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Field-emission devices [1]require that thepotential drop be devoted to emission so that the 

resistivity of the tipsmust be as low as possible. However, in the case of carbon nanotubes or 

nanofibres (CNTs and CNFs), the tips are made of graphene layers. In graphite, the resistivity 

is four orders of magnitude lower in the graphene planes than perpendicular to the planes. 

Thus real nanotubes – where graphene planes are parallel to the tube axis – are a priori much 

better fitted to emission than nanofibres – where the graphene planes are at an angle (in that 

case, the tubular shapeisobtained by the stacking of truncated cones, see Fig. 1). Such nano-

objects are made by direct-current plasma-enhanced chemical vapour deposition (dcPECVD) 

with metal nanoparticle catalysts on top. In given growth conditions (see ref. [2]), we have 

found that iron particles allowed one to obtain real nanotubes [2], while nickel ones did 

not[3](Fig. 1). The goal of the present study is to understand how Fe particles would favour 

real CNT growth while Ni ones would not. 

 

In situ observation of the growth of nanotubes has already been successful for deciphering 

certain CNT growth mechanisms [4-7]. In the present case, we used in situ annealing of 

dcPECVD grown CNFs, in a FEI CM 30 working at 300 keV, with a Gatan heating stage, in 

the temperature range 500-800°C. The nanofibres were deposited on holey carbon grids by 

scratching the original substrate. 

 

We first explored annealing under electron irradiation as in ref.[6]. We obtained effects with 

Ni (see Fig. 2a), but not with Fe. We then applied an amorphization treatment to the Fe-

CNFs[8],andused amorphous matter to feed the metal nanoparticle with carbon atoms (Fig. 

2b). In their as-grown state, both types of nano-objects have graphene planes essentially 

parallel to the particle surface: the cone angle of the graphene layers is the cone angle of the 

metal particle ( in Fig. 1). In the case of Ni, creep of the metal particle brings at places a 

geometry where graphene planes are almost perpendicular to the local Ni surface: at those 

spots, the graphene layers get dissolved into the Ni (Fig. 2a, middle). Then, new graphene 

planes are generated parallel to the surface at another spot (Fig. 2a, right). There is no such 

thing with Fe: we see no evolution of the particle, unless we start from an amorphized CNF 

(Fig. 2b). In that case, the amorphous carbon is easily dissolved into the Fe. These dissolved 

carbon atoms get out of the particle in the form of a new nanotube, where nucleation takes 

place – partly at least – perpendicular to the Fe surface. 

 

This experiment seems to show that the chemical reactivities at the interface between the 

metals and end-on graphene planes are quite different in Fe and Ni, which may play a role in 

the fact that we were able to obtain real nanotubes with Fe and not with Ni. 
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Fig. 1. Typical shapes of a carbon nanofibre 

(left) and of a multiwall carbon nanotube 

(right). The cone angle   has a finite value in 

CNFs (right) and is 0 in CNTs. The 

micrograph shows a nanotube obtained at 

720°C with a Fe particle on top. 
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Fig. 2. In situannealing of CNFs grown with metal on top. At the beginning, graphite layers 

are parallel to the metal surface. (a) Ni, 750°C: graphene planes that get an angle with the Ni 

surface get dissolved into the metal (middle), while there is nucleation of new planes parallel 

to the metal surface (right). (b)Nucleation of a carbon nanotube at the surface of an iron 

particle by in situ annealingof an amorphizednanofibre at 650°C: graphene planes are 

extruded from the particle, with a component of growth perpendicular to the local metal 

surface. 
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