functional, or simply theerosof

a function of defect parameters. The arbitrarireégbe choice of adjoint fields is crucial for the
derivation of the solutions to some crack inversebfems, using boundary data. A series of
recent papers showed that the reciprocity gap immak R providedclosedform solutions to
many inverse crack problems, for electrostaticd,[&8atic elasticity [11], diffusion equation
[12], transient acoustics [15] and elasto-dynamwesh the exact solution to an earthquake
inverse problem [16], [17]. These solutions caridamd in [10], [19]

In what follows, we consider an inverse crack peablin elasto-dynamics, Fig. 1, which
modelizes an earthquake. Earthquake results frarstiiden release of stresses in a planar
fault Z(t), which is generally a time dependent surfacegimating at points of highest shear
stress. Both the fault surfag€t) and the stress release on its plane are unkndha data for
the inversion consist of the measurement of thelacation, hence by a twice time integration,
the displacement field(x, t) of points on the external boundary,S

This elasto-dynamic inverse problem is generalllyesb by methods of minimization of the
residual, which is the norm in space-time of thiéedence between a theoretical prediction of
the surface displacement field and the measurecortbe boundary. Such methods based on
the best fitting of data are essentially numereradl, more importantly, cannot provide exact
solutions particularly in space-time domain. A staént on the impossibility of an exact



solution, in elasto-dynamics, was given by Das Snotadolc [18] “even if the fitting of data
seems to be quite good, the faulting process islypoeproduced, so that in the real case, it
would be difficult to know when one has obtaineddbrrect solutioh

Now, we show that the reciprocity gap functionalimoel, which can be considered as a special
form of the variational method, using sub-spacead)dint functions, provides us the exact

solution to the earthquake inverse problem. Westithte the method by an example of crack
inverse problem for the heat equation given in [I8f which u and v are scalar fields. We

assume that there is a stationary planar crack.

The key method of solving inverse problems reliedh®e appropriate choices of sub-spaces of
adjoint functions v which are related to cracksapaeters. Consider the heat diffusion equation
(forward problem):

o,u—Au =0, xO(Q-2)x[0,T] (12)
ux,0)=0, in(Q-2) (13)
ux,t)=u, x0S,, (measurediatg (14)

o.u(x,t)=ao xOS,,,(measuredatg

d.u(x,t)=0, xOZ (aprioriknowledgg (15)

The adjoint equation (backward diffusion problew) dn uncracked body :is

0,v+Av =0, x0Qx[0,T] (16)

vV(xT) =0, x0Q (17)
Combining these equations, we obtain a non-linaaational equation

J'OT Iz(u) [uflo,vdsdt= J: ISext(¢V -u’d,v)dSdt=R(v), Ov (18)

The non-linearity comes from the unknown integmatiimmainz(u), in the left hand side of the

equation. The reciprocity gap R depends only orsthréace data and the adjoint function.

There are three unknowns: 1. the normal to thekqoiame; 2. the position of the crack plane; 3.
the geometry of the crack.

Determination of the normal

The normaln to the crack plane can be firstly determined hpgishe subspace \of adjoint
functions parameterized by vecfmrin the form €rf: error function)



(19)

0 = 1—erf(2\/XT'p__tj (t<T)
0 t>T)

By taking p in the formp=nxm, we verify that the normaN is the solution of a MinMax
problem

N =arg MianH:liMaﬁ‘ wjenmeo R(N X m)} (20)

Determination of the crack plane

We consider the subspace &f adjoint functions parameterized by the scalarthe form

v(x)© =

1 ex ~(% =0 t<T (@)
JAn(T -t) AT -t) [

v(x)® =0, t >T,where Ox is directed along the normill Let the position of the crack plane

be defined by %C=0. It can be checked that the functionR(\) has an unique zero at c=C.
Therefore, the transition of R from its non zero value Rf)#0 to R(¥?)=0 determines the
position C of the crack plane. We have an exampld® zero-crossing method to solve an
inverse problem.

Determination of the crack geometry

Having determined the crack plane, taken as theeplx,, we determine the crack geometry
as the support of the crack discontinuitysupp{[[u]]}. We introduce the subspace; \b6f

adjoint function parameterized byi(s, q)JR?, g=ck+iq;, g>0, defined by
v(x)+29 = exp(qt) exg- i(sX + $,%,)} exr{xs(sf +8% - iq)”z}, t<T (22)

and v(x)‘+=® =0, for t>T. Let Dk,t)=[[u]] in =, D(x,t)=0 forx in the crack plane, outside
Eqg. (18) becomes

(ua, v —vEPD)dS:= h(s,q) (23)

_[RZ H (x,q) exp{—i(s.X)}d?x = ﬁj‘mw] dt_[ )

where the right hand side hfs0f Eq. (23) is a known from boundary data an@ ismooth
function ofs, g and



H(x,q) = [ DOx.t)expEiat)dt (24)

It has been shown in [12hat the spatial supports of functioxs D(x,t) andx - H(x,q), with
H(x,q) defined as the time Fourier transform ok[@), are identical. It is proved that condition
>0 ensures the compactness of the supports ofidumsctTherefore the crack geometry is
explicitly determined by the geometrical support ok ) given by the inverse spatial Fourier
transform of h§,q)

[1]

[2]
[3]

[4]
[5]
[6]
[7]

[8]

% =supp[F, h(s,q)] (24)

Figure 1: Geometry of the domahand the unknown planar crakk
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