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Abstract8

This work makes use of a recently developed “second-order” homogenization model to investigate failure9

in porous elasto-plastic solids under general triaxial loading conditions. The model incorporates dependence10

on the porosity and average pore shape, whose evolution is sensitive to the stress triaxiality and Lode pa-11

rameter L. For positive triaxiality (with overall tensile hydrostatic stress), two different macroscopic failure12

mechanisms are possible, depending on the level of the triaxiality. At high triaxiality, void growth induces13

softening of the material, which overtakes the intrinsic strain hardening of the matrix phase, leading to14

a maximum in the effective stress-strain relation for the porous material, followed by loss of ellipticity by15

means of dilatant shear localization bands. In this regime, the ductility decreases with increasing triaxiality16

and is weakly dependent on the Lode parameter, in agreement with earlier theoretical analyses and experi-17

mental observations. At low triaxiality, however, a new mechanism comes into play consisting in the abrupt18

collapse of the voids along a compressive direction (with small, but finite porosity), which can dramatically19

soften the response of the porous material, leading to a sudden drop in its load-carrying capacity, and to loss20

of ellipticity of its incremental constitutive relation through localization of deformation. This low-triaxiality21

failure mechanism leads to a reduction in the ductility of the material as the triaxiality decreases to zero,22

and is highly dependent on the value of the Lode parameter. Thus, while no void collapse is observed at low23

triaxiality for axisymmetric tension (L = −1), the ductility of the material drops sharply with decreasing24

values of the Lode parameter, and is smallest for biaxial tension with axisymmetric compression (L = +1).25

In addition, the model predicts a sharp transition from the low-triaxiality regime, with increasing ductility,26

to the high-triaxiality regime, with decreasing ductility, as the failure mechanism switches from void collapse27

to void growth, and is in qualitative agreement with recent experimental work.28

Key words: Plasticity, Void Growth, Porous materials, Lode parameter, Shear Localization,29

Homogenization, Microstructure evolution30

1. Introduction31

Due to its critical technological importance, ductile failure and fracture of metallic materials has been32

the focus of continued attention over the last sixty years. The main mechanism for material failure in33

ductile solids is the nucleation, growth and eventual coalesce of voids and micro-cracks as a result of the34

applied loading conditions (Garrison and Moody, 1987). It has been known for many years that the stress35

triaxiality, denoted here by XΣ and defined as the ratio of the mean stress to the von Mises equivalent or36

effective deviatoric stress, is the critical parameter controlling ductile failure at high triaxiality. Thus, large37

amounts of experimental data (Hancock and Mackenzie, 1976; Le Roy et al., 1981; Johnson and Cook, 1985)38
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have shown a monotonic decrease of material ductility with increasing stress triaxiality. This is consistent39

with the expected increase in the rate of growth of the voids with a larger tensile hydrostatic stress compo-40

nent. Nonetheless, recent experimental evidence (Bao and Wierzbicki, 2004; Barsoum and Faleskog, 2007a;41

Mohr and Ebnoether, 2009; Dunand and Mohr, 2010) suggests that a new, different mechanism should come42

into play at low triaxialities, leading to a substantial reduction of the material ductility with decreasing stress43

triaxiality. Indeed, in these studies, it has been found that a second loading parameter, the Lode parameter,44

L (or equivalently Lode angle, θ) also plays a significant role in ductile failure at low stress triaxialities. The45

Lode parameter is a function of the third invariant of the stress deviator and is used to distinguish between46

the different shear stress states in three dimensions (3-D), ranging from axisymmetric tension to biaxial47

tension with axisymmetric compression and passing through in-plane shear. The key experimental observa-48

tions are summarized in Fig. 1, which is taken from the work of Barsoum and Faleskog (2007a). Specifically,49

Fig. 1a shows the low-triaxiality regime with increasing ductility as the triaxiality increases, followed by an50

abrupt transition to the standard high-triaxiality regime with the opposite trend. Correspondingly, Figs. 1b,51

c and d show SEM micrographs of the failure surfaces for low, intermediate and high triaxiality. At low stress52

triaxialities (Fig. 1b), the dimples are shallow and elongated suggesting significant shear plastic strains and53

void elongation, together with shear localization between voids. At high stress triaxialities (Fig. 1d), the54

dimples are deep suggesting the well-known void coalescence mechanism with necking of inter-void ligaments55

leading to final rupture. At an intermediate value of the stress triaxiality (XΣ ≈ 0.7− 0.8), a transition be-56

tween the void shearing and void growth mechanisms is observed. In conclusion, these careful experimental57

observations strongly suggest that, void elongation (with significant changes in shape), which is dependent58

on the specific shear stress state (as measured by the Lode parameter), becomes the dominant mechanism59

leading to the failure of the material at low stress triaxialities, and should therefore be accounted for in the60

constitutive modeling of such material systems.61

The underlying microstructural mechanism at large triaxialities (i.e., large mean stresses compared to62

the deviatoric ones) was identified early on by McClintock (1968) and Rice and Tracey (1969), who related it63

to the growth of pre-existing voids or/and nucleated micro-voids mainly due to the presence of impurities in64

the material. This knowledge led to the development of the well-known Gurson (1977) model (and its modi-65

fications by Tvergaard (1981)) which is based on a micromechanical analysis of a spherical shell, assumed to66

remain spherical even for general loading conditions. However, while this assumption is entirely consistent67

with the void growth mechanisms observed under pure hydrostatic stress states, as already noted, it becomes68

less adequate with the addition of shear loads, since such loads can induce significant changes in the void69

shape. Early studies of the effect of triaxiality on void growth, accounting for shape changes, as well as its70

implications for ductile failure, were carried out by McClintock (1968, 1971) and Budiansky et al. (1982)71

(see also Teirlinck et al. (1988)). Building on these early works and on the works of Duva and Hutchinson72

(1984) and Lee and Mear (1992), Gologanu et al. (1993, 1994) proposed a model for porous materials with73

aligned spheroidal voids that are subjected to axisymmetric stress states aligned with the voids symmetry74

axis. These Gurson-type models have been further developed by Gologanu et al. (1997), Gǎrǎjeu et al.75

(2000), Pardoen and Hutchinson (2000), Benzerga (2002), Flandi and Leblond (2005a), Monchiet et al.76

(2007), Benzerga and Leblond (2010) and Keralavarma and Benzerga (2010) to account for more general77

loading conditions (and anisotropic matrix behavior in the case of Keralavarma and Benzerga (2010)), but78

still make the rather strong approximation that the voids remain spheroidal in shape for general triaxial79

loading histories.80

A different class of constitutive models for porous viscoplastic materials capable of accounting for81

more general (i.e., arbitrary ellipsoidal) pore shape and orientation evolution have been developed by82

Ponte Castañeda and Zaidman (1994), Kailasam et al. (1997a) and Kailasam and Ponte Castañeda (1997)83

to deal with completely general, three-dimensional loading conditions. These models make use of the84

“variational linear comparison” homogenization method of Ponte Castañeda (1991) (see also Willis (1991),85

Michel and Suquet (1992)), together with the estimates of Ponte Castañeda and Willis (1995) for porous86

linear-elastic materials with “ellipsoidal” microstructures (i.e., particulate microstructures containing or-87

thotropic distributions of ellipsoidal pores), to generate corresponding estimates for the dissipation potential88

of the viscoplastic porous materials. They are supplemented by evolution laws for microstructural variables89

corresponding to the porosity, average pore shape and orientation, which are obtained from the homogeniza-90
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Figure 1: Failure of hot rolled medium-strength steel. (a) Effective plastic strain and failure vs. stress triaxiality.
(On the plot, εpcf and ε

p

nf refer to the critical plastic strains at the center of a notch and the average plastic strain at
the notch, respectively). The rest of the figures correspond to SEM fractographs showing the rupture modes: b) a
shear dimple rupture mode with inter-void shearing mechanism and elongated voids for stress triaxiality XΣ = 0.47;
c) the transition between shear dimples and void growth rupture for XΣ = 0.85; d) necking of inter-void ligaments,
i.e., void coalescence due to void growth, for XΣ = 1.10. All figures are taken from Barsoum and Faleskog (2007a)
and correspond to Weldox 420.

tion analyses in a self-consistent fashion (Ponte Castañeda and Zaidman, 1994; Kailasam and Ponte Castañeda,91

1998).92

The above-mentioned non-linear homogenization methods have also been extended to include strain hard-93

ening elasto-plastic behavior for the matrix material, and implemented numerically in large-scale, structural94

finite element programs by Kailasam et al. (2000) and Aravas and Ponte Castañeda (2004). While these95

models are quite general, they tend to give overly stiff predictions at high triaxialities (i.e., they are quite96

a bit stiffer than the Gurson-based models), especially for small porosity levels. However, this limitation97

has been removed, at least for isotropic matrix systems, in recent work by Danas and Ponte Castañeda98

(2009a,b), making use of the more accurate “second-order” linear comparison homogenization method of99

Ponte Castañeda (2002a,b), and building on earlier works by Danas et al. (2008a), Danas et al. (2008b) and100

Danas (2008). The resulting model, which will be referred to here as the SOM model, will be extended to101

account for strain-hardening, elasto-plastic behavior for the matrix phase, and will be capable of handling102

general “ellipsoidal” particulate microstructures and general three-dimensional loading conditions, including103

those leading to pore rotation, while remaining quite accurate at large stress triaxialities and recovering the104

Gurson model for purely hydrostatic loadings and spherical pores.105
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Application of the linear comparison constitutive models to various types of loading conditions has106

revealed the importance of void shape evolution in determining the overall response of plastic porous solids.107

For example, it was found by Ponte Castañeda and Zaidman (1994) that under uniaxial tension the softening108

induced by the growth of porosity associated with the Gurson model for ideally plastic porous materials is109

overpowered by pore shape changes, since the pore elongation in the tensile direction provides a hardening110

mechanism resulting in overall hardening for the porous material—in agreement with numerical simulations111

(see Kailasam et al. (1997b)). However, the evolution of the void shape can also induce overall softening of112

the porous material, and in fact it was shown by Ponte Castañeda and Zaidman (1994), and confirmed by113

Danas and Ponte Castañeda (2009b), that a porous rigid ideally plastic material could even lose ellipticity114

by void collapse leading to shear band formation at low triaxialities. It is important to emphasize that115

such an effect could not be captured by the Gurson model, since at low-triaxiality conditions the source116

of the instability cannot be identified with a void growth mechanism (Yamamoto, 1978). In this context,117

it should also be mentioned that Nahshon and Hutchinson (2008) have proposed an ad hoc modification of118

the Gurson model in an attempt to account for softening of the material at low stress triaxialities. While,119

by construction, this modification brings in an effect of the Lode parameter, it is inconsistent with mass120

conservation, and still fails to account for the development of morphological anisotropy associated with pore121

shape changes.122

Motivated by the above observations, in the present work, we will make use of the SOM model to123

investigate the influence of the Lode parameter (i.e., the different shear stress states) and the stress triaxiality124

on the overall behavior of porous elasto-plastic materials and the possible development of “macroscopic”125

instabilities (Geymonat et al., 1993) due to the evolution of the underlying microstructure, e.g., void growth126

and void shape changes. In particular, we will consider two possible failure mechanisms for the porous127

medium: (i) the existence of a limit load (i.e., a maximum point on the effective stress-strain curve or128

equivalently zero material hardening rate) and (ii) loss of ellipticity of the incremental response leading to129

localization of deformation in dilatant shear bands, as discussed originally by Rice (1976). It should be noted130

in this connection that while loss of ellipticity calculations will lead to predictions that are typically on the131

high side when compared to experimental results, these are material instabilities which can provide useful132

information about the theoretical load-carrying capacity of the material. In actual experiments, the loading133

conditions and specimen geometry will invariably lead to non-uniform fields, such that the instabilities134

nucleate at critical locations in the specimen where the local fields are in excess of the applied average fields,135

leading to progressive failure of the material by propagation of the instability into the specimen.136

In this work, we will not attempt to model specific experimental conditions, nor structural geometries.137

However, it is relevant to note that, based on the earlier variational model of Ponte Castañeda and Zaidman138

(1994), constitutive user-material subroutines for implementation in finite element codes have been developed139

by Kailasam and Ponte Castañeda (1997), Kailasam et al. (2000) and Aravas and Ponte Castañeda (2004).140

Recently, Danas and Aravas (in preparation) have proposed a modification of these earlier models in accord141

with the present SOM model that recovers the spherical shell solution (i.e., Gurson’s hydrostatic point) at142

purely hydrostatic loadings, while including all the advanced features of the variational and second-order143

methods such as arbitrary ellipsoidal void shapes and general loading conditions. In addition, in this work we144

will not address “microscopic” coalescence criteria (see Benzerga et al. (1999); Benzerga and Leblond (2010)145

for details on this alternative approach to material failure). It should be remarked in this connection that146

the incorporation of loss of ellipticity predictions into numerical simulations of actual structural problems147

(including crack propagation) is a challenging and still largely open problem, which is also beyond the scope148

of this work.149

For clarity and simplicity, in our analysis we will consider purely triaxial loading conditions and initially150

spherical voids so that the void orientation vectors remain aligned with the principal loading conditions151

for the entire deformation process and therefore do not contribute to the overall material response. Note,152

however, that for the case of general (non triaxial) loading conditions or initially anisotropic microstruc-153

tures (i.e., initially ellipsoidal voids misaligned with the laboratory frame axes), the void orientation vec-154

tors evolve due to finite deformations and could hence affect the overall response of the porous material155

(e.g., Kailasam and Ponte Castañeda (1997); Kailasam et al. (2000), Aravas and Ponte Castañeda (2004),156

Danas and Ponte Castañeda (2009b)). The investigation of void rotation effects in this context will be left157
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for future work, but it should be mentioned that recent numerical studies by Barsoum and Faleskog (2007b)158

and Tvergaard (2009) have shown that rotation and elongation of the voids along the shearing direction can159

contribute to the localization of deformation and subsequent failure of the material.160

The rest of the paper is organized as follows. First, in section 2, we describe the geometry and loading161

conditions, and define the pertinent variables used in this study including the stress triaxiality and the Lode162

parameter. In this section, we also describe the microstructure and present a brief summary of the SOM163

model, as well as the characterization of the limit load and localization conditions used in this study as failure164

criteria for the porous medium. Then, section 3 discusses the results obtained by the SOM for the evolution165

of the stress and the underlying microstructure under finite deformations, and compares them with the166

(isotropic) modified Gurson model of Nahshon and Hutchinson (2008), referred to as MGUR below. Limit167

load and localization maps are constructed as a function of the stress triaxiality and the Lode parameter.168

A parametric study to investigate the influence of the material hardening rate and initial porosity on the169

limit load and localization maps is also carried out. Finally, we conclude with some general comments and170

perspectives for future work.171

2. The non-linear homogenization model172

This section briefly describes the application of the “second-order” nonlinear homogenization model173

(SOM) of Danas and Ponte Castañeda (2009a) for porous elasto-plastic materials subjected to triaxial load-174

ing conditions. We first define the stress triaxiality and Lode parameters, followed by microstructural175

variables describing the volume fraction, shape, distribution and orientation of the voids. Next, building on176

the work of Aravas and Ponte Castañeda (2004), we develop consistent constitutive relations for the elastic177

and plastic deformations of the porous medium, and provide evolution laws for the above-mentioned mi-178

crostructural variables, as well as the strain hardening law for the matrix material. Finally, expressions for179

the hardening rate and the localization conditions are derived.180

2.1. Triaxial loading conditions: Stress triaxiality and Lode parameter181

This subsection discusses the loading conditions and the associated stress measures used to distinguish182

between hydrostatic loading and different shear stress states. We consider purely triaxial loading conditions183

with the principal stresses σ1 = σ11, σ2 = σ22 and σ3 = σ33 (σij = 0 for i 6= j) being aligned with the184

laboratory frame axes, e(1), e(2) and e(3), respectively. This allows for the definition of alternative stress185

measures that are more appropriate for dilatational plasticity of porous materials. The three alternative186

measures are the hydrostatic (or mean) stress, σm, the von Mises equivalent (or effective) stress, σe, and187

the third invariant of the stress deviator, J3, defined as188

σm = σkk/3, σe =
√

3 J2 =
√

3 sij sij/2, J3 = det(sij), (1)189

where sij = σij − σm δij is the stress deviator. Using these definitions, we can readily define the stress190

triaxiality, XΣ, and Lode angle, θ, or Lode parameter1, L, via the following expressions191

XΣ =
σm

σe

, L = − cos 3θ = −
27

2

J3
σ3
e

. (2)192

By definition, the range of values for the XΣ and L, (or θ) are193

−∞ < XΣ < ∞, and − 1 ≤ L ≤ 1 or 0 ≤ θ ≤ π/3. (3)194

Then, relations (2) can be used to express the principal stresses as functions of XΣ, σe and θ, such that195

3

2σe

{σ1, σ2, σ3} = {− cos
(

θ +
π

3

)

,− cos
(

θ −
π

3

)

, cos θ}+
3

2
XΣ{1, 1, 1}. (4)196
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Figure 2: Normalized principal stresses 3
2σe

{σ1, σ2, σ3}, as a function of the Lode angle θ or equivalently the Lode
parameter L. Parts (a) and (b) correspond to stress triaxialities XΣ = 0 and XΣ = 1, respectively.

Fig. 2 shows the normalized principal stresses defined in (4) as a function of the Lode parameter L and197

Lode angle θ for (a) XΣ = 0 and (b) XΣ = 1. It is clear from Fig. 2a that for L = −1 or θ = 0, the stress198

state is axisymmetric with one positive and two negative stresses (axisymmetric tension). On the other199

end, when L = 1 or θ = π/3, the stress state is also axisymmetric but with two positive and one negative200

stresses (biaxial tension with axisymmetric compression). Note that these two different axisymmetric states201

lead to different evolution of the underlying microstructure and therefore to different overall responses as202

the deformation progresses. When, L = 0 or θ = π/6, the stress state is in-plane shear with one stress203

identically equal to zero (e.g., plane stress state). The rest of the states are between axisymmetric and204

in-plane shear states. It should be noted that when the stress triaxiality is nonzero then the principal205

stresses are simply translated by a constant either upwards for XΣ > 0, as shown in Fig. 2b for XΣ = 1, or206

downwards for XΣ < 0 (not shown here for brevity). Note also that |XΣ| → ∞ and XΣ = 0 correspond to207

purely hydrostatic and purely deviatoric loadings, respectively.208

2.2. Microstructure209

The porous material is composed of two phases. The matrix phase is elasto-plastic and isotropic fol-210

lowing a J2 flow rule with isotropic strain hardening described by the yield stress σy as a function of the211

accumulated equivalent plastic strain εpM . The inclusion phase is vacuous and consists of initially spherical212

voids distributed uniformly and isotropically, such that the initial response of the porous medium is also213

isotropic. However, due to the finite deformations considered in this problem the voids evolve into non-214

spherical shapes and hence the porous medium becomes locally anisotropic (i.e., develops morphological215

anisotropy). Consequently, it is necessary to define microstructural variables that not only describe the216

volume fraction of the voids, as is the case in the models of Gurson (1977) and Nahshon and Hutchinson217

(2008), but also their shape, distribution and orientation.218

1Note that our choice for the Lode parameter L differs from the standard definition, µ = (2σ1 − σ3 − σ2)/(σ3 − σ2), but

the two parameters are simply related by L = µ(9 − µ2)/
√

(µ2 + 3)3, and therefore agree for the values −1, 0, and +1.
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Figure 3: Graphical representation of the microstructure. Part (a) shows the local orientation axes n(i) with i = 1, 2, 3
of a representative ellipsoidal void with semi-axis a1, a2 and a3. Part (b) shows the a cross-section of the specimen
where the “white” ellipsoids denote voids with ellipsoidal shape while the dashed ellipsoids refer to the distribution
of their centers.

According to the schematic representation shown in Fig. 3a and at some finite deformation state, we219

consider that the porous material is characterized by a “particulate” microstructure consisting of ellipsoidal220

voids (i.e., with semi-axes a1 6= a2 6= a3) aligned in a certain direction as a result of the previously described221

triaxial loading conditions. In addition, it is assumed (Willis, 1978; Ponte Castañeda and Willis, 1995)222

that the centers of the voids are distributed with ellipsoidal symmetry (see Fig. 3b). This description223

of a particulate microstructure represents a generalization of the Eshelby (1957) dilute microstructure to224

the non-dilute regime. In this work, which is based on the model of Danas and Ponte Castañeda (2009a),225

we will make the simplifying assumption that the ellipsoidal shape and orientation of the distribution226

function is identical to the ellipsoidal shape and orientation of the voids at each stage of the deformation.227

This is schematically shown in Fig. 3b, where the dashed ellipsoids representing the pore distribution228

are taken to have the same ellipsoidal shape as the actual pores (in white). This assumption has been229

shown (Danas and Ponte Castañeda, 2009b) to provide accurate estimates, especially at small to moderate230

porosities. Nonetheless, it should be mentioned that, in general, the void distribution shape could be different231

from the void shape, as discussed by Ponte Castañeda and Willis (1995), and this effect can be accounted232

for at least approximately (Kailasam et al., 1997a).233

Moreover, in the present study we consider purely triaxial loading conditions and initially isotropic234

materials (i.e., comprising initially spherical voids). This implies that the orientation of the voids remains235

fixed and aligned with the triaxial loading conditions. Thus, the vectors n(i) (with i = 1, 2, 3) denoting the236

orientation of the principal axes of the voids (see Fig. 3a) remain aligned with the principal laboratory axes237

e(i). Consequently, the porous medium becomes, at most, orthotropic with finite deformations, with the238

axes of orthotropy coinciding with the principal axes of the ellipsoidal voids and the laboratory frame axes,239

i.e., with n(i) = e(i). It should be emphasized, however, that the model of Danas and Ponte Castañeda240

(2009a) can account for more general loading conditions, non-spherical initial void shapes and rotation of241

voids, as has already been shown in Danas (2008) and Danas and Ponte Castañeda (2009b), but such a242

study is not carried out here because it will not be needed to describe the effects of interest in this work.243

In view of the above hypotheses, the relevant internal variables describing the state of the microstructure244

in this problem are:245

sα = {εpM , f, w1, w2}, (5)246

where εpM is the accumulated plastic strain in the undamaged matrix phase, f is the porosity (i.e., volume247

fraction of the voids), and w1 = a3/a1 and w2 = a3/a2 are two aspect ratios characterizing the ellipsoidal248

shape of the voids (with a1, a2 and a3 denoting the principal semi-axes of the ellipsoidal voids) and their249

distribution function.250

2.3. Elasto-plastic constitutive relations251

The overall strain-rate D in the porous material is decomposed into its elastic and plastic parts via252

D = D
e +D

p, (6)253
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where De and D
p, respectively, denote the elastic and plastic parts. Note that due to the presence of voids254

the overall material behavior is compressible (i.e., pressure dependent) implying that the plastic strain-rate255

tensor is not deviatoric (i.e., Dp
kk 6= 0). On the other hand, due to the triaxial loading conditions and the fact256

that the voids do not rotate during the deformation process, the overall spin as well as the microstructural257

spins are identically zero. In addition, in view of the fact that the pores can carry no loads and following258

Aravas and Ponte Castañeda (2004), it is assumed that the elastic and plastic parts of the strain rate can259

be estimated by independent, but consistent homogenization analyses.260

Thus, the elastic response of the porous material is described in terms of an effective compliance tensor261

M via262

De
kl = Mijkl σ̇ij , with Mijkl = MM

ijkl +
f

1− f
Q−1

ijkl , (7)263

where σ̇ represents the material time derivative of the stress, which will be taken here to be given by the264

(partial) derivative with respect to time, since the stress is assumed to be uniform and the spin is zero,265

and Q = Q(w1, w2,n
(i) = e(i)) is directly related to the well-known Hill or Eshelby tensor for ellipsoidal266

microstructures and its evaluation is detailed in Willis (1981) (see also Danas (2008)). The fourth-order267

tensor MM is the compliance modulus of the matrix (metallic) phase and is taken to be isotropic such that268

MM
ijkl =

1 + ν

E

[

1

2
(δik δjl + δil δjk)−

ν

1 + ν
δij δkl

]

, (8)269

where E and ν denote the elastic modulus and Poisson ratio, respectively.270

On the other hand, the yield condition for the porous material can be written in the functional form271

Φ(σ; sα) = σ̂eq (σ; f, w1, w2)− σy(ε
p
M ) = 0, (9)272

where σ̂eq is a scalar function of the stress tensor and the microstructural variables, which is detailed in273

Danas and Ponte Castañeda (2009a) (c.f. equations (25) and (28)), while σy is the effective stress governing274

flow of the undamaged matrix material and in general depends on the accumulated plastic strain εpM in the275

matrix phase. The overall plastic strain rate Dp of the porous material is then obtained from the normality276

rule via277

Dp
ij = Λ̇Nij , Nij =

∂Φ

∂σij

, (10)278

where Λ̇ ≥ 0 is the plastic multiplier, which is determined by the consistency condition as discussed in subsec-279

tion 2.5, and Nij is the normal to the yield surface Φ. The reader is referred to Danas and Ponte Castañeda280

(2009a) for more detailed expressions for Φ and Nij .281

2.4. Evolution equations282

Following the work of Ponte Castañeda and Zaidman (1994), Kailasam and Ponte Castañeda (1998),283

Aravas and Ponte Castañeda (2004) and Danas and Ponte Castañeda (2009a), evolution equations are given284

in this section for the microstructural variables εpM , f , w1 and w2 defined in relation (5). Once again, in this285

work the orientation vectors remain aligned with the principal loading directions, i.e., n(i) = e(i) (i = 1, 2, 3),286

during the deformation process.287

The evolution equation for the accumulated plastic strain in the matrix phase εpM is determined by the288

condition (Gurson, 1977) that the macroscopic plastic work σij D
p
ij be equal to the corresponding microscopic289

plastic work (1− f)σy ε̇
p
M , which implies that290

ε̇pM =
σij D

p
ij

(1− f)σy

= Λ̇
σij Nij

(1 − f)σy

. (11)291

For strain hardening materials, σy is a function of εpM , which, in general, is to be extracted from experimental292

uniaxial stress-strain curves. In our work, a rather general strain hardening law for σy(ε
p
M ) will be given in293

the results section.294
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Any changes of the pores are assumed to be only the result of plastic deformations (Aravas and Ponte Castañeda,295

2004) while elastic deformations are considered to have a negligible effect on the evolution of the voids volume296

fraction. Noting further that the matrix material is plastically incompressible (J2 plasticity), the evolution297

equation for the porosity f follows easily from the continuity equation and reads298

ḟ = (1− f)Dp
kk = Λ̇ (1 − f)

∂Φ

∂σkk

. (12)299

We point out that void nucleation is not considered in the above relation but can be readily included300

by proper modification of (12)(e.g., Needleman and Rice (1978); Chu and Needleman (1980); Tvergaard301

(1990)).302

The evolution of the aspect ratios w1 and w2, describing the shape of the voids, is given in terms of the303

average strain-rate in the vacuous phase D
v such that304

ẇs = ws (n
(3)
i n

(3)
j − n

(s)
i n

(s)
j )Dv

ij = Λ̇ y(s)w (σ/σy; sα), with n(i) = e(i), (13)305

and no sum on s = 1, 2. The average strain-rate D
v in the vacuous phase is estimated via the linear306

comparison material, as discussed in Danas and Ponte Castañeda (2009a) (see equation (76) in that refer-307

ence). Finally, the associated functions y
(s)
w have also been given in Danas and Ponte Castañeda (2009a)308

(see relation (80) in that reference) and will not be repeated here.309

2.5. The consistency condition and the hardening rate310

In this subsection, we determine the plastic multiplier Λ̇ and hardening rateH by means of the consistency311

condition (Dafalias, 1985) for continuously applied loading, which in this case reads312

Φ̇ =
∂Φ

∂σkl

σ̇kl +
∂Φ

∂εpM
ε̇pM +

∂Φ

∂f
ḟ +

∑

s=1,2

∂Φ

∂ws

ẇs = 0. (14)313

Substitution of the evolution equations (11), (12), (13), and of ∂Φ/∂εpM = −dσy/dε
p
M , in this last relation314

provides the following expression for the plastic multiplier315

Λ̇ =
1

H

∂Φ

∂σkl

σ̇kl =
1

H
Nkl σ̇kl, (15)316

where H is the hardening rate defined by317

H =
σij Nij

(1− f)σy

dσy

dεpM
− (1− f)Nkk

∂Φ

∂f
−

∑

s=1,2

∂Φ

∂ws

y(s)w . (16)318

The hardening rate is a measure of the overall hardening of the porous material. When H > 0, the material319

is said to harden, while when H < 0, it is said to soften. The critical point when H = 0 usually provides320

the transition from the hardening regime to the softening regime, and can be identified with the maximum321

stress or limit load of the material. Clearly, the maximum stress is important for stress-controlled boundary322

conditions, since the material will not be able to support stresses exceeding the limit load, and the material323

will fail at this point under increasing stress.324

By observation of relation (16), we note that the first two terms of the right-hand side appear also in the325

Gurson (1977) and the Nahshon and Hutchinson (2008) models, and incorporate the effects of the matrix326

strain hardening and the evolving porosity (or damage in Nahshon and Hutchinson (2008)) on the overall327

response of the porous material. By contrast, in the present model, additional terms appear in (16), due to328

void shape changes. This last term of the right hand side in (16), which comprises the evolution of the two329

aspect ratios w1 and w2, affects the overall hardening rate of the porous material in a nontrivial manner.330

All these effects will be investigated in detail in the next section.331
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Figure 4: Graphical representation of a localization band. The figure on the right shows the local system of coordinates,
where n is the normal to the band and t is the tangent. The angle between n and g provides the deformation inside the
band. For instance, if n ⊥ g, the deformations inside the band is a simple shear. However, due to the compressibility
of the porous material g is not, in general, perpendicular to n and the deformation inside the band can also have
normal components (e.g., niDijnj 6= 0), leading to the formation of a dilatant shear band.

2.6. Localization conditions332

In this subsection, we summarize the localization conditions corresponding to the loss of ellipticity of the333

governing equations and leading to non-unique solutions, bifurcations and instabilities, as described by Rice334

(1976). By making use of definition (15), the incremental constitutive relations (6), (7) and (10) describing335

the overall elasto-plastic response of the porous material can be written in the form336

σ̇ij = Linc
ijkl Dkl, where Linc

ijkl = Lijkl −
Npq Lpqij Lklmn Nmn

H +Nrs Lrsuv Nuv

(17)337

is the effective incremental elasto-plastic modulus of the porous material, and L = M−1 is the effective338

elastic modulus of the porous material.339

Following Rice (1976), we consider an infinite porous medium with no initial imperfections, which implies340

that the trivial solution to this problem is homogenous deformation throughout the infinite region. Then,341

we look for conditions under which the deformation would localize inside a thin band leading to unloading342

outside the band, as shown schematically in Fig. 4. This second solution to the problem is a discontinuous343

bifurcation of the uniform solution and leads to a lower energy state than the uniform one. As already known,344

the specimen would tend to localize earlier if an initial imperfection were considered. However, the goal345

of the present study is to investigate pure material instabilities leaving aside any geometrical imperfections346

for a future study where actual boundary value problems resulting from experimental geometries will be347

investigated.348

In any event, the condition for the localization of deformation inside a thin band with normal ni becomes349

(Rice, 1976; Needleman and Rice, 1978)350

det
[

niL
inc
ijklnl +Ajk

]

= 0, where 2Ajk = −σjk + σjsnsnk + (npσpqnq)δjk − njnrσrk. (18)351

When this localization condition is first met in a program of deformation, the difference between the total352

strain-rate inside and outside the band can be written as ∆Dij = (gi nj + ni gj)/2, with gi being a function353

only of distance across the localization band nixi (with xi being the position vector). The use of ni and354

gi provide information about the deformation state inside the localization band. For instance, in the case355

that the material is fully incompressible, it can be shown that gi is perpendicular to ni and parallel to the356

band tangent vector ti which implies that the deformation state in the band is simple shear, i.e., a shear357

localization band. In the present study, however, the material is compressible due to the finite porosity,358

and can accommodate deformation states other than simple shear inside the band. In that case, ni and359

gi are not necessarily perpendicular to each other as shown in Fig. 4, which can lead to a nonzero normal360

component of the deformation state inside the band, i.e., ni∆Dijnj 6= 0.361
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In connection with the above-described localization conditions, it should be emphasized that the (uni-362

form) solutions obtained directly from the constitutive model for the porous material would cease to be363

valid at the point of the instability. Then, a post-bifurcation analysis would be required beyond this point.364

Such an analysis should make use of geometrical effects or initial imperfections and is outside the scope of365

the present work, which focuses on uniform solutions under fixed stress triaxialities and Lode parameter366

loadings throughout the entire deformation history. However, in the results to be described in the next367

section, the (uniform) solutions will still be shown beyond the onset of said instabilities, mostly because368

they are suggestive of the mode of the onset of the instability. Of course, such solutions are not meant to be369

representative of what actually happens beyond the instability. As already known from investigation in other370

contexts (e.g., failure of fiber-reinforced composites), the final failure mode requires the full post-bifurcation371

analysis. More often than not, such failure modes are inherently different from the mode of the onset of the372

instability.373

3. Results and discussion374

As already mentioned in the previous section, our objective is to investigate the effects of the stress375

triaxiality XΣ and Lode parameter L (or Lode angle θ) on the macroscopic response and failure of porous376

elasto-plastic materials subjected to triaxial loading conditions. Given the fact that a maximum stress is ex-377

pected, in this work the strain rate D33 will be prescribed, together with the values of XΣ and L, which will378

serve to determine all three (principal) stresses, σ1, σ2 and σ3, as well as the evolution of the microstructural379

variables, the porosity f , and the average aspect ratios, w1 and w2, as functions of time t. However, it will be380

convenient to use as a time-like variable the total equivalent strain εe =
∫

t

√

2D′

ijD
′

ij/3 dt, withD′

ij denoting381

the strain-rate deviator, and to consider the overall von Mises equivalent stress σe instead of the individual382

stress components in the characterization of the macroscopic response. Because of the special loading con-383

ditions imposed, it can be shown that the maximum on the σe versus εe plots will correspond exactly to a384

vanishing hardening rate H = 0, indicating a possible instability under stress-controlled loading conditions.385

In addition, the loss of ellipticity condition will be determined for the material making use of the condi-386

tion (18). For completeness, a comparison will also be made between the predictions of the “second-order”387

model (SOM) of Danas and Ponte Castañeda (2009a) and the modified Gurson model (MGUR) proposed388

by Nahshon and Hutchinson (2008). In keeping with standard practice (Barsoum and Faleskog, 2007a), the389

maximum stress (i.e., the locus of points where H = 0) and loss of ellipticity (LOE) conditions will be dis-390

played in terms of the total equivalent plastic strain (or effective plastic strain) εpe =
∫

t

√

2(Dp
ij)

′(Dp
ij)

′/3 dt,391

with (Dp
ij)

′ denoting the plastic strain-rate deviator. In this work, the resistance of the material to failure392

by either condition will be referred to as the overall ductility. Furthermore, it should be emphasized, that as393

a consequence of the very small magnitude of the overall elastic strains, the difference between the overall394

total strain and the overall plastic strain is very small for all practical purposes. Finally, a parametric study395

will be carried out to investigate the influence of different matrix strain hardening exponents and initial396

porosities on the limit load and LOE maps.397

3.1. Material parameters and initial conditions398

The Young’s modulus and Poisson’s ratio of the matrix phase are taken to be E = 200GPa and ν = 0.3,399

respectively, and the matrix phase to exhibit isotropic strain hardening following the law2
400

σy(ε
p
M ) = σ0

(

1 +
εpM
ε0

)N

, ε0 = σ0/E. (19)401

2It should be noted here that any hardening law for the matrix phase involving temperature effects or different non-monotonic
strain hardening stages can be readily taken into account. However, the simple isotropic model will suffice for the purposes of
this work.
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In this expression, σ0 and ε0 denote the initial yield stress and yield strain of the matrix material (i.e., the402

material with f = 0), and N ≤ 1 is the strain hardening exponent. Typical values for these parameters403

are σ0 = 200MPa and N = 0.1, which will be used throughout this work except in section 3.4 where a404

parametric study is carried out with N = 0.01, 0.05, 0.1 and 0.2.405

The matrix phase is taken to be initially unloaded with zero accumulated plastic strain εpM = 0, while406

the voids are initially spherical with w1 = w2 = 1. The initial porosity is taken to be f0 = 1% except in407

section 3.4 where a parametric study is carried out with f0 = 0.1%, 1% and 5%. It should be noted that408

the dependence of the failure maps on the Young’s modulus, and Poisson’s ratio has been found to be weak,409

and for this reason no results will be reported here for different values of these parameters.410

3.2. Stress-strain response and microstructure evolution results411

In order to investigate the main effects of the stress triaxiality and Lode parameter on the effective412

response of the porous material, we show results for three representative values of stress triaxialities, XΣ =413

0.1, 0.6, 1, and four of the Lode parameter, L = −1,−0.5, 0, 1 (or Lode angle θ = 0, 20, 30, 60o, respectively).414

Fig. 5 shows plots of (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d)415

w2, as a function of the equivalent strain εe, for given values of the Lode parameter and a low value of the416

stress triaxiality (XΣ = 0.1). The main observation in Fig. 5a is that the Lode parameter strongly affects417

the onset of softening (i.e., maximum load) and localization of the porous material. For axisymmetric tensile418

loadings (L = −1), the stress increases following the prescribed strain hardening law of the matrix phase419

(N = 0.1 here). On the other hand, for L = −0.5, 0, and 1, we observe abrupt drops in σe at different levels420

of the total strain εe, indicating a sudden loss in the load-carrying capacity of the material. In addition, after421

the maximum stress σe (see inset graph in Fig. 5a) or limit load (black dot on the graph) strong softening422

of the material is observed eventually leading to localization and hence loss of ellipticity (open circle on the423

graph) of the homogenized equations.424

With the objective of shedding light on the mechanism leading to this sharp stress drop, it is necessary425

to consider the evolution of the microstructural variables, f , w1 and w2, provided in Figs. 5 (b), (c) and426

(d), respectively. In part (b), we observe an overall reduction in the porosity f as a function of εe up to the427

point of the limit load (black dot on the graph), followed by a sharp increase in f shortly after the maximum428

stress has been achieved. It is clear by Fig. 5b that at the strain level at which the limit load and loss of429

ellipticity occur, the porosity is still very small. Therefore, the corresponding stress drop observed in part430

(a) cannot be due to the increase in the porosity, and the only microstructural variables that can possibly431

affect the overall response of the porous material are the aspect ratios, w1 and w2. As shown in part (c), w1432

can become rather large for L = −1, but remains below the value of 5 for L > −0.5. On the other hand, as433

shown in part (d), w2 increases very fast for all values of L > −1. In particular, for L = 1 (corresponding434

to axisymmetric compression along the x2 direction, see Fig. 2a), w1 = 1, while w2 blows up at a certain435

“critical” value of εe (around 0.6). This means that the voids collapse in the x2 direction, becoming flattened436

cracks (lying in the x1−x3 plane) with a2 → 0, while the material becomes locally anisotropic (i.e., exhibits437

morphological anisotropy due to the very significant void shape changes). However, since the porosity f438

remains finite at this “critical” point where a2 → 0, a1 = a3 must tend to infinity, suggesting coalescence of439

the voids in the x1 − x3 plane.440

To clarify this failure mechanism further, it is recalled here that the aspect ratios serve to denote both441

the shape of the voids as well as the shape of their distribution function. Hence, as a2 → 0 and a1 = a3 → ∞442

both the shape of the voids and the shape of their distribution function become extremely flat in the x1−x3443

plane. This observation together with the fact that the porosity is small but finite, implies that the pores444

grow without a bound in the x1 − x3 plane, eventually linking up to form “layers” of pores in the solid445

material, which can be associated with void coalescence in that plane and subsequent loss of the load-446

carrying capacity of the material in the transverse direction. Such a failure mechanism would be consistent447

with the “flat” dimples observed in Fig. 1b from the experimental results of Barsoum and Faleskog (2007a)448

at low stress triaxialities. (Note, however, that the presence of the second-phase particles may interfere with449

the collapse of the voids, and should be accounted for in situations where the voids are not pre-existing, but450

instead nucleate from second-phase particles.) For other values of L with −1 < L < 1, essentially the same451

mechanism is observed except that in this case the pores also change shape in the collapse plane (x1 − x3).452
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Figure 5: Plots of the SOM estimates for (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c)
w1 and (d) w2 as a function of the equivalent strain εe, for a low value of the stress triaxiality (XΣ = 0.1) and four
values of the Lode parameter. The influence of the Lode parameter is dramatic at low triaxialities mainly due to the
extremely sharp evolution of the aspect ratio w2 in (d). The strain hardening exponent is N = 0.1 and the initial
porosity f0 = 1%. The inset in part (a) shows a blow up of the region around the maximum stress for L = −0.5 (or
θ = 20o).

However, as can be seen in Figs. 5a and d, the effect becomes more pronounced as the value of L increases453

from −1 toward +1. At the extreme value of L = −1, the shape of the pores is constrained to remain454

circular in the x1−x2 cross-section, and this kinematic restriction prevents collapse of the pores, explaining455

the lack of a maximum stress point and corresponding loss of ellipticity in this case.456

Fig. 6 shows plots of σe, f , w1 and w2 as a function of the equivalent strain εe, for several fixed values457

of the Lode parameter L and for a high value of the stress triaxiality (XΣ = 1). The main result is that458
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Figure 6: Plots of the SOM estimates for (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1

and (d) w2 as a function of the equivalent strain εe, for a high value of the stress triaxiality (XΣ = 1) and four values
of the Lode parameter. The influence of the Lode parameter becomes negligible in this case since the response of the
porous material is dominated by the significant evolution of porosity f . The strain hardening exponent is N = 0.1
and the initial porosity f0 = 1%.

the effect of the Lode parameter on the overall mechanical response of the porous material is negligible, as459

can be seen in Fig. 6a, since all the σe − εe curves almost coincide. In particular, they exhibit a limit load460

at rather low strains and then smooth but significant softening as the deformation progresses. Note further461

that for L = 1 no LOE (open circles on the plots) is detected. However, failure of the porous material is not462

excluded (see the significant drop of the material loading capacity). As already pointed out by Rice (1976),463

this type of localization analysis based on uniform fields only provides an upper bound for failure while the464

presence of more realistic geometries can lead to localization much earlier.465
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Figure 7: Plots of the SOM estimates for (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1

and (d) w2 as a function of the equivalent strain εe, for a moderate value of the stress triaxiality (XΣ = 0.6) and four
values of the Lode parameter. The influence of the Lode parameter is significant in this case of moderate triaxiality
indicating a transition mechanism from void collapse-dominated response for L = 1 to porosity-dominated response
for L ≤ 0. The strain hardening exponent is N = 0.1 and the initial porosity f0 = 1%.

The fact that the stress-strain curve is independent of the Lode parameter at XΣ = 1 is easily explained466

by referring to Fig. 6b, where the increase of porosity is significant for all values of the Lode parameter (L =467

−1,−0.5, 0, 1). In addition, looking at parts (c) and, especially, (d), we note that the void shape still evolves468

as a function of εe, but in a much weaker manner than for the previous case of XΣ = 0.1. This indicates that469

the main softening mechanism in this high-triaxiality situation (XΣ = 1) is clearly the evolution of porosity470

which is found to lead to significant softening of the effective response of the porous material. Note that this471

void-growth mechanism is expected to eventually lead to (three-dimensional) coalescence of the voids, and472
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failure consistent with the deep dimples observed in the micrographs shown in Fig. 1d from the experimental473

results of Barsoum and Faleskog (2007a). Also, it is clear that the dominance of the evolution of porosity will474

prevail at larger stress triaxialities XΣ > 1 not shown here (but see Danas and Ponte Castañeda (2009b)).475

Fig. 7 shows plots of σe, f , w1 and w2 as a function of the equivalent strain εe for several values of the476

Lode parameter (L = −1,−0.5, 0, 1) and a moderate value of the stress triaxiality (XΣ = 0.6). As can be477

observed in part (a), for L = −1,−0.5, 0, the stress curves reach a maximum (limit load) and then smoothly478

decrease, leading to overall softening for larger values of the strain εe. On the other hand, the L = 1 curve479

exhibits a sharp decrease of σe, albeit less dramatic than the corresponding one for XΣ = 0.1. Moreover, it480

is interesting to note that the limit load occurs at lower εe when L = −1 than when L = −0.5 or L = 0. In481

fact, as L increases to the value of 0, the critical strain εe at which the limit load occurs increases, whereas it482

decreases again as we increase further L toward the value of 1. This non-monotonic dependence on the Lode483

parameter L can be understood by considering the evolution of the microstructure shown in parts (b),(c)484

and (d) of Fig. 7. In Fig. 7b, the porosity increases for all values of L, with the weakest growth observed485

for L = 1 and the strongest for L = −1 (reaching relatively high values at this last case). In turn, in part486

(c), w1 increases similarly to the previous case of XΣ = 0.1. In Fig. 7d, considering L = −0.5, 0, we find487

that w2 does not exhibit the sharp increase observed in Fig. 5d for XΣ = 0.1 (for the same values of L).488

This explains the smooth softening (gentle decrease of σe) of the porous material observed in the curves of489

part (a), for L = −1,−0.5, and 0. By contrast, when L = 1, w2 increases sharply attaining very high values490

corresponding to void collapse, leading to a sharp drop of the stress (similar to the corresponding case for491

XΣ = 0.1). This example reveals that at moderate values of the stress triaxiality (e.g., XΣ = 0.6) there is492

a transition from softening induced by void growth for L = −1,−0.5 to failure induced by void collapse for493

L = 1, while for L = 0 the failure mechanism is a combination of both void shape and porosity effects.494

3.3. Limit load and loss of ellipticity failure curves495

The purpose of this section is to analyze and summarize the effect of the stress triaxiality and the496

Lode parameter on the limit load and LOE failure instabilities. For completeness, the predictions of the497

present “second-order” model (SOM) will be compared and contrasted with the corresponding predictions of498

the recently proposed phenomenological model of Nahshon and Hutchinson (2008), labeled here as MGUR,499

which is based on an empirical modification of the well-known Gurson (1977) model. The MGUR model500

requires the choice of the parameter kω (see expression (10) in the referenced publication for the definition501

of kω) which is directly related to the Lode parameter. For the identification of this parameter several502

experiments have been performed indicating a value of kω between 1 and 3. In our study, we make the503

choice kω = 2.5, without insisting on the quantitative aspects of the results, but rather on their qualitative504

nature.505

Figure 8 shows plots of the SOM and MGUR predictions for the critical equivalent plastic strain εpe506

attained at the limit load (i.e., the maximum in the σe − εe curve, or equivalently, the critical hardening507

rate H = 0), as a function of the stress triaxiality XΣ, for fixed values of the Lode parameter L (or Lode508

angle θ). As depicted in Fig. 8a, for fixed values of L, the SOM predictions clearly exhibit two regimes,509

a low-triaxiality regime where the material ductility increases with increasing triaxiality, followed by a510

second, high-triaxiality regime with the opposite trend. The two regimes are separated by a rather abrupt511

transition, or “high-ductility peak”, and as already pointed out, in the low-triaxiality regime, the source512

of the instability is void collapse, while in the second, it is void growth. In addition, the high-triaxiality513

regime is rather insensitive to the Lode parameter, while the low-triaxiality regime and the transition514

between the two is strongly dependent on the Lode parameter, with the ductility increasing from a value of515

L = +1 to the value of L = −1 (where no void collapse is possible and therefore no low-triaxiality regime is516

observed). In this connection, the predictions of the SOM model for failure at the limit load appear to be517

qualitatively consistent with the experimental results of Barsoum and Faleskog (2007a), presented in Fig.518

1a. Note, however, that in the results of Fig. 1a, the stress triaxiality evolves (and is non-uniform) during519

the deformation process as a consequence of the complex geometry of the experimental setup, and, hence,520

comparisons of the SOM results (which involve uniform fields and fixed triaxiality) with the experimental521

results of Barsoum and Faleskog (2007a) can only be qualitative in nature.522
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Figure 8: Limit load failure curves as predicted by (a) the SOM model and (b) the MGUR model with kω = 2.5, as a
function of the stress triaxiality XΣ and the Lode parameter L (or θ). The critical equivalent plastic strain εpe at the
limit load where the hardening rate H = 0 provides a “macroscopic” measure of the overall ductility of the material.
The strain hardening exponent is N = 0.1 and the initial porosity f0 = 1%.

By contrast, as shown in Fig. 8b, the MGUR model predictions exhibit qualitatively different behavior523

for the limit load failure curves. As expected from the way in which it was constructed, the limit load524

curves depend strongly on the Lode parameter, but in a manner that is monotonic with respect to the525

triaxiality and therefore does not exhibit the two different regimes and particularly the high-ductility peaks526

predicted by the SOM model and shown by the experimental results in Fig.1a. This significant difference527

found between these two models is clearly linked to the fact that the SOM model can account for void528

shape changes and therefore can capture the void collapse mechanism contrary to the MGUR model which529

assumes spherical void shapes during the entire deformation process. In addition, the MGUR predictions530

for the limit load exhibit a symmetry of θ = 30o, implying in particular that the limit loads for L = −1531

(corresponding to uniaxial tension) and L = 1 (biaxial tension with uniaxial compression) are identical. This532

result is a direct consequence of the ad-hoc quadratic character of the dependence of the MGUR model on533

the Lode parameter (see relation (4) in Nahshon and Hutchinson (2008)), and is in sharp contrast with the534

SOM model which, for low triaxiality, predicts low ductility for L = 1, but very high ductility for L = −1.535

It is also worth noting that the MGUR model predicts the existence of limit loads for negative values of536

the stress triaxialities. This is also in contrast with the the SOM model which predicts that the hardening537

produced by the porosity reduction with negative triaxialities completely overwhelms any softening due to538

changes in the shape of the voids, and therefore the material continues to harden all the way up to complete539

void closure.540

Figure 9 shows SOM and MGUR predictions for the critical equivalent plastic strain εpe at localization of541

the deformation, or loss of ellipticity (LOE), defined by condition (18), as functions of the stress triaxiality542

XΣ, for several values of the Lode parameter L (or Lode angle θ). As shown in Fig. 9a, the SOM predictions543

for LOE are roughly similar to those for the limit load depicted in Fig. 8a, and also exhibit two sharply544

separated regimes. However, in addition to the strong dependence in the Lode angle observed in the low-545

triaxiality regime, there is also some (smaller) sensitivity in the high-triaxiality regime with the ductility546

decreasing as the value of L is increased from −1. In fact, no LOE is detected for values of L > 0 and547

XΣ > 0.5− 0.7, but note that the stress drops to zero for sufficiently high deformation as a consequence of548
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Figure 9: Loss of ellipticity failure curves as predicted by (a) the SOM model and (b) the MGUR model with kω = 2.5,
as a function of the stress triaxiality XΣ and the Lode parameter L (or θ). The critical equivalent plastic strain εpe
at loss of ellipticity, with localization of deformation into dilatant shear bands taking place, provides an alternative
“macroscopic” measure of the overall ductility of the material. The strain hardening exponent is N = 0.1 and the
initial porosity f0 = 1%.

the continued porosity growth discussed in the previous section, while other well-known failure mechanisms549

such as high-triaxiality void coalescence are present (see review work of Benzerga and Leblond (2010)).550

On the other hand, as shown in Fig. 9b, the MGUR model predicts LOE only for values of L ≤ 0, while551

no LOE is detected for L > 0 (for all stress triaxialities XΣ). Furthermore, contrary to the corresponding552

SOM predictions, no LOE is detected for low triaxialities except for a small branch for L = 0. This is553

a direct consequence of the fact that the MGUR model remains isotropic during the entire deformation554

process as a result of no void shape changes, and therefore completely misses the morphological anisotropy555

developed due to the significant void shape evolution in the low-triaxiality regime. Finally, it is noted in the556

context of this figure that for the special values of L = 1 and −1, the MGUR model reduces to the Gurson557

model and note that the predictions for LOE for these two values are different (in one case there is LOE558

and in the other there is not), which in view of the identical predictions for the limit load for these two cases559

demonstrates the sensitivity of the LOE condition to the pertinent kinematical conditions.560

Finally, in Fig. 10, the earlier LOE results are completed by depicting the orientation of the localization561

band in terms of the angle ϕ that defines the orientation of the normal to the band n with respect to the x2562

axis (see inset sketches in the plots). The SOM and the MGUR results are shown in Fig. 10a and Fig. 10b,563

respectively, as a function of the stress triaxiality XΣ for several values of the Lode parameter L (or Lode564

angle θ). The complementary angle ϕg, associated with the vector g, which controls the type of deformation565

inside the band, is found to be ϕg = −ϕ for both the SOM and the MGUR models. Moreover, note that566

the normal to the band n, as predicted by both the SOM and the MGUR models, lies on the x2 − x3 plane.567

In particular, for the case when ϕ = −ϕg = 45o (i.e., n ⊥ g), the state of deformation inside the band is568

a simple shear and thus formation of a shear localization band is produced. This is the case for L ≥ 0 (or569

θ ≥ 30o) for the SOM model and L = 0 (or θ = 30o) for the MGUR model. Note that, in accord with570

the earlier discussions, the MGUR model predicts no loss of ellipticity for L > 0 and hence no angles are571

shown for these cases. On the other hand, for L < 0, we observe for both the SOM and the MGUR models572

that the predicted localization band angle is smaller than 45o and hence the state of deformation inside the573
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Figure 10: Orientation of the localization band defined by the angle ϕ as predicted by (a) the SOM model and (b)
the MGUR model with kω = 2.5, as a function of the stress triaxiality XΣ and the Lode parameter L (or θ). The
strain hardening exponent is N = 0.1 and the initial porosity f0 = 1%.

band is a combination of shear plus dilatation across the band (in the direction of the normal to the band).574

The lowest value for ϕ is attained in both models for L = −1, where the localization band is found to be at575

an angle of about 10o. It should be emphasized that at large triaxialities the SOM and the MGUR models576

predict very similar localization angles, highlighting once again the fact that the main difference between577

the models is for low triaxialities when changes in the shape of the pores become possible.578

3.4. Influence of strain hardening exponent and initial porosity on failure curves579

Making use of the SOM model, a parametric study is carried out to investigate the effect of the strain580

hardening exponent of the matrix phase and the initial porosity on the limit load and loss of ellipticity (LOE)581

failure curves. Thus, the following figures show plots of the critical equivalent plastic strain εpe attained at582

the limit load (i.e., maximum in the σe − εe curve, or equivalently critical hardening rate H = 0), and at583

loss of ellipticity (LOE), or localization of deformation (given by (18)), as functions of the stress triaxiality584

XΣ and the Lode parameter L (or Lode angle θ).585

Figure 11 shows limit load maps for (a) L = −1, (b) L = −0.5, (c) L = 0 and (d) L = 1 as a function of the586

stress triaxiality XΣ using different strain hardening exponents for the matrix phase, N = 0.01, 0.05, 0.1, 0.2.587

(Note that N = 0 andN = 1 correspond to ideally plastic and linear hardening behaviors. respectively.) The588

limit load failure curves are strongly dependent on N for moderate and high triaxialities such as XΣ > 0.4,589

as observed in all parts of Fig. 11. By contrast, at low stress triaxialities (XΣ < 0.35) and L > −1, i.e.,590

Fig. 11b,c,d, the limit load failure curves exhibit negligible dependence on the strain hardening exponent.591

This is due to the fact that at low XΣ, the limit load occurs in such an abrupt manner due to the very592

fast void shape changes (observed in the context of Fig. 5) that the hardening of the matrix plays almost593

no role on the overall softening mechanism of the porous material. On the other hand, as the triaxiality594

increases the growth of porosity dominates the limit load mechanism. The porosity growth however is595

rather smooth allowing the strain hardening exponent to play a dominant role on the overall softening of the596

material. In contrast, as shown in Fig. 12, the strain hardening exponent N has only a negligible effect on597

the LOE predictions. This suggests that once the material enters the softening regime, kinematics controls598

the localization mechanism and hence the effect of N is not important.599
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Figure 11: SOM limit load failure curves as a function of the stress triaxiality XΣ and the strain hardening exponent
N = 0.01, 0.05, 0.1, 0.2 for various values of the Lode parameter: (a) L = −1, (b) L = −0.5, (c) L = 0 and (d) L = 1.
The initial porosity f0 = 1%.

Fig. 13 shows the limit load failure curves as a function of the stress triaxiality XΣ for different initial600

porosities f0 = 0.1, 1, 5% and Lode parameters: (a) L = −1,(b) L = −0.5, (c) L = 0 and (d) L = 1.601

Overall, an effect is observed especially near the transition from the low- to the high-triaxiality regimes,602

which becomes less sharp with decreasing porosity. It should also be noted that higher initial porosities f0603

lead to a reduction in ductility, as determined by the limit load, except in the transition regime, where the604

opposite trend is observed. Finally, Fig. 14 presents LOE critical curves as a function of the stress triaxiality605

XΣ for different initial porosities f0 = 0.1, 1, and 5% and Lode parameters: (a) L = −1,(b) L = −0.5, (c)606

L = 0 and (d) L = 1. The effect of f0 on the LOE failure curves is non-negligible contrary to the effect607

of the strain hardening exponent N shown in Fig. 12. As observed here, higher initial porosity f0 leads to608
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lower critical strains for localization, at least for the range of porosities considered in this study.609
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Figure 13: SOM limit load failure curves as a function of the stress triaxiality XΣ and the initial porosity f0 = 0.1, 15%
for various values of the Lode parameter: (a) L = 1, (b) L = −0.5, (c) L = 0 and (d) L = 1. The strain hardening
exponent is N = 0.1.
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Figure 14: SOM loss of ellipticity failure curves as a function of the stress triaxiality XΣ and the initial porosity
f0 = 0.1, 15% for various values of the Lode parameter: (a) L = 1, (b) L = −0.5, (c) L = 0 and (d) L = 1. The
strain hardening exponent is N = 0.1.
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4. Conclusions and perspectives610

In this work, we have investigated the influence of the stress triaxiality and the Lode parameter on611

the failure of elasto-plastic porous materials subjected to macroscopically uniform, triaxial loadings. For612

this purpose, we have made use of a recently developed “second-order” nonlinear homogenization model613

(SOM) of Danas and Ponte Castañeda (2009a), which can account for the effects of void shape and porosity614

evolution on the overall softening/hardening response of the porous material. Material failure of the porous615

ductile solid has been modeled by means of two different macroscopic criteria: (i) vanishing of the overall616

hardening rate (H = 0), corresponding to the existence of limit load, or maximum stress in the constitutive617

response of the material, and (ii) loss of ellipticity of the incremental response of the material corresponding618

to localization of the deformation into dilatant shear bands due to the compressible overall response of the619

porous material (Rice, 1976).620

The main finding of this work is that failure can occur by two very different mechanisms at high- and621

low-triaxiality. In agreement with well-established results, at high triaxialities, the model predicts significant622

void growth leading to a softening effect which eventually overtakes the intrinsic strain hardening of the solid623

material and produces overall softening. Thus, a limit load is reached at a critical strain that decreases with624

increasing triaxiality and is found to be independent of the Lode parameter. This limit load point is then625

followed by a significant reduction in the load-carrying capacity of the material and loss of ellipticity (at626

least for negative values of the Lode parameter). On the other hand, at low triaxialities, the model predicts627

void collapse due to an abrupt flattening of the initially spherical voids with decreasing porosity, which628

in turn leads to a sharp drop in the load-carrying capacity of the porous solid. The precise value of the629

strain at the onset of the instability, which determines the overall ductility of the material, depends on630

the competition of the hardening produced by the reduction of the porosity and the softening due to the631

change in shape of the pores, and is highly sensitive to the value of the Lode parameter. Thus, for biaxial632

tension with axisymmetric compression (L = 1), the onset of the limit load instability, as well as the loss633

of ellipticity shortly thereafter, decreases as the triaxiality is reduced toward zero, while for axisymmetric634

tension (L = −1) no void collapse is possible and therefore no instability is observed for small values of635

the triaxiality. Moreover, for fixed, small values of the triaxiality (XΣ < 0.6), the ductility of the porous636

material decreases as the value of the Lode parameter increases from −1 to +1. In addition, a sharp637

transition is observed as the failure mechanism switches from void collapse to void growth for intermediate638

values of the stress triaxiality (0.3 < XΣ < 0.7), depending strongly on the value of the Lode parameter639

and leading to high-ductility peaks in the failure maps. In this regard, the theoretical predictions are found640

to be in qualitative agreement with recent experimental observations by Barsoum and Faleskog (2007a) and641

Dunand and Mohr (2010), even though it should be emphasized that the stress and deformation fields are642

not uniform and that the values of the triaxiality and Lode parameter are not controlled independently in643

these experiments. In this sense, the theoretical predictions presented in this work suggest the critical need644

for new experiments with improved control over the uniformity of the stress and strain fields, as well as the645

loading conditions.646

The predictions of the second-order model have been compared with the corresponding results of the ad647

hoc modification of the Gurson model, MGUR, proposed by Nahshon and Hutchinson (2008), and significant648

differences have been identified. First and foremost, the MGUR model cannot capture void collapse, because649

the voids are assumed to remain spherical throughout the deformation. Because of this, while it is possible650

to artificially soften the material response by introducing a dependence on the Lode angle, the failure curves651

still increase with decreasing triaxiality into the negative triaxiality regime. In addition, in contrast with the652

second-order predictions, the effect of the Lode parameter on the maximum load is symmetric with respect653

to the sign of the Lode angle, and does not lead to loss of ellipticity for most values of the Lode parameter654

in the low-triaxiality regime. In this connection, it is important to emphasize that the relevance of the Lode655

angle is not so much through its direct effect on the macroscopic yield surface, which is relatively small, but656

instead through its much more significant implications for the evolution of the microstructure, especially657

when changes in the shape of the voids are allowed. Indeed, this ability to account for the very different658

and generally strongly anisotropic evolution of the microstructure of the material at fixed, low values of the659

stress triaxiality, but with different Lode parameters ranging from axisymmetric tension (L = +1) to biaxial660
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tension with axisymmetric compression (L = −1), is the main advantage of the SOM model over the models661

of Gurson (1977), Nahshon and Hutchinson (2008) and Nielsen and Tvergaard (2010).662

For completeness, the SOM model has also been used to investigate the possible effects of the matrix663

strain-hardening exponent N and the initial porosity f0. We have found that the strain-hardening exponent664

N has a significant effect on the limit load for stress triaxialities XΣ > 0.4, and consequently the location665

of the transition from the void collapse to the void growth mechanisms. In contrast, it has only a negligible666

effect on the limit load at low stress triaxialities, due to the abruptness of the void collapse mechanism in667

this case, leading to strong material softening. On the other hand, the strain hardening exponent affects668

only slightly the loss of ellipticity curves. In turn, different initial porosities f0 have an effect on both the669

limit load and loss of ellipticity failure curves. Higher initial porosities lead, in general, to lower critical670

strains for the limit load and loss of ellipticity, except for the limit load curves in the transition region671

(0.4 < XΣ < 0.6), where the opposite trend is observed.672

It should also be emphasized that this work deals only with instabilities at the material level and that no673

actual macroscopic geometries have been considered. Nonetheless, the instability results obtained assuming674

that macroscopically uniform fields are present in a given specimen should correspond to “material instabili-675

ties,” and provide a loose upper bound for the resistance of the material to ductile failure under more general676

loading conditions (Rice, 1976). In this connection, it is also relevant to mention that the three-dimensional677

studies of Barsoum and Faleskog (2007b, 2011) and the corresponding two-dimensional studies of Tvergaard678

(2009) in two-dimensions, seem to suggest that void rotations may somehow be necessary for low-triaxiality679

failure. However, the results of the present work for triaxial loading conditions (with fixed loading axes)680

show that while void rotations may enhance (or reduce) the ductility of the material, void rotations are not681

strictly necessary for material instabilities (of the maximum load, or loss of ellipticity type) at low-triaxiality,682

since the basic micro-mechanism of void collapse does not require them. In any event, void rotations can683

easily be handled by the general version of the SOM model (Danas and Ponte Castañeda, 2009a), and this684

will be pursued in future work. Interestingly, Kailasam and Ponte Castañeda (1997) have shown (refer685

to Fig. 2 in that reference) using an earlier version of the model (Ponte Castañeda and Zaidman, 1994;686

Kailasam and Ponte Castañeda, 1998) that the effective hardening rate of a porous rigid-plastic material687

subjected to simple shear can become zero as a consequence of the combined effects of the changes in shapes688

and orientation of the voids.689

It should also be remarked that the larger issue of how to proceed after (local) loss of ellipticity690

in the analysis of an actual structural problem is still a largely open issue. However, it is clear that691

more general and reliable models, as well as estimates for their loss of ellipticity, are essential for further692

progress, as are finite element implementations of such models in order to be able to handle the non-uniform693

fields that would be expected to develop under actual experimental conditions. In this latter connection,694

it should be mentioned that such implementations are already available (see Kailasam et al. (2000) and695

Aravas and Ponte Castañeda (2004)) for the earlier “variational” framework of Ponte Castañeda and Zaidman696

(1994). In addition, a numerical implementation of an improved version of the“variational” framework,697

which provides more accurate results for both low and high stress triaxialities has been developed—and im-698

plemented for three-dimensional experimental geometries—recently by Danas and Aravas (in preparation).699

As a final remark, it should be mentioned that an additional advantage in the use of a homogeniza-700

tion approach for porous and other heterogeneous solids is its generality. Thus, for example, the effect701

of anisotropy in the matrix can be accounted for in a straightforward fashion by treating this phase as702

a polycrystalline aggregate and using the second-order homogenization method (Liu and Ponte Castañeda,703

2004) consistently to estimate the overall response including both the effects of porosity and crystallographic704

texture. A first step in this direction is presented in the recent work of Lebensohn et al. (2011), which opens705

up the possibility of modeling the simultaneous effects of porosity and texture evolution on the overall re-706

sponse and stability of porous polycrystalline solids, which is expected to be especially important for porous707

low-symmetry metals, such as porous Ti and Mg alloys.708

It is also relevant to mention in this connection that the second-order homogenization method has been709

used successfully to estimate loss of ellipticity in porous elastomers (Lopez Pamies and Ponte Castañeda,710

2007a; 2007b). Although the failure maps are very different for this case, comparisons with careful numerical711

calculations (Michel et al., 2007) show that the model indeed has the capability of capturing not only the712
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overall macroscopic behavior, but also the possible onset of “macroscopic” instabilities, such as loss of713

ellipticity (Geymonat et al., 1993).714
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Danas, K., Idiart, M.I., Ponte Castañeda, P., 2008a. Homogenization-based constitutive model for two-dimensional viscoplastic745

porous media. C. R. Mecanique 336, 79-90.746
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