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Abstract. This study concerns the problem of the reconstruction of inclusions

embedded in a conductive medium in the context of Electrical Impedance Tomography

(EIT), which is investigated within the framework of a non-iterative sampling approach.

This type of identification strategy relies on the construction of a special indicator

function that takes, roughly speaking, small values outside the inclusion and large

values inside. Such a function is constructed in this article from the projection

of a fundamental singular solution onto the space spanned by the singular vectors

associated with some of the smallest singular values of the data-to-measurement

operator. An introductory overlook to the forward and inverse conductivity problems

is followed by the exposition of the so-called Picard criterion as a characterization

of the range of the relative Neumann-to-Dirichlet operator. The construction of the

novel indicator function based on the noise subspace projection is then introduced

and its behavior analysed. For a subsequent implementation in a discrete setting, the

quality of classical finite-dimensional approximations of the measurement operator is

discussed. The robustness of this approach is also analyzed when only noisy spectral

information is available. Finally, this identification method is implemented numerically

and experimentally, and its efficiency is discussed on a set of examples.

Keywords: Electrical impedance tomography, noise subspace, sampling method.

1. Introduction

Electrical Impedance Tomography (EIT) is an imaging technique for the reconstruction

of objects embedded in a given conductive background medium Ω. Applications range

over a broad spectrum such as non-destructive material testing or tumor detection in

medical imaging. This approach aims at determining the internal electrical conductivity

map γ of the perturbed domain considered from boundary measurements of a current

f and the associated electric potential u. These measurements represent respectively
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the Neumann and Dirichlet boundary data of the corresponding problem of diffusion.

This inverse problem appears to be mathematically ill-posed [1], and its resolution

generally requires the knowledge of boundary data (provided by the measurements)

that are “overdetermined” relative to what is normally necessary for solving a well-

posed forward (i.e. direct) problem. The Neumann-to-Dirichlet operator Λγ : f 7→ u|∂Ω

is linear, however the operator that maps γ 7→ Λγ is non-linear and it turns out that the

inverse conductivity problem is severely ill-posed. Indeed, in a general configuration,

given two distributions γ, γ′ ∈ H2+s(Ω) with s > d/2 in dimension d = 2, 3, the standard

logarithmic stability result [2] holds and it is expressed in terms of the corresponding

Dirichlet-to-Neumann operators as

‖γ − γ′‖L∞(Ω) ≤ β | log‖Λ−1
γ − Λ−1

γ′ ‖H1/2(∂Ω)→H−1/2(∂Ω)|
−α,

where α and β are positive constants and Λ−1
γ,γ′ denotes, by abuse of notation, the

Dirichlet-to-Neumann operator. However, for piecewise-constant scalar distributions

of the conductivity over a bounded number of known disjoint Lipschitz domains but

involving unknown real values, the previous estimate is significantly improved since the

stability is now of Lipschitz-type [3]

‖γ − γ′‖L∞(Ω) ≤ β‖Λ−1
γ − Λ−1

γ′ ‖H1/2(∂Ω)→H−1/2(∂Ω).

Thus, this class of problems generally entails non-uniqueness, ill-conditioning or lack of

stability towards the input data. In such situations, linearization techniques are often

too restrictive, either in the context of physical configurations they can accommodate

or the information they can provide. Moreover, the minimization-based approaches

that exploit the data through a misfit cost function and have a potential of overcoming

the latter restrictions unfortunately bear significant computational cost associated with

repeated solutions to the forward problem. Traditional gradient-based optimization is a

computationally reasonable alternative for solving the featured class of inverse problems,

however, their performance depends on choosing adequately the initial guess (location,

geometry, conductivity) of the hidden objects. For an overview on the subject one can

refer to the review articles [4, 5, 6] and the references therein.

Over the past two decades, the above considerations led to the paradigm shift

in mathematical theories of inverse problems that have, to a large degree, focused

on the development of the so-called qualitative methods for non-iterative object

reconstruction from remote measurements (see e.g. [7] in the context of inverse

scattering). These techniques, which provide a powerful alternative to the customary

minimization approaches and linearization approximations, are commonly centered

around the construction of an indicator function, that depends on an interior sampling

point. Such indicator function is normally designed to reach extreme values when the

sampling point belongs to the support of the hidden flaw (or the set thereof), thereby

providing a computationally-effective platform for geometric defect reconstruction.

Among the diverse field of methods using approaches that can be classified as probe

or sampling techniques [8] one may mention the so-called factorization method [9], the

probe method and the point source method [10, 11], the topological sensitivity approach
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[12, 13] and the MUltiple SIgnal Classification (MUSIC) algorithm [14, 15] among the

most prominent examples.

The approach adopted in the present study is based on the non-iterative method

initially proposed in [16] and [17, 18, 19] for the inverse conductivity problem, and which

has been generalized in a variety of models [20, 7]. This method can be considered as

a generalization of the MUSIC algorithm in [21] and it is strongly connected with the

factorization method presented in [22, 23, 24, 25, 26] for EIT. Its interest lies in the

fact that it avoids the issue of the non-linearity and it does not require any a priori

information on the topology or the conductivity of the hidden object(s). Based on the

resolution of a linear equation that features a singular solution to the diffusion equation,

this approach allows to detect the geometrical support of the inclusions in a non-iterative

framework. The aim of the present study is the proposition of a robust convergence

criterion in order to characterize the range of the compact linear operator related to the

above mentioned integral equation. By making use of the projection onto the associated

noise subspace, this approach constitutes an alternative to the commonly used Picard

series convergence criterion to characterize the operator range. This reconstruction

scheme has to be related to the recent original proposition made in the article [27] for

inverse scattering and which has been justified in [28] as a generalization of the MUSIC

algorithm to extended objects. A comparable approach has also been successfully

implemented numerically in [29] for inverse scattering problems in electromagnetism.

In the MUSIC algorithm, a multi-static response matrix is computed and an indicator

function is derived from the projection of a given fundamental singular test function

onto its nullspace. In the present study, a similar argument is used by replacing the

projection onto the range of the operator synthesizing the measurements, which is

commonly associated with the Picard criterion, by a projection onto the space spanned

by some of the singular vectors corresponding to small singular values. Moreover, one

can mention that the approach proposed is not restricted to any particular geometry

like circular domains on which most of the previous studies on the subject have focused.

The article is organized as follows. An overlook to the forward and inverse

conductivity problem is given in Section 2 with an emphasis on the MUSIC algorithm for

infinitesimal inclusions and its extension to larger inhomogeneities by the factorization

method. The convergence of the Picard series is discussed in this latter context. In

Section 3 the projection of an appropriate test function in the noise subspace of the

measurement operator is introduced and the new criterion is constructed and discussed.

In connection with practical problems which involve discrete measurements, the quality

of common finite-dimensional approximations of the Neumann-to-Dirichlet operator is

evaluated in Section 4. Finally, the Section 5 presents a set of numerical results, that

feature both synthetic and experimental data, to assess for the efficiency and robustness

of a reconstruction scheme that employs the aforementioned criterion.
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2. Inverse conductivity problem

2.1. Preliminaries

Let Ω ⊂ R
d, d = 2, 3, denote a bounded and connected background domain, with

Lipschitz boundary ∂Ω and unit reference conductivity. Consider a finite union I =⋃K
j=1 Ωj of disjoint inclusions Ωj ⊂ Ω such that Ω\I is connected, with corresponding

real-valued conductivities γj ∈ L∞(Ω,R), j = 1, . . . , K. One defines the scalar

conductivity map as

γ(ξ) =

{
1 if ξ ∈ Ω \ I
γj(ξ) if ξ ∈ Ωj, j = 1, . . . , K.

(1)

For simplicity we further assume that 0 < c ≤ γj < 1. This assumption could be

changed into 1 < γj ≤ C (compare Remark 1).

Applying a current distribution f ∈ L2(∂Ω) which verifies
∫

∂Ω
f dS = 0, the

potential u that arises in Ω is solution of the following problem with imposed Neumann

condition

∇ · (γ∇u) = 0 in Ω (2)

(γ∇u) · n = f on ∂Ω, (3)

where n is the outward unit normal on the boundary ∂Ω. On using the normalization∫
∂Ω
u dS = 0 then the solution u of the diffusion equation (3) is unique.

On introducing the Sobolev space H1
⋄ (Ω) =

{
ϕ ∈ H1(Ω) :

∫
∂Ω
ϕ dS = 0

}
, the boundary

value problem (3) is now interpreted in a variational sense: We seek u ∈ H1
⋄ (Ω) such

that ∫

Ω

γ∇u · ∇ϕ dV =

∫

∂Ω

fϕ dS ∀ϕ ∈ H1
⋄ (Ω). (4)

Existence and uniqueness of solution follow from a Poincaré inequality and the Lax-

Milgram lemma. Then, on noting L2
⋄(∂Ω) =

{
ϕ ∈ L2(∂Ω) :

∫
∂Ω
ϕ dS = 0

}
, one

introduces the Neumann-to-Dirichlet (NtD) map as Λ : L2
⋄(∂Ω) → L2

⋄(∂Ω) such that

Λf = u|∂Ω where u ∈ H1
⋄ (Ω) solves (4), together with its counterpart Λ1 : L2

⋄(∂Ω) →
L2
⋄(∂Ω) defined by Λ1f = u1|∂Ω where u1 ∈ H1

⋄ (Ω) is solution of
∫

Ω

∇u1 · ∇ϕ dV =

∫

∂Ω

fϕ dS ∀ϕ ∈ H1
⋄ (Ω). (5)

which corresponds to the reference problem where the conductivity γ is set to the unit

background value everywhere in Ω, i.e. with γj = 1 for j = 1, . . . , K. The NtD maps

are bounded when acting on H−1/2

⋄ (∂Ω) into H1/2

⋄ (∂Ω), with the subscript ⋄ indicating a

mean-free property over ∂Ω, and they are compact operators on L2
⋄(∂Ω). Finally, denote

the measurement operator, or the relative NtD map, as Π = Λ − Λ1.

The electrical impedance tomography consists in determining the conductivities γj

from Π. It has been proved in [30, 31, 32, 33] that it is possible to reconstruct exactly

the distribution of conductivity γ within the domain Ω considered from the knowledge of

the complete, i.e. infinite dimensional, Neumann-to-Dirichlet operator. Experimentally,
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on using M ∈ N currents densities fm ∈ L2
⋄(∂Ω) applied on ∂Ω with the corresponding

um ∈ H1
⋄ (Ω) solutions of the problem (4), and u1m ∈ H1

⋄ (Ω) in the homogeneous case

(5), the data accessible to measurement are then the traces on ∂Ω of these potentials.

From the corresponding measured voltage densities um|∂Ω and u1m|∂Ω for m = 1, . . . ,M ,

one can finally form the discretized relative NtD operator Π̃M which will be analyzed in

detail in Section 4.

2.2. Non-iterative sampling approach

This paper investigates a non-iterative sampling approach which aims at reconstructing

geometrically the unknown set I of inclusions by extracting the information synthesized

in the measurement operator. To do so, the idea is to probe the range of the relative

NtD operator with a fundamental solution of the diffusion equation in Ω which exhibits

a singular behavior at a chosen sampling point z ∈ Ω as z varies over the domain of

interest.

The operator Π is self-adjoint and compact [1], therefore there exists an eigensystem

{λj, ψj} with positive eigenvalues λj sorted here in decreasing order and eigenfunctions

ψj ∈ L2
⋄(∂Ω) for j ∈ N, such that for f ∈ L2

⋄(∂Ω)

Πf =
∞∑

j=1

λj(f, ψj)L2(∂Ω)ψj. (6)

2.2.1. Infinitesimal inhomogeneities First, consider the case where the inclusions are

characterized by the common scaling parameter ε > 0, i.e. Ωj ≡ Ωε
j = zj + εΩ̂j with

the centers zj of the inhomogeneities and their normalized shapes Ω̂j for j = 1, . . . , K.

Let Λ ≡ Λε denote the corresponding Neumann-to-Dirichlet map. Then, in the limit

ε→ 0, it has been proved in [34, 19] that the relative NtD operator Π ≡ Πε = Λε − Λ1

converges to a finite-rank operator Π̂ in the operator norm of L(L2
⋄(∂Ω), L2

⋄(∂Ω)) as

‖Πε − εdΠ̂‖L2
⋄(∂Ω)→L2

⋄(∂Ω) = O(εd+ 1

2 ).

Moreover, let N(·, z) denote the Green’s function for the Laplace operator in Ω

with respect to Neumann boundary conditions, i.e. the function N(·, z) such that∫
∂Ω
N(·, z) dS = 0 and which solves

∇ξ · ∇ξN(ξ, z) = −δ(ξ − z) in Ω (7)

∇ξN(ξ, z) · n(ξ) = − 1

|∂Ω| on ∂Ω, (8)

for a point z ∈ Ω and where δ is the Dirac delta function and the subscript ξ indicates

spatial derivatives w.r.t. this variable. Then the range of Π̂ is given by

R(Π̂) = span{ek · ∇zN(·, zj), k = 1, . . . , d ; j = 1, . . . , K}, (9)

where the vectors ek, k = 1, . . . , d, constitute an orthonormal basis of R
d. From the

identity (9), the operator Π̂ has maximal rank dK. On introducing an eigensystem
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{λ̂j, ψ̂j} of Π̂ for j = 1, . . . , dK, and λ̂j = 0 for j > dK, the following convergence result

holds (see [19]) in terms of eigenvalues

λj ≡ λε
j = εdλ̂j + O(εd+ 1

2 ).

Given m ≤ dK, the orthogonal projection onto the set of the m first eigenfunctions

ψj ≡ ψε
j of Πε is also an approximation at the order ε1/2 of the projector generated by

ψ̂j for 1 ≤ j ≤ m.

The main result for imaging purposes revolves around the characterization of the

point-like inhomogeneities at zj by establishing the relationship between the range of

the operator Π̂ and the traces on the boundary ∂Ω of dipoles located near the true

inhomogeneities. In order to state such a relation, let Gz,d = d ·∇zN(·, z) denote a test

function expressed in terms of a given arbitrary unit vector d ∈ R
d and the Neumann

function N(·, z). From the definition (8) of the latter, one finds that the field Gz,d

is harmonic in Ω\{z} with homogeneous Neumann boundary condition on ∂Ω and it

verifies
∫

∂Ω
Gz,d dS = 0. Moreover this solution has a singularity at the point z. Now,

the characterization is given by the following proposition proved in [19].

Theorem 1. For any d ∈ R
d\{0} and z ∈ Ω, consider the trace gz,d = Gz,d|∂Ω of the

test function Gz,d = d · ∇zN(·, z), then z ∈ {z1, . . . ,zK} if and only if gz,d ∈ R(Π̂).

The Theorem 1 constitutes the key result for the justification of the MUSIC

algorithm for the reconstruction of point-like inhomogeneities. In this approach,

a discrete version of the operator Π̂, the so-called multi-static response matrix, is

computed from a finite number of imposed currents and measured voltages on the

boundary of the domain. Then, from the singular value decomposition of this matrix,

the vectorized version of the test function gz,d is projected unto the noise subspace which

is the orthogonal complement of the space spanned by the eigenfunctions associated with

the significant eigenvalues. The norm of this projection is then expected to be small

when z ∈ {z1, . . . ,zK} and large everywhere else, a feature which can then be used as

an indicator function as z varies over a domain of interest.

2.2.2. Extended inclusions The previous approach can be transposed to the case

of extended inhomogeneities using the method introduced in [18] and implemented

numerically in [17]. In this reconstruction algorithm, a suitable factorization of the

operator Π plays a central role. Key results are stated hereafter and reference to [1] can

be made for detailed proofs.

Defining the contrast q < 0 by γ = 1 + q, then for f ∈ L2
⋄(∂Ω), one has that

Πf = (Λ − Λ1)f = (u− u1)|∂Ω with u and u1 verifying
∫

Ω

(1 + q)∇(u− u1) ·∇ϕ dV = −
∫

I

q∇u1 ·∇ϕ dV ∀ϕ ∈ H1
⋄ (Ω), (10)

owing to the equations (4) and (5). Moreover, let L2(I)d denote the space of the

vector-valued functions in I whose components are in L2(I), and define the operators
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A : L2
⋄(∂Ω) → L2(I)d by Af = ∇u1|I where u1 solves (5), together with T : L2(I)d →

L2(I)d such that Th = q(∇w − h) with w ∈ H1
⋄ (Ω) solution of

∫

Ω

(1 + q)∇w · ∇ϕ dV =

∫

I

qh · ∇ϕ dV ∀ϕ ∈ H1
⋄ (Ω). (11)

Notably, the adjoint operator of A is given by A∗ : L2(I)d → L2
⋄(∂Ω) with A∗h = v|∂Ω

such that v ∈ H1
⋄ (Ω) solves the equation
∫

Ω

∇v · ∇ϕ dV =

∫

I

h · ∇ϕ dV ∀ϕ ∈ H1
⋄ (Ω). (12)

Remark 1. The operator A is compact and T is self-adjoint and coercive when q < 0.

In the case where the conductivity (1) is such that γj > 1 then q = γ − 1 > 0 and the

operator T has to be defined by Th = q(h − ∇w) with w verifying (11) to recover the

coercivity.

From (10) one obtains the following key relationship (see [1])

Proposition 1. Consider the operators A and T defined as above, then the relative

Neumann-to-Dirichlet operator can be factorized as Π = A∗TA. Moreover, the ranges

of Π1/2 and A∗ coincide, i.e. R(Π1/2) = R(A∗).

From the characterization (12) of the adjoint operator A∗, the above proposition

entails that the range of the operator Π1/2 consists of these functions that are harmonic

in Ω\I and have homogeneous Neumann boundary conditions on ∂Ω. Then, since the

test function Gz,d is such a function if the sampling point z belongs to the support I
of the inhomogeneities, the associated current density gz,d on the domain boundary ∂Ω

verifies the following theorem (see [18])

Theorem 2. Given d ∈ R
d\{0} and z ∈ Ω, then the trace gz,d = Gz,d|∂Ω of the test

function Gz,d = d · ∇zN(·, z) is such that z ∈ I if and only if gz,d ∈ R(Π1/2).

This is the key theorem on which the Factorization method in the context of EIT

is based on, and it extends the results previously given in the context of point-like

inhomogeneities.

From the spectral decomposition (6) of the compact and self-adjoint operator Π,

one has for f ∈ L2
⋄(∂Ω)

Π1/2f =
∞∑

j=1

λj
1/2(f, ψj)L2(∂Ω)ψj,

from which one can conclude that a given g ∈ L2
⋄(∂Ω) verifies g ∈ R(Π1/2) if and

only if the series
∑∞

j=1 λj
−1/2(g, ψj)L2(∂Ω)ψj converges in L2

⋄(∂Ω). This property can be

characterized by the well-known Picard criterion, that has been successfully employed in

a number of studies to identify the geometrical support of the hidden inclusion(s). This

criterion is summarized by the following corollary derived from the Theorem 2 which

enables a practical reconstruction approach
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Corollary 1. For d ∈ R
d\{0} and z ∈ Ω, then z ∈ I if and only if the series

∞∑

j=1

|(gz,d, ψj)L2(∂Ω)|2
λj

converges.

The Theorem 2 and its Corollary 1 allow to reconstruct the topology and geometry

of the inclusion set I by providing a point-by-point binary criterion if one is able to

characterize the possible “blow-up” of the above series for the points z that lie outside

of the support of the inclusion, i.e. lying in the domain Ω \ I.

3. Noise subspace projection approach

In this section, a non-iterative sampling approach based on the projection of the test

function gz,d on the noise subspace of the operator Π is presented. This approach

finds its roots in the recent mathematical justification of the MUSIC algorithm for

the reconstruction of extended objects in inverse scattering problems [27, 28]. In

this context, the so-called signal subspace coincides with the space spanned by the

eigenfunctions associated with the largest eigenvalues of the data-to-measurement

operator, classically the finite-dimensional multi-static response matrix. In particular,

given δ > 0 and Mδ such that any j > Mδ verifies λj ≤ δ, this space denoted as Sδ is

defined by Sδ = span{ψj, j = 1, . . . ,Mδ}. Then the noise subspace is the orthogonal

complement Nδ = Sδ
⊥, i.e. Nδ = span{ψj, j ≥Mδ + 1}.

The aim of this section is to show that it is possible to construct an element which

belongs to the noise-subspace of the relative NtD operator and such that its inner

product with the test function gz,d is arbitrarily small when the sampling point z lies

inside I and large when z ∈ Ω\I. Let M∗, M
∗ ∈ N such that M∗ > M∗ > 0 and define

the density hM∗,M∗

z,d by

hM∗,M∗

z,d =
M∗∑

j=M∗

(gz,d, ψj)L2(∂Ω)

λj
1/2

ψj, (13)

together with the function ĥM∗,M∗

z,d such that

ĥM∗,M∗

z,d = ‖hM∗,M∗

z,d ‖−1
L2(∂Ω)

M∗∑

j=M∗

(gz,d, ψj)L2(∂Ω)

λj

ψj. (14)

Remark 2. On introducing PM∗,M∗ : L2
⋄(∂Ω) → L2

⋄(∂Ω) the orthogonal projection onto

the space spanned by the eigenfunctions ψj for j = M∗, . . . ,M
∗,

PM∗,M∗f =
M∗∑

j=M∗

(f, ψj)L2(∂Ω)ψj, f ∈ L2
⋄(∂Ω),

then, from the definition (13), one has Π1/2hM∗,M∗

z,d = PM∗,M∗gz,d.

Given a threshold value δ > 0 representing the level above which the eigenvalues λj can

be measured with a satisfying precision, then if M∗ is sufficiently large one has

span{ψj, j = M∗, . . . ,M
∗} ⊂ Nδ,
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and thus, by construction, the function ĥM∗,M∗

z,d (14) belongs to the noise subspace of the

Neumann-to-Dirichlet operator.

Now, let G : L2
⋄(∂Ω) → L2(Ω) be defined for d ∈ R

d\{0} as

[G h](x) = (h, gx,d)L2(∂Ω), (15)

with x ∈ Ω, then on noting B(z, α) the open ball of center z and radius α > 0, the

following key result holds

Theorem 3. Let ε > 0 and d ∈ R
d\{0}.

(a) For x ∈ I, there exist M∗, M
∗ ∈ N with M∗ > M∗ > 0, such that

|[G ĥM∗,M∗

z,d ](x)| < ε if z ∈ Ω.

(b) For z ∈ Ω\I, there exist M∗, M
∗ ∈ N with M∗ > M∗ > 0 and α > 0, such that

|[G ĥM∗,M∗

z,d ](x)| > 1

ε
if x ∈ B(z, α).

If in (a) x belongs to a compact subset of I, or if in (b) z belongs to a compact subset

of Ω\I, then one can choose M∗, M
∗ ∈ N with M∗ > M∗ > 0 uniformly with respect of

x and z, respectively.

Proof. From the definition (15) one has for x, z ∈ Ω

|[G ĥM∗,M∗

z,d ](x)| ≤ ‖hM∗,M∗

z,d ‖−1
L2(∂Ω)

M∗∑

j=M∗

1

λj

|(gz,d, ψj)L2(∂Ω)(gx,d, ψj)L2(∂Ω)|, (16)

and thus the Cauchy-Schwarz inequality and the definition (13) yield

|[G ĥM∗,M∗

z,d ](x)| ≤
(

M∗∑

j=M∗

|(gx,d, ψj)L2(∂Ω)|2
λj

)1/2

= ‖hM∗,M∗

x,d ‖L2(∂Ω).

(a) Let hM∗,∞
x,d = limM∗→∞ hM∗,M∗

x,d , then the previous inequality together with the

Corollary 1 entails that if x ∈ I the sequence M∗ 7→ ‖hM∗,∞
x,d ‖L2(∂Ω) is bounded and

‖hM∗,∞
x,d ‖L2(∂Ω) → 0 when M∗ → ∞. Thus, M∗ sufficiently large yields the desired

inequality.

(b) Alternatively, if x = z then

|[G ĥM∗,M∗

z,d ](z)| = ‖hM∗,M∗

z,d ‖L2(∂Ω), (17)

and when z ∈ Ω\I, from the Cororally 1, one has that ‖hM∗,M∗

z,d ‖L2(∂Ω) → ∞ asM∗ → ∞.

Then the second inequality can be verified for an appropriate choice of the parameter

M∗ and owing to the continuity of [G ĥM∗,M∗

z,d ](x) in z and x.

In case (a) the convergence ‖hM∗,∞
x,d ‖L2(∂Ω) → 0 when M∗ → ∞ is monotonic in M∗,

and in case (b) the convergence 1/‖hM∗,M∗

z,d ‖L2(∂Ω) → 0 as M∗ → ∞ is monotonic in M∗.

Hence, the two limits are uniform in x and z on compact sets due to Dini’s theorem.

In case (b) one can also choose the radius α uniformly in z on compact sets.
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From the definition (8) of the Green’s function N(·,x), the solution u1 to the

Laplace equation in Ω verifying (5) but with imposed Neumann boundary condition

h̄ ∈ L2
⋄(∂Ω), is given by

u1(x) =

∫

∂Ω

N(ξ,x)h̄(ξ) dS. (18)

Moreover, since the equation (15) can be recast in

[Gh](x) =

∫

∂Ω

d · ∇xN(ξ,x)h(ξ) dS,

for any d ∈ R
d\{0} and z ∈ Ω, one finally obtains that [Gh](x) = d · ∇u1(x) where

u1 is the solution (18). Therefore the Theorem 3 implies that, if the current density

ĥM∗,M∗

z,d is applied on the boundary ∂Ω of the domain, then the perturbation due to

the inclusions is negligible as ĥM∗,M∗

z,d belongs to the noise subspace of the operator Π.

Moreover, the corresponding solution potential u1 in the reference configuration is such

that |d · ∇u1(x)| < ε for the vector d ∈ R
d\{0} and at any point x ∈ I, while this

current density does not vanish in Ω\I. The physical interpretation is that this potential

in Ω is characterized by current streamlines nearly orthogonal to the chosen direction

d in the inclusions Ωj. The idea of constructing non-interacting excitations that can

avoid some objects while illuminating some other parts of the domain has emerged in

[27] where the notion of non-scattering waves was introduced.

From the Theorem 3 and the identity (17), the norm of hM∗,M∗

z,d given by

‖hM∗,M∗

z,d ‖2
L2(∂Ω) =

M∗∑

j=M∗

|(gz,d, ψj)L2(∂Ω)|2
λj

, (19)

immediately verifies the following characterization

Corollary 2. For ε > 0, d ∈ R
d\{0} and compact subsets KI ⊂ I and KΩ\I ⊂ Ω \ I,

there exist M∗, M
∗ ∈ N with M∗ > M∗ > 0, such that

‖hM∗,M∗

z,d ‖2
L2(∂Ω) < ε if z ∈ KI and ‖hM∗,M∗

z,d ‖2
L2(∂Ω) >

1

ε
if z ∈ KΩ\I .

4. Finite-dimensional approximations of NtD operators

4.1. Error estimates

In numerical examples and when dealing with real measurements, the full Neumann-

to-Dirichlet operator Π is never at hand. To this end we investigate in this section

the approximation quality of certain finite-dimensional approximations of Π within the

framework of the continuous model (4).

Consider a set {fm}M
m=1 ⊂ L2

⋄(∂Ω) of M ∈ N linear independent current densities

fm in L2
⋄(∂Ω) that are applied on ∂Ω to generate the solutions um ∈ H1

⋄ (Ω) and

u1m ∈ H1
⋄ (Ω) of the problems (4) and (5) respectively. The trace (um − u1m)|∂Ω of

these potentials is then measured using a projection operator onto a finite-dimensional

space. Exemplarily, the functions {fm} might be chosen as indicator functions of
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subsets of the boundary, yielding a crude model for boundary electrodes. The projection

operator modelling the measurements might be chosen as a projection onto a similar

space spanned by indicator functions, modelling extended electrodes, or as a Lagrange

interpolation projection, modeling point electrodes.

In the following, we consider the finite-dimensional spaces FM = span {fm}M
m=1 ⊂

L2
⋄(∂Ω) together with associated projections

PFM
: L2

⋄(∂Ω) → FM ⊂ L2
⋄(∂Ω).

Further, we introduce finite-dimensional spaces GN = span{gn}N
n=1 ⊂ L2(∂Ω) spanned

by N linearly independent functions gn ∈ L2(∂Ω) and associated bounded projections

PGN
: Hs

⋄(∂Ω) → GN ⊂ L2(∂Ω) for some s > 0.

Both projections PFM
and PGN

are not assumed to be orthogonal projections, and GN

is not required to consist of mean-free functions. Typically, PGN
might an interpolation

projection (for s large enough to have the interpolation operation well-defined) or a

L2(∂Ω)-orthogonal projection onto GN (for s = 0). The L2(∂Ω)-adjoint P∗
GN

is hence

bounded from L2(∂Ω) into H−s
⋄ (∂Ω), and naturally, the adjoint is a projection onto the

orthogonal complement of the nullspace of PGN
. In the following, we make use of an

explicit representation of PGN
via bounded linear forms gn : Hs

⋄(∂Ω) → R,

PGN
g =

N∑

n=1

gn(g)gn, g ∈ Hs
⋄(∂Ω).

If PGN
is a Lagrange interpolation projection, then gn(g) is the point evaluation of g

in one of the interpolation nodes; if PGN
is an orthogonal projection onto span{gn}N

n=1,

then gn(g) = (g, gn)L2(∂Ω). For the basis {gn}N
n=1 of GN we choose a dual basis

{g∗n}N
n=1 ⊂ L2(∂Ω) such that (gn, g

∗
n′)L2(∂Ω) = δn,n′ for n, n′ = 1, . . . , N .

We introduce the finite-dimensional current-to-voltage map by only considering

current patterns in FM , and by measuring the resulting potentials um − u1m = Πfm

using the projection PGN
. The finite-dimensional linear operator corresponding to this

model is

ΠNM = PGN
ΠPFM

. (20)

The operator ΠNM is bounded from L2
⋄(∂Ω) into L2(∂Ω) if the boundary ∂Ω is sufficiently

regular such that the projection PGN
is well-behaved on the image space of Π (see the

subsequent Proposition 2). The finite-dimensional operator ΠNM is characterized by the

entries of the matrix Π̃NM ∈ R
N×M ,

(Π̃NM)n,m = gn(um − u1m), n = 1, . . . , N, m = 1, . . . ,M. (21)

Indeed, using the dual basis {g∗n}N
n=1,

(ΠNMfm, g
∗
n)L2(∂Ω) = (PGN

Πfm, g
∗
n)L2(∂Ω) (22)

=
N∑

j=1

gj(um − u1m)(gj, g
∗
n)L2(∂Ω) = (Π̃NM)n,m (23)
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for 1 ≤ n ≤ N and 1 ≤ m ≤ M . Moreover, (ΠNMf, g)L2(∂Ω) = 0 if either f or g belong

to the orthogonal complement of FM or GN , respectively.

The next proposition investigates the approximation quality of ΠNM , relying on the

fractional Sobolev spaces Hs
⋄(∂Ω). We concentrate on domains that are either smooth or

convex polygons in R
2, since our later computational examples use polygonal domains.

It is not too difficult to state corresponding results for domains with intermediate

smoothness, for non-convex polygons, and also for polyhedra in R
3, using essentially

the same technique and [35, Section 1]). However, technicalities would increase and we

prefer to keep the presentation simple.

For a definition of the fractional Sobolev spaces Hs
⋄(∂Ω) we refer to, e.g., [36] for

either smooth domains and to [37, Chapter 3] for polygons in case that |s| > 1. In the

latter case, some references (e.g. [38]) denote these spaces as Hs
pw(∂Ω).

Proposition 2. Assume that there is s > 0, N0 ∈ N, and C > 0 such that

‖I−PFM
‖L2

⋄(∂Ω)→H−s
⋄ (∂Ω) ≤ CM−s, ‖I−PGN

‖Hs
⋄(∂Ω)→L2(∂Ω) ≤ CN−s(24)

for N,M ≥ N0. If Ω ⊂ R
2 or R

3 is a smooth domain, then

‖ΠNM − Π‖L2
⋄(∂Ω)→L2(∂Ω) ≤ C(s)(N−s +M−s) for N,M ≥ N0.

If Ω ⊂ R
2 is a convex polygon such that all interior angles are less than π/(k − 1) for

2 ≤ k ∈ N, then the latter estimate holds for s ≤ k − 1/2.

Proof. Obviously,

ΠNM − Π = PGN
Π(PFM

− I) + (PGN
− I)Π. (25)

We start to estimate the operator norm of the second term. To this end, we recall the

factorization Π = A∗TA from Proposition 1. The product TA is bounded from L2
⋄(∂Ω)

into L2(I)d and the bounded linear operator A∗ : L2(I)d → L2
⋄(∂Ω) maps h ∈ L2(I)d

to the solution v|∂Ω of (12), that is,
∫

Ω

∇v · ∇ϕ dV =

∫

I

h · ∇ϕ dV ∀ϕ ∈ H1
⋄ (Ω).

If we assume that the boundary Ω is a domain with smooth boundary, basic elliptic

regularity theory (see, e.g., [36, Chapter 4]) implies that v is smooth in a neighborhood

of the boundary, and that the mapping h 7→ v|∂Ω is bounded from L2(I)d into any

Sobolev space H t
⋄(∂Ω), t ∈ R.

If Ω is a convex polygon such that all interior angles are less than π/(k − 1) for

2 ≤ k ∈ N, then Theorem 1.7 in [35] implies that v is Hk regular in a neighborhood

of the boundary, and the above-described definition of the spaces Hs(∂Ω) implies that

v|∂Ω ∈ Hk−1/2(∂Ω). In this case, the subsequent estimates are correct if s < k − 1/2.

We exploit the latter regularity result, estimating that

‖(PGN
− I)Π‖L2

⋄(∂Ω)→L2(∂Ω) ≤ C(s)‖PGN
− I‖Hs

⋄(∂Ω)→L2(∂Ω)‖Π‖L2
⋄(∂Ω)→Hs

⋄(∂Ω)

≤ C(s)N−s‖Π‖L2
⋄(∂Ω)→Hs

⋄(∂Ω),
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where we used (24). Next we consider the first term of (25) and start with

‖PGN
Π(PFM

− I)‖L2
⋄(∂Ω)→L2(∂Ω) ≤ ‖PGN

‖Hs
⋄(∂Ω)→L2(∂Ω)

‖Π‖Ht
⋄(∂Ω)→Hs

⋄(∂Ω)‖PFM
− I‖L2

⋄(∂Ω)→Ht
⋄(∂Ω), t ≤ 0.

If we choose t = −s, then assumption (24) implies that

‖PFM
− I‖L2

⋄(∂Ω)→Ht
⋄(∂Ω) ≤ CM−s M ≥ N0.

We use the factorization Π = A∗TA and the boundedness of A∗ : L2(I)d → H t
⋄(∂Ω)

for 0 ≤ t another time, to see by duality that A is bounded from H−t
⋄ (∂Ω) into L2(I)d

for all t > 0 in case that Ω is a smooth domain. If Ω is a convex polygon with interior

angles less than π/(k − 1), then the last statement holds true for k + 1/2 > t ≥ 0.

Hence, Π is bounded from H−s
⋄ (∂Ω) into Hs

⋄(∂Ω) and it remains to show that

the operator norms ‖PGN
‖Hs

⋄(∂Ω)→L2(∂Ω) are uniformly bounded. Again, we exploit the

second estimate from (24), to obtain that ‖PGN
‖Hs

⋄(∂Ω)→L2(∂Ω) ≤ 1 + C(s)N−s. This

implies the claimed estimate for ΠNM − Π.

4.2. Illustrating examples

We give three examples how the estimate of Proposition 2 can be applied to obtain error

estimates between finite and infinite-dimensional current-to-voltage maps in different

settings.

Example 1. A simple, yet important, example is the special case when Ω ⊂ R
2 is

the unit circle, and when a finite set FM of M trigonometric polynomials is used

to discretize the boundary currents. Let us also assume that finitely many Fourier

coefficients corresponding to FM model the measurements.

In this setting, FM = span{sin(mφ), cos(mφ), m = 1, . . . ,M} and the projection

operator PFN
is the orthogonal projection onto FM . It is well known (see [39]) that PFM

satisfies (24) for any s ≥ 0. In consequence, the finite-dimensional approximation ΠMM ,

defined by ΠMM = PFM
ΠPFM

, converges super-exponentially to Π as M → ∞.

Example 2. An important example of a non-orthogonal projection is a mean-value

projection (first introduced in [40] in the context of the complete electrode model).

Consider the case where one applies a constant current on certain parts of the boundary

(crudely modelling electrodes), and where one only measures the mean-value of the

potential on those boundary parts. We next construct the corresponding projections

explicitly and prove the required error estimates.

For this example, Ω ⊂ R
2 can be a smooth domain or a convex polygon. Assume

that the boundary ∂Ω is covered byM disjoint, connected, and relatively open electrodes

Em ⊂ ∂Ω, m = 1, . . . ,M . Associate to each Em its indicator function em ∈ L2(∂Ω),

that is, em(x) = 0 for x ∈ Em and em(x) = 0 else. Moreover, we denote by Êm,

m = 1, . . . ,M a connected and open superset of Em such that the closure of ∪M
m=1Êm
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equals ∂Ω (so-called extended electrodes). The indicator function of Êm is denoted as

êm. The space FM is then defined as FM = span{em}M
m=1 ∩ L2

⋄(∂Ω). The projection

PFM
g =

M∑

m=1

1

|Em|

∫

Êm

g dS em

is a non-orthogonal mean-value projection from L2
⋄(∂Ω) into FM . The L2-adjoint

operator P∗
FM

is given by

P∗
FM
f =

M∑

m=1

1

|Em|

∫

Em

f dS êm, f ∈ L2
⋄(∂Ω),

because
∫

∂Ω

f PFM
g dS =

M∑

m=1

1

|Em|

∫

Em

f dS

∫

Êm

g dS

=

∫

∂Ω

M∑

m=1

1

|Em|

∫

Em

f dSêm g dS =

∫

∂Ω

P∗
FM
f g dS.

A function f ∈ H1
⋄ (∂Ω) is continuous due to Sobolev’s embedding lemma. By the

mean-value theorem, |Em|−1
∫

Em
f dS = f(x0) for some x0 ∈ Em, and

‖f − P∗
FM
f‖2

L2
⋄(∂Ω) =

M∑

m=1

∫

Êm

|f(ξ) − f(x0)|2 dS ≤ max
m=1,...,M

|Êm|2 ‖f‖2
H1

⋄(∂Ω).

A duality argument finally yields that

‖f − PFM
f‖L2

⋄(∂Ω)→H−1
⋄ (∂Ω) ≤

(
max

m=1,...,M
|Êm|2

)1/2

‖f‖L2
⋄(∂Ω).

The interesting point about this estimate is that it does not depend on the electrodes

{Em} (especially not on their size), but only on the size of the extended electrodes Êm.

Consider now a sequence of electrode configurations, leading to a sequence of spaces

{FM}M∈N, such that the associated extended electrodes {ÊM
m }M

m=1 are quasi-uniform:

there is a constant C > 0 independent of M ≥M0 such that

max
m=1,...,M

|ÊM
m | ≤ C|ÊM

m | for all M ≥M0, m = 1, . . . ,M.

Summing up the last equation fromm = 1, . . . ,M and expoiting the assumption that the

Êm cover ∂Ω, we find that maxm=1,...,M |Êm| ≤ C/M for all M ≥M0. In consequence,

‖f − PFM
f‖L2

⋄(∂Ω)→H1
⋄(∂Ω) ≤ CM−1, N ≥ N0.

The operator ΠM = P∗
FM

ΠPFM
models an experimental setting where current is injected

via the electrodes {EM
m } and where the mean-value of the resulting potential is measured

on Em. Using the above Proposition 2 we conclude that ΠM converges linearly to Π as

M → ∞.
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Example 3. A final class of projectors naturally arises from the discretization of the

boundary term on the right of the variational problem (4) using finite elements, one of

the standard techniques for numerical simulation in impedance tomography. Here, we

assume for simplicity that Ω ⊂ R
2 is a convex polygon. One can extend the example to

smooth domains and to dimension three using curved surface elements and 3D regularity

results for the Neumann problem, respectively, but again we do not want to go into too

many technicalities.

Denote by V p
h1

a discontinuous finite element space of piecewise polynomials of

degree p ∈ N on a shape-regular triangulation T1 of Ω with mesh size h1 > 0

(see [38, Chapter 4.1.3] for a construction and further details). The projector P p
h1

maps f ∈ Hs
⋄(∂Ω) into V p

h1
using local L2-orthogonal projections on each triangle T

of the triangulation: If T ∈ T1 and if Lp
T

is the orthogonal projection in L2(T) onto the

polynomials of degree p on T, then
(
P p

h1
f
)∣∣

T
= Lp

T
(f |T), T ∈ T1.

Note that the latter definition implies that P p
h1

maps L2
⋄(∂Ω) into L2

⋄(∂Ω), since
∫

∂Ω

P p
h1
f dS =

∫

∂Ω

(f − P p
h1
f) dS =

∑

T∈T1

∫

T

(f − Lp
T
(f |T)) dS = 0.

It is well known (see [38, Theorem 4.3.19]) that for s ≥ 0 the estimate

‖f − P p
h1
f‖L2

⋄(∂Ω) ≤ Ch1
min(p+1,s)‖f‖Hs

⋄(∂Ω)

holds. A duality argument and the local L2-orthogonality of the projection P p
h1

show

that

‖f − P p
h1
f‖H−s

⋄ (∂Ω) ≤ sup
φ∈Hs

⋄(∂Ω)

|〈f − P p
h1
f, φ〉|

‖φ‖Hs
⋄(∂Ω)

= sup
φ∈Hs

⋄(∂Ω)

|〈f − P p
h1
f, φ− P p

h1
φ〉|

‖φ‖Hs
⋄(∂Ω)

≤ ‖f − P p
h1
f‖L2

⋄(∂Ω) sup
φ∈Hs

⋄(∂Ω)

‖φ− P p
h1
φ‖L2

⋄(∂Ω)

‖φ‖Hs
⋄(∂Ω)

≤ Ch
min(p+1,s)
1 ‖f‖L2

⋄(∂Ω).

Assume that we discretize the input currents f of (4) using piecewise polynomials in

V p
h1

, and that we measure point values of the resulting potentials on the nodes of a

possibly different shape-regular grid T2 with mesh size h2 > 0. We interpret these point

values using Lagrangian piecewise linear and globally continuous finite elements. The

corresponding interpolation operator is denoted as Q1
h2

, the measurements are hence

Q1
h2

(u|∂Ω) where u is the potential corresponding to an input current in V p
h1

. It is well-

known that ‖g − Q1
h2
g‖L2(∂Ω) ≤ Chs

2‖g‖Hs(∂Ω) for 1/2 < s ≤ 2, see, e.g., [38, Theorem

4.3.20]. Note here that the interpolation Q1
h2
g does not necessarily integrate to zero.

The operator Q1
h2

ΠP p
h1

corresponds to a finite-dimensional current-to-voltage

matrix, and the Proposition 2 implies that if all interior angles of Ω are less than

π/(k − 1) for 2 ≤ k ∈ N, then

‖Π −Q1
h2

ΠP p
h1
‖L2

⋄(∂Ω)→L2(∂Ω) ≤ C(hp+1
1 + h

min(k−1/2,2)
2 ) as h1,2 → 0.

In consequence, if one uses piecewise constant functions as input currents and if one

measures point values of the resulting potential, then the approximation error coming
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from the current discretization is dominant. If one uses piecewise linear discontinuous

elements to discretize the currents, and if h1 = h2, then the approximation error tends

to zero quadratically if all interor angles are less than π/2.

4.3. Approximation of the spectrum

For implementations of noise subspace projections, it is important to know how the

spectrum of the matrix Π̃NM is related to the spectrum of the operator Π. Basic

perturbation theory [41] implies that if two operators are close, then their spectra are

also close. Recall that the eigenvalues of Π, sorted in decreasing order according to

their multiplicity, are denoted as λj, j ∈ N. We write σ(ΠNM) = {λNM
j , j ∈ N} where

the eigenvalues λNM
j are sorted in decreasing order according to their multiplicity. The

spectrum of the finite dimensional operator ΠNM , defined in (20), contains zero as an

eigenvalue with infinite multiplicity, and a finite number of further eigenvalues.

Proposition 3. Under the assumptions of Proposition 2, there is N0 ∈ N such that

dist(σ(Π), σ(ΠNM)) ≤ C(s)(N−s +M−s) N,M ≥ N0,

where the metric on the left is the Hausdorff distance. Further, for each J ∈ N,

|λj − λNM
j | ≤ C(J, s)(N−s +M−s) j ≤ J and N,M ≥ N0.

Proof. This is due to the estimate dist(σ(Π), σ(ΠNM)) ≤ ‖Π − ΠNM‖L2
⋄(∂Ω)→L2

⋄(∂Ω) that

holds for the spectra of bounded linear operators, see [41], and the ordering of the

eigenvalues.

To investigate the relation between the spectrum of the operator ΠNM and the

matrix Π̃NM , we assume in the following that N = M , such that Π̃MM is a square

matrix, and write Π̃M ≡ Π̃MM , as well as ΠM ≡ ΠMM .

Proposition 4. Assume that the basis function of FM and GM equal each other for

some fixed M ≥ N0, that is, fm = gm for m = 1, . . . ,M .

(a) If (λ, φ) ∈ R×L2
⋄(∂Ω) is an eigenpair of the operator ΠM , then (λ, φ̃), where

φ̃ ∈ R
M has entries φ̃m = gm(φ), is an eigenpair of the matrix Π̃M .

(b) Then, if (λ, φ̃) ∈ R×R
M is an eigenpair of Π̃M , then (λ, φ) with φ ∈ L2

⋄(∂Ω)

such that φ =
∑M

m=1 φ̃mfm is an eigenpair of ΠM .

Proof. (a) Since PGM
ΠPFM

φ = λφ, the eigenfunction φ =
∑M

m=1 φ̃mgm =
∑M

m=1 φ̃mfm

belongs to GM (and thus, by assumption, to FM). Due to Equation (23), we conclude

that, for n = 1, . . . ,M

M∑

m=1

gn(um)φ̃m = (ΠN(
M∑

m=1

fmφ̃m), g∗n)L2(∂Ω) = λ(φ, g∗n)L2(∂Ω) = λφ̃n.
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(b) Since (λ, φ̃) is an eigenpair of Π̃M , it holds that
∑M

m=1 gn(um)φ̃m = λφ̃n for

n = 1, . . . ,M . From (23) we conclude that

PGM
Π
( M∑

m=1

φ̃mfm

)
= λ

M∑

m=1

φ̃mgm.

As above, our assumption that fm = gm yields the claim.

If we use a sufficiently large set of basisfunctions {fm}M
m=1, then the error

‖Π − ΠM‖L2
⋄(∂Ω)→L2

⋄(∂Ω) is small and the eigenvalues and eigenvectors of the operator

Π are satisfactorily approximated by those of the matrix Π̃M .

Remark 3. The matrix Π̃M does in general not possess an eigenvalue decomposition,

especially when it is perturbed by noise. Numerically, one has hence to resort to the

singular value decomposition instead of using an eigenvalue decomposition, and use

corresponding perturbation results (see, e.g.,[42] or [28, Lemma 5.1.]).

5. Numerical implementation

5.1. Indicator function

Consider the discretized version Π̃M ∈ R
M×M of the operator Π using an orthonormal

basis of M ∈ N current densities {fm}M
m=1 applied on ∂Ω, M = N , and FM = GN

(compare (21)). Since Π̃M might no longer be normal, its singular value decomposition

is introduced as

Π̃M = U ΣVT, (26)

where the superscript T denotes the transpose operation. In (26), Σ is a M×M diagonal

matrix composed of the real-valued and non-negative singular values {σm}, in decreasing

order σ1 ≥ σ2 ≥ . . . ≥ σM , and the columns of the orthogonal matrices U and V
are respectively the left and right singular vectors um and vm in R

M , m = 1, . . . ,M ,

satisfying

Π̃Mvm = σmum, Π̃T

Mum = σmvm.

Given the expected measurement error δ > 0 and on using the notations introduced

in Section 3, the response matrix Π̃M possesses significant singular values σm > δ

for m ≤ Mδ while the other eigenvalues for m = Mδ + 1, . . . ,M verify σm ≤ δ.

Furthermore, the Mδ left singular vectors um associated with significant eigenvalues

form an orthonormal basis of the subspace Sδ ⊂ R
N , the so-called signal subspace

Sδ = span{um,m = 1, . . . ,Mδ},
while the right singular vectors vm for m = Mδ + 1, . . . ,M form an orthonormal basis

of the orthogonal complement Nδ = Sδ
⊥ to this space. In the context of this study

and for a later numerical implementation of the method, one introduces the parameter

M∗ > Mδ as well as M∗ such that M∗ < M∗ ≤ M in order to prevent taking into



A non-iterative sampling approach using noise subspace projection for EIT 18

account the eigenvalues of high rank which are likely to be polluted by errors in the

simulated data. A companion noise subspace N∗ can then be defined as

N∗ = span{vm,m = M∗, . . . ,M
∗}.

The robustness of the reconstruction scheme is moreover based on the ability to

represent accurately the singularity of the featured fundamental solution Gz,d for each

sampling point of a testing grid commonly designed to probe the entire domain Ω.

This issue can be critical for a numerical implementation of the method since singular

solutions are commonly poorly represented in the standard computational platforms.

However, this drawback can be circumvented by directly taking advantages of the closed-

form solution of the dipole potential in R
d. For a given point z ∈ Ω and a unit vector

d ∈ R
d consider the dipole potential Φz,d(ξ) = −d · ∇ξN(ξ, z) which is the harmonic

function in R
d\{z} given by

Φz,d(ξ) =
1

ωd

(z − ξ) · d
|z − ξ|d , for ξ 6= z, (27)

where ω2 = 2π and ω3 = 4π. Owing to the property of the Neumann function (8), one

can conclude that the difference Gz,d−Φz,d is harmonic in Ω\{z} and solves a boundary

value problem with the imposed Neumann condition −∇Φz,d ·n on ∂Ω which, on using

the definition of the Neumann-to-Dirichlet map, finally entails that the test function is

given by

gz,d = Φz,d|∂Ω − Λ1(∇Φz,d · n) + c, (28)

where the constant c is to be adjusted to ensure the condition
∫

∂Ω
gz,d dS = 0.

Replacing the test function gz,d given by (28) by a suitable discretized version

gz,d ∈ R
M , the Picard criterion from Corollary 1 is replaced by the truncated finite sum

M ′∑

m=1

|gT

z,d um|2
|σm|

, 1 ≤M ′ ≤M. (29)

The theoretical results in [43] on a regularization technique for such discretizations of

Picard series suggest a rule how to choose M ′ = M ′(M) ≤M such that the latter sum

converges (as the discretization parameter M tends to ∞) if and only if z ∈ I. Still,

the problem is to decide for a fixed but sufficiently large discretization parameter M ,

whether sampling points z are inside or outside the inclusion I. To do so, different

approaches have been used in the literature and among the most widely used ones one

can distinguish the following techniques.

Linear regression. Some of the previous studies that have been concerned by a

numerical implementation of the method (see e.g. [8]) have been based on the

expectation that both the numerator {|gT

z,d um|2} and the denominator {σm} exhibit

an exponential decay as sequences indexed by m. Using linear regressions of these

terms one is able to obtain the decay rate of the summand {σ−1
m |gT

z,d um|2} as a function

of the sampling point z. The inclusion set I is then determined by the points where this
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decay rate takes the smallest values, meaning that the featured series does not converge

at these points.

Partial sum. Another approach that has been used (see e.g. [23, 26]) is directly based

on the equation (29), as explained in the comments below, and it consists in directly

computing the truncated Picard series as a function of z. The expected behavior is that,

for a sufficiently large M providing a satisfactorily approximation of the Neumann-to-

Dirichlet operator Π, this partial sum is large outside I and small inside.

However, our own experience have led to ambivalent conclusions. On the one hand,

the expected decay of the numerators of the Picard coefficients has generally not been

observed. In most cases, the linear regression performed poorly even with the recourse

to algorithm such as the RANdom SAmple Consensus (RANSAC [44]). On the other

hand, in our simulation the number of significantly large singular values is generally

low, which entails that the computation of either the decay rate from linear regressions

or of the partial sum is generally not very stable and may vary significantly with the

number of picked singular values. Moreover, on using the sum of the few Mt-th first

values of the Picard coefficients, the indicator function obtained is relatively sensitive to

measurement noise and one has to introduce a threshold level to determine whether a

given point is inside or outside of the inclusion in order to retrieve the binary character

of the initial criterion. The typical situation is illustrated by the example of a single

homogeneous L-shaped inclusion of conductivity γI = 0.01. The Figure 1 shows the

values of the numerators, denominators and of the coefficients themselves of the Picard

series computed with d = (1; 0), when the chosen sampling point lies either outside of

the inclusion (Fig. 1(a)) or inside (Fig. 1(b)). The reader may refer to Section 5.3 for

details about the numerical settings.

(a) Exterior point z ∈ Ω\I (b) Interior point z ∈ I

Figure 1. Picard coefficients, numerators and denominators in log scale as functions

of m

The approach proposed in this study has been partly motivated by these
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observations. Interestingly, similar conclusions were given in [29] in the context of

inverse scattering in electromagnetism where the authors have exposed the need for a

new criterion to characterize the range of the discrete far-field operator. The algorithm

they have introduced was designated as the SVD-tail method, and makes use of the

singular vectors associated with the smallest singular values rather than those associated

with the signal subspace. This technique is very close to the method proposed in [27, 28]

where an indicator function is constructed from the projection of an appropriate singular

test function onto the noise subspace of the far-field operator. The approach presented

in this section is not based on an accurate reconstitution of the entire noise subspace,

which would potentially require the computation of a large number of very small singular

values, but rather on an approximation on a few right singular vectors vm associated

with the space N∗. In the ensuing implementation of the method, the levels M∗ and

M∗ are chosen manually, by typically detecting the abrupt changes in the behavior of

the series m 7→ σm.

As a consequence of the previously discussed difficulties plaguing in the

characterization of the signal subspace projection, one introduce the following indicator

function

Definition 1. For a given d ∈ R
d\{0} and M∗, M

∗ ∈ N with 0 < M∗ < M∗ ≤ M , let

IM∗,M∗ be defined on Ω by

IM∗,M∗(z) =

(
M∗∑

m=M∗

|gT

z,d vm|2
σm

)−1

. (30)

Remark 4. From the identity (19), the Corollary 2 and the results of Section 4, our

conclusion (that we do not formalize) is as follows: If the dimension of the matrix

Π̃M ∈ R
M×M is large enough to feature a noise subspace N∗ with M∗, M

∗ ∈ N, then

z 7→ IM∗,M∗(z) takes large values in a region inside the inclusion I, whereas this function

is considerably smaller in Ω\I, and it smoothly changes from large to small values over

the boundary of I.

The proposed method aims at improving the stability of the reconstruction scheme

by adopting a regularizing approach to the inverse problem considered through the

projection onto a subspace of expected larger dimension compare to the dimension of the

signal subspace on which previous studies have focused. It is expected that the indicator

function IM∗,M∗ introduced provides a good identification of the interior points, while

an accurate representation of the geometry of the unknown objects will be achieved by

the recourse to a thresholded version of the function.

5.2. Effect of noisy data

Since the indicator function is constructed from the eigenvectors spanning the noise

subspace, the questions that naturally arise concern the stability of the reconstruction

and whether it is preferable to work with (30) rather than with the truncated Picard

series (29). In this section, estimates are provided in order to quantify how the error
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on the data propagates to the reconstructions provided by the two indicator functions.

Comparatively, the study [28] has addressed the stability issues arising in the context

of inverse scattering problems when incorrect spectral information is used in the Picard

series.

Taking into account an additive measurement noise δ > 0, the original measurement

matrix Π̃M is replaced by a noisy counterpart Π̃δ
M such that ‖Π̃δ

M − Π̃M‖2 = δ‖Π̃M‖2 in

the spectral norm. As a special noisy configuration we consider that

Π̃δ
M = Π̃M +

1√
M

Λ (31)

where Λ is a real-valued random M × M matrix with independent and identically

distributed entries described by Gaussian statistics with zero mean and standard

deviation σn. In particular, with such a choice of perturbation, then for large M , one

obtains at the first order δ = 2σn/σ1 in probability (see [45]). To simplify the estimates

below, we assume moreover that the noise subspace is not modified by the noise,

span{vδ
m,m = M∗, . . . ,M} = span{vm,m = M∗, . . . ,M}.

This assumption is motivated by the fact that the signal subspace is only slightly

perturbed by the noise, and that the noise subspace is by construction of the singular

value decomposition part of the orthogonal complement of the signal subspace. Of

course, in general one cannot exclude the possibility that noise subspace does change

under the influence of noise, but this situation is beyond the scope of this paper.

Let us denote by σδ
m, v

δ
m the singular values and vectors of the perturbed matrix

Π̃δ
M . Under the above assumption the perturbed indicator function I δ

M∗,M verifies for all

z ∈ Ω the inequalities

1

max
m=M∗,...,M

σδ
m

M∑

m=M∗

|gT

z,d vδ
m|2 ≤ I δ

M∗,M(z)−1 ≤ 1

min
m=M∗,...,M

σδ
m

M∑

m=M∗

|gT

z,d vδ
m|2,

and one finally obtains the estimates

min
m=M∗,...,M

σδ
m

max
m=M∗,...,M

σm

IM∗,M(z) ≤ I δ
M∗,M(z) ≤

max
m=M∗,...,M

σδ
m

min
m=M∗,...,M

σm

IM∗,M(z).

Assuming the form (31), then for large M and due to the rapidly decaying behavior

of the singular values of the Neumann-to-Dirichlet operator, their noisy counterparts

are such that maxm=M∗,...,M σδ
m ≈ δ, and on using that the eigenvalues are sorted in

decreasing order, one has maxm=M∗,...,M σm = σM∗
= σMδ + 1 ≤ δ, the above estimates

can thus be rewritten as

σδ
M

δ
IM∗,M(z) ≤ I δ

M∗,M(z) ≤ δ

σM

IM∗,M(z). (32)

The set of inequalities (32) provides a rough estimate since the term σδ
M has not been

evaluated. The known literature concerning the characterization of the set of perturbed

singular values and of the difference between the perturbed and the unperturbed right

singular subspaces, surveyed in [46], deals with matrices of maximal rank strictly smaller
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than M . Estimates are then known in such a case for deterministic or stochastic [45]

perturbations. When the matrix of finite rank involves small singular values then higher

order estimates have to be derived [47]. Therefore, a perturbation analysis in the

present case of a matrix of rank M with asymptotically small singular values remains a

challenging problem and an open question.

If minm=M∗,...,M∗σδ
m ∝ δ with M∗ < M , which can be conjectured from [45] when

1 ≪ rank(Π̃M) ≪ M and in the asymptotic regime M ≫ 1, then (32) shows that

the indicator function (30) behaves linearly with respect to additive noise which makes

the present approach particularly suited for the applications dealing with simulated or

experimental data. Interestingly, this reconstruction strategy circumvents the issues

related to the “inversion” of the compact Neumann-to-Dirichlet operator which is

employed in the linear sampling method [7] and which necessitates the recourse to

an adapted regularization scheme.

Following the interpretation of the indicator function (30) that is synthesized in

Remark 4, given compact subsets KI ⊂ I and KΩ\I ⊂ Ω \ I and on employing the

inequalities (32) for an exterior point ze ∈KΩ\I and an interior point zi ∈KI one has

that, if the reconstruction in the noise-free configuration is such that

δ2

σMσδ
M

IM∗,M(ze) ≤ IM∗,M(zi),

then after perturbation, the set I of inclusions can still be distinguished from the

background since I δ
M∗,M(ze) ≤ I δ

M∗,M(zi). Conversely, if the contrast provided by the

unperturbed indicator function is initially too low, i.e. in the case where

δ2

σMσδ
M

IM∗,M(zi) ≤ IM∗,M(ze),

then the noisy configuration leads to situations where one can obtain I δ
M∗,M(zi) ≤

I δ
M∗,M(ze).

Two remarks can be made about these conclusions. On the one hand, given the

properties of the measurement operator, the term δ2/σMσ
δ
M can be relatively large.

Moreover the noise level is generally not known and obviously the unperturbed indicator

function cannot be computed. On the other hand, from the Corollary 2 and the

arguments developed in Section 4.3 regarding the approximation of the spectrum of Π,

then in the absence of measurement noise and computation errors the indicator function

is expected to be such that IM∗,M(zi)/IM∗,M(ze) ≫ 1 for any interior and exterior points

zi and ze. In other words, if using only the correct spectral information leads to an

indicator function exhibiting a contrast between the inclusions and the background

which is larger than the ratio δ2/σMσ
δ
M , then the reconstruction from data corrupted by

the additive noise δ cannot be misinterpreted.

5.3. Numerical examples

In this section, a set of numerical examples which employ synthetic data are presented

to assess the efficiency and robustness of the method. The following results come



A non-iterative sampling approach using noise subspace projection for EIT 23

within the scope of the framework described by the example 3 of the Section 4.

Both direct problems (4) and (5) are implemented in a conventional finite elements-

based computational platform (Cast3M ) to simulate data in various configurations.

Given the number nel of triangular elements associated with a maximal mesh size

h and piecewise-linear finite elements, the discretized background domain considered

is the square Ωh = [0; 1] × [0; 1] with unit conductivity and which may contain an

homogeneous inclusion (or a set thereof) of conductivity γI < 1. The reference solution

u1h together with uh in the presence of the inclusion(s) are normalized by the constrain

uh(x0) = u1h(x0) = 0 at an arbitrary point x0 ∈ ∂Ωh. A set of M = 144 equidistributed

unit nodal current densities {fm} with disjoint supports on the domain boundary,

is constructed such that it constitutes an orthonormal basis. Keeping implicit the

dependance to the mesh size h, the discrete version Π̃M of the relative Neumann-to-

Dirichlet operator, is computed according to (21) where the entries gn(um − u1m) are

consistently substituted by the orthonormal projection fT

n(um − u1m).

The indicator function (30) is implemented from the singular value decomposition of

the matrix Π̃M , the discrete version gz,d of the test function featured in Theorem 2 and a

choice of dipole directions on a half-circle, i.e. dk = (cos θk; sin θk) where θk = (k−1)π/8

and k = 1, . . . , 8. To circumvent the limitations due to the difficulties plaguing in

the computation of the Green’s function on the geometry considered, the formula (28)

is employed. This latter expression requires the evaluation of the scalar products of

the analytical solution (27) and its normal derivative on the boundary with the basis

functions {fm}, as well as the knowledge of the discrete version of the operator Λ1 which

is given by the entries fT

nu1m. The sampling point z varies on a regular sampling grid

Ωprob
h of size nprob × nprob points where nprob = 40 provides a sufficient resolution. The

contribution of each underlying dipole direction considered is summed and the optimal

values of the indicator function are sought as M∗ = 20, . . . , 40 and M∗ = 130, . . . , 140,

i.e.

Î ′(z) = max
M∗=20,...,40

max
M∗=130,...,140

8∑

k=1

IM∗,M∗(z)

max
x∈Ωprob

h

IM∗,M∗(x)
.

Then the following graphs (Fig. 2 to 5) show, for clarity, the unitary indicator function

Î(z) =
Î ′(z)

max
x∈Ωprob

h

Î ′(x)
.

Single inclusion. The Figure 2 shows the results obtained for the identification of a

single large inclusion of radius r.

Multiple inclusions. In these examples a number of K inclusions are placed in the

background domain. The inclusions have a common radius value r = 0.05 and

conductivity γI = 0.01.
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(a) r = 0.07, γI = 0.01 (b) r = 0.12, γI = 0.5

Figure 2. Identification of a single inclusion

(a) K = 1 (b) K = 2 (c) K = 4

Figure 3. Identification of multiple inclusions

Non-convex inclusion. A single L-shaped inclusion of conductivity γI = 0.01 is

identified on the Figure 4.

Figure 4. Identification of L-shaped inclusion
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Noisy data. The noise-free configuration presented on the Figure 3(c) is now considered

in a situation where the data are corrupted by an additive noise. The measurement

matrix is perturbed according to (31) and the standard deviation σn of the noisy matrix

Λ is chosen in order to achieve the desired value of δ.

(a) δ = 0.01 (b) δ = 0.05 (c) δ = 0.1

Figure 5. Identification of K=4 inclusions from noisy data

Discussion. The numerical examples presented in this section show that the proposed

indicator function enables a qualitative identification of the set of inclusions embedded

in the reference domain considered. In the absence of measurement noise, the figures 2

and 3 shows that a relatively small set of inclusions, characterized by different sizes or

conductivities, can be located with a satisfying precision by the maxima of the function

(30). The graphs obtained are relatively smooth, in accordance with the discussion in

Remark 4. This is relatively typical of the qualitative sampling approaches which are

based in practice on low-dimensional approximations of the measurement operators.

On the Figure 3(c), the reconstruction provided is less contrasted between interior

and exterior points, however four spikes clearly visible permit to evaluate the exact

number of inclusions and distinguish them geometrically. Note that the quality of this

reconstruction can be improved by increasing the number M of injected currents. The

Figure 4 highlights that, as the conductivity model and the measurements employed

are of static type, the method captures the convex envelop of the non-convex object

considered ; however, pronounced values are obtained inside the inclusion. Finally, the

performance of the indicator function in capturing the number of inclusions and their

locations in a noisy configuration is satisfactory for small value of the noise level, as

shown on the Figure 5(a), and the reconstruction is still informative for the larger value

δ = 0.05 (Fig. 5(b)). Thus, the use of polluted spectral information has enabled a

qualitatively satisfactory and stable identification. As expected, its quality decreases

for larger value of the noise level (Fig 5(c)).

It is worth underlying as a final remark that the approach developed in this article

is based on the relative Neumann-to-Dirichlet operator, which necessitates the recourse

to reference measurements corresponding to the defect-free configuration. This is not an

issue in the synthetic data-based examples presented here, however it might be critical
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to use alternatively a reference-free sampling approach, for example along the lines of

the method proposed in [26].

5.4. Experimental result

This paragraph presents two preliminary experimental results provided by V. Choquet

and J. Alaterre in [48]. The experimental domain was a 20 × 28cm carbon-paper sheet

(from www.pasco.com) with currents and potentials measured from standard laboratory

sources and meters as proposed in [49]. The inclusion was a circular cut in the carbon-

paper, centered at x0 = (20, 7) with radius r = 3cm, and the discretized version of the

operator Π̃M was estimated from M = 15 current densities with disjoint supports on

the boundary. The measurements were done first on the reference domain and then on

the domain with the inclusion. For the computation of the indicator function (30) the

numerical approach described in Section 5.3 was used to estimate the discrete version

of gz,d.

(a) Singular values in log scale (b) Indicator function

Figure 6. Experiment 1 : M∗ = 8 and M∗ = 13

The figures 6 and 7 correspond to two different positionings of the electrodes that

are represented by black diamonds on the right panels. Figures 6(a) and 7(a) plot the

distribution of the singular values in the two experiments with the dashed red lines

indicating the particular choice of the parameters M∗ and M∗. Based on the set of eight

equidistributed dipole directions dk, the following function is computed

Î ′
M∗,M∗(z) =

8∑

k=1

IM∗,M∗(z)

max
x∈Ωprob

h

IM∗,M∗(x)
,

and then the corresponding unitary indicator function

ÎM∗,M∗(z) =
I ′

M∗,M∗(z)

max
x∈Ωprob

h

I ′
M∗,M∗(x)

,

is shown on the figures 6(b) and 7(b). The parameters M∗ and M∗ are manually chosen

from the evaluation of the signal and noise trends in the displayed distribution of the

singular values. These satisfying initial results involving a single large inclusion prove
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the feasability of the method from an experimental point of view. More measurements

points and precision would contribute to increase the accuracy of the reconstruction.

(a) Singular values in log scale (b) Indicator function

Figure 7. Experiment 2 : M∗ = 7 and M∗ = 12

6. Conclusion

This study concerns the development of a qualitative approach for the identification

of inclusions embedded in a conducting background domain given a set of imposed

currents on the domain boundary and the measurement of the corresponding external

voltages. This setting provides the access to the relative Neumann-to-Dirichlet operator

which, by synthesizing the measurements, encapsulates the available information on the

medium internal structure. Rather than exploiting the eigenfunctions associated with

the largest eigenvalues of the data-to-measurement operator and which commonly span

its signal subspace, the approach developed in this article is based on the extraction

of information from its noise subspace. An indicator function is constructed on the

alternative projection of an appropriate test function onto this latter space. This

approach can be interpreted as an extension to the case of extended inclusions of the

MUSIC algorithm which is dedicated to the identification of point-like objects.

This article aims at discussing the new indicator function which is based on the

construction of a suitable subset of the noise subspace of the measurement operator

from the behavior of the computed singular values. In particular, it has been proved

that this function provides a binary criterion allowing to discriminate whether a given

sampling point lies within the exterior or the interior region relatively to the sought

inclusion. The intended contributions of such criterion are twofold. Firstly, it avoids

the question of determining whether the Picard series converges or not, which has been

a long-standing issue for a practical use of the factorization method. Secondly, in

noisy environments, the projection in the large set of those eigenfunctions below the

noise level can indeed improve the quality and stability of the reconstruction, a result

which may appear counter-intuitive at first. Moreover, the quality of common discrete

approximations of the measurement operator has been provided in order to justify that

this method is practically amenable to finite-dimensional settings, relevant to practical
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implementations. In this context, a stability analysis is conducted to discuss the quality

of the reconstruction when it employs noisy spectral information. However, obtaining

precise estimates remains an open problem and it would require the development of an

appropriate perturbation theory. Finally, a set of numerical and experimental results is

presented to assess the performance of the proposed method.
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