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ABSTRACT  

We used azimuthally-resolved spectroscopic Mueller matrix ellipsometry to study a periodic silicon line structure with 
and without artificially-generated line edge roughness (LER). The unperturbed, reference grating profile was determined 
from multiple azimuthal configurations using a generalized ellipsometer, focusing the incident beam into a 60 µm spot.
We used rigorous numerical modeling, taking into account the finite numerical aperture, introducing significant
depolarization effects, and determining the profile shape using a four trapezoid model for the line profile. Data obtained
from the artificially perturbed grating were then fit using the same model, and the resulting root-mean-square error 
(RMSE) values for both targets were compared. The comparison shows an increase in RMSE values for the perturbed
grating that can be attributed to the effects of LER.
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1. INTRODUCTION  
Line edge roughness (LER) represents one of the challenges of current semiconductor technology process control [1]. 
The importance of LER increases with an increase of the ratio between LER and target line width, which is becoming 
one of the largest part of the uncertainty budget of current and future technologies. Optical metrology tools make up an 
important part of the suite of non-destructive inline process control tools that provide real-time assessment of the quality
of production wafers after each lithographic step. There is constant need to assess the effectiveness of optical 
characterization methods, as new challenges rise from technological progress. One of the challenges is a requirement that 
measurements be made inside very small (usually smaller than 100 μm) targets. Measurements using spectroscopic
ellipsometer techniques require significant focusing of the light beam, with numerical apertures on the order of a few
degrees. The numerical aperture of the incident light beam puts additional demands on the optical modeling as well. 
Furthermore, it requires reevaluation of the sensitivity of the optical methods to the LER. The usual effect of the 
numerical aperture includes incident angle averaging, which can wash out important spectral features [2] and may
decrease the sensitivity to imperfections such as LER.

Previous theoretical studies of the sensitivity of angularly-resolved ellipsometry to LER were performed on large sets of 
2D gratings with randomly generated LER. It has been shown that randomly generated LER can be used as a heuristic 
tool to evaluate its impact on angle-resolved ellipsometric data [3, 4]. Nevertheless, case studies with real samples and 
measurements are needed in order to confirm the theoretical results. We have prepared periodically-perturbed line 
gratings and studied the impact of line-width roughness (LWR) on root-mean-square errors (fit residuals) for generalized 
spectroscopic ellipsometry data [5]. We have shown that the differences are solely due to the LWR using rigorous 2D 
numerical modeling, which represented the designed artificial LWR. For the purpose of this work we have manufactured
samples with pseudo-random LER and applied previously developed optical models to the spectrally-resolved Mueller 
matrix data. The description of the samples can be found in Section 2, with corresponding scanning electron microscopy 
images of lines inside the studied targets. In the same section, we provide experimental details and optical methods used 
to characterize the targets.  In Section 3, we provide a detailed description of the rigorous modeling and fitting 
parameters. Section 4 summarizes and discusses the major results of our work. Finally, we make some conclusions in 
Section 5. 
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2. EXPERIMENTAL DETAILS AND THEORETICAL METHOD
The sample studied in this work was manufactured at the University of North Carolina, Charlotte using electron beam 
lithography followed by etching to make 736 nm pitch line gratings into a silicon wafer. The nominal height of the lines
was 400 nm, and the nominal width of the lines was 300 nm. A scanning electron microscope image taken from the top
of the reference target is shown on the left in Fig. 1. Artificially designed LER roughness is represented by non-periodic
modulation of the line-width with the nominal depth being 2 % of the line-width (see Fig. 1, right). 

Figure 1. Unperturbed reference grating (left) and grating with artificially designed non-periodic LER (right).

Both samples were measured using a generalized spectroscopic ellipsometer with an automated sample rotation stage,
providing 11 elements of the normalized Mueller matrix (elements in the last line of Mueller matrix are not available) at 
different azimuthal configurations. The instrument uses focusing optics in order to project the beam onto the sample with 
spot size smaller than 60 μm at a fixed incident angle of 65°. Experimental azimuthal angles were chosen from -180° to 
180° in increments of 10° (0° corresponding to the grating direction). Azimuths of opposite sign and 180° rotation were
simultaneously used during the modeling to decrease the importance of systematic experimental errors, which do not 
have the same symmetries as the natural physical symmetries present in the optical response of the line grating. It also 
effectively compensates for the missing off-diagonal elements of the Mueller matrices, considering relations between 
transposed elements taken at opposite azimuthal angles. The information in off-diagonal elements of the Mueller matrix
is important for removing correlations between some profile parameters during the fitting process and for the sensitive 
determination of precise values of azimuthal offset. It also helps with independent assessment of the grating profile 
symmetry, as this can be determined directly from appropriate Mueller matrix elements.

Measurements of the unperturbed and perturbed gratings were taken using the same azimuthal angles in order to directly 
compare the data. The two gratings were also designed with the same mean line width. This helps when comparing raw 
measured data without the aid of any model, due to the fact that the curves are very similar except in a few spectral 
regions. Differences between the data taken on the two gratings demonstrate sensitivity of spectroscopic ellipsometry to 
the magnitude of the periodic line width perturbation. 

We would like to confirm that the differences between data are solely due to the line edge perturbations and not some 
other imperfection in the model or other physical differences between them. In order to do that, we are going to establish 
a reasonably accurate optical model of the unperturbed grating and explain the remaining differences between the data 
measured on the perturbed sample. In previous work, we used periodically perturbed targets, for which we could apply 
biperiodic rigorous coupled-wave analysis (RCWA) to the periodically perturbed grating lines, in order to positively 
confirm differences in data [5]. In this study, we find the grating profile, which provides sufficiently stable and accurate
description of the grating for all possible azimuthal angles, and then to compare the best fits of the unperturbed grating
with those of the perturbed one. The differences in the root-mean-square error (RMSE) must be small compared with the 
RMSE value of the unperturbed lines, in order to exclude possible differences due to the grating profile simplification. 
Rigorous two dimensional model of the periodically perturbed lines provided explanation for the increase of the RMSE
and positively confirmed origin of the differences in the data. From the increase of the RMSE of the perturbed grating, as
compared to the small RMSE of the unperturbed one, we can deduce the sensitivity of the method to artificial non-
periodic roughness. 

2



3. RIGOROUS THEORY AND STATISTICAL ANALYSIS
3.1 Rigorous coupled-wave analysis and Mueller matrix formalism

Periodic gratings can be modeled using rigorous coupled-wave analysis (RCWA). The method uses Fourier series
expansions of the electric and magnetic fields inside the structure in order to express and calculate propagating and
evanescent waves in different layers of the structure. Afterwards, tangential field components are matched at the
boundaries between the layers, resulting in the determination of the complex reflection and transmission coefficients for 
each of the diffracted orders. Standard RCWA implementations are based on the original work of Moharam and Gaylord
[6, 7] using a staircase approximation of the grating profile. The convergence rate is significantly increased for lamellar
gratings (especially in the case of absorbing materials) using inverse rules which appeared at first in the work of Lalanne
and Morris [8] and were then mathematically proven by Li [9]. The inverse rule approach uses a more consistent
treatment of the boundary conditions inside the lamellae, leading to better expansion of the permittivity into Fourier
series and, consequently, to better convergence of the numerical algorithm. Another improvement to the original
formulation uses the scattering matrix algorithm instead of the original transmittance matrix approach [10]. The latter 
permits calculations on deeper gratings using more terms in the Fourier series expansions, which would otherwise suffer 
from finite numerical precision. In the scattering matrix algorithm the modes outside of the structure are organized into
two subsets: modes approaching the structure and modes leaving the structure. These improvements allow for more
consistent calculation of the modes propagating through the structure and lead to an increased stability of the numerical 
implementation. Together with the original work of Moharam and Gaylord (or work of Rokushima for anisotropic 
gratings [11]), these methods are the workhorse for calculating optical response of periodic gratings. 

Using the RCWA calculation, the complete complex Jones matrix [12] for every reflected or transmitted diffraction 
order is determined. The complex Jones matrix J can be defined as 
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where s and p denote the transversal electric (TE) and transversal magnetic (TM) polarizations, respectively. The optical
response of the periodic grating to a plane wave can be completely described using the Jones matrix formalism. In some 
measurements, depolarization can appear as a direct consequence of some experimental imperfections and has to be 
treated properly. The major source of depolarization considered in this work is the high numerical aperture (NA≈0.065) 
of the incident beam, which is focused into the very small spot on the sample (less than 60 µm in diameter). As a result,
experimental data show depolarization due to the incoherent superposition of the optical response over all incidence and 
azimuthal angles from the experimental aperture range.  

In the most general case, the linear optical response can be described by the Mueller matrix formalism, which includes 
effects of depolarization on the measured signal. Mueller matrices are described using 4×4 real matrices of the form: 
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In order to model depolarizing Mueller matrices, the incoherent superposition of Mueller matrices of the representative
set of incident directions for the given numerical aperture needs to calculated. Weights of selected points can be acquired
using the known value of the numerical aperture [2], and the resulting depolarizing Mueller matrix can be written as
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where k denotes the selected direction index, i and j are the Mueller matrix coefficients and wk denotes the appropriate 
weight. Modeling of the depolarizing experimental data has substantial impact on the calculation time due to the
necessity to calculate multiple incidence configurations. In our numerical implementation, we use nine points 

3



0 100 200 300 400 500 600 700
Horizontal dimension [nm]

representing given numerical aperture, which provides sufficient precision for the comparison with the experimental
data, but it also increases calculation times by a factor of nine. The most significant impact of the numerical aperture 
(NA) on the measured data can be seen in spectral regions with sharp spectral features [13].

3.2 Determining grating profile

The profile of the grating was determined for each azimuth separately by a least-squares optimization procedure, 
searching for optimal values of model parameters, which provide the best correspondence between experimental and 
modeled Mueller matrix data. Searching for the optimal values of parameters (values corresponding to local minimum of 
the RMSE parametric function) is initiated using a numerical-gradient-based method, and the result is used as an initial
guess for a subsequent search using the Levenberg-Marquardt method. The merit function, defined as a function of free
parameter set p, can be written using all experimentally available elements of normalized Mueller matrices as follows:
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where Mij,k denote the element Mij of the k-th spectral Mueller matrix, which is marked by m for the modeled and e for 
the experimental data, respectively. Numbers Ns and n denote the total number of spectral points and the number of free
model parameters, respectively. 

In our fits, we modeled the grating profile with four trapezoids, illustrated in Fig. 2. The overall number of free
parameters was 11: the total height of the line, heights of top, third, and bottom trapezoids; four trapezoid base widths; 
top width; offset to the nominal azimuthal angle; and the thickness of the silicon dioxide layer on the top. Different 
azimuthal angles were fitted separately in order to provide more reliable values of model parameters as the correlations 
between parameters change for different azimuthal angles. We combined data from opposite azimuthal angles, which do 
not provide new physical information (modeled values for azimuthal angle φ can be used to directly calculate values for
azimuth –φ), and 180° symmetric azimuths in order to decrease impact of systematic experimental errors and partially
compensate for the missing four Mueller matrix elements (the last line of the matrix).

Figure 2. Fitted grating profile represented by layers as used directly in the RCWA code, determined for an azimuth of 30°.
The profile is composed of four trapezoids on top of each other with a clear presence of an overhang on the top of the
grating. 
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4. RESULTS AND DISCUSSIONS
Normalized, spectrally-resolved Mueller matrix data measured at the planar configuration inside the reference and the
artificial LER targets is shown in Fig. 3. All block off-diagonal elements of the Mueller matrix are zero in this case and
the element M22 should have the constant value of 1. We can see that there are horizontal shifts between both sets of data,
which can be attributed to the fact that the reference grating does not necessarily have exactly the same line width as an
effective average line-width of the perturbed grating. This validates our approach to not compare the raw data directly, 
but to compare results of the grating profile fits for both targets. Except the horizontal shift, we can also observe some
other differences between the curve shapes which are likely to be attributed to the effects of LER.

Figure 3. Spectral dependence (wavelength is in nanometers) of four non-zero elements of the Mueller matrix taken in the
planar configuration for the reference grating (blue solid lines) and the artificial LER grating (red dash dotted lines). 

For a comparison, we also include data measured at 90° azimuth (light incident along the lines) as shown in Fig. 4. The
situation is similar, as there are also no optical cross-polarization effects for symmetric profile line gratings at an azimuth 
of 90°. Nevertheless, we can see more interesting behavior of the element M22, which deviates significantly from unity in
some particular spectral regions. This effect is due to the finite NA, which was explained in the previous section, and it 
has significant impact on the measured data in spectral regions with very sharp features. The reason for the substantial
differences between elements M22 taken at azimuths of 0° and 90° is the typical behavior of the optical response of line
gratings. Namely, while data vary rather slowly near azimuths close to 0°, they vary to a much greater degree near  90°.
The finite NA is not only responsible for the changes due to the incidence angle averaging, but also due to the azimuthal 
angle averaging. As a result, depolarization effects will appear in the measured data to a greater extent near the azimuthal 
angle of 90°. 
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Figure 4. Spectral dependence (wavelength is in nanometers) of four non-zero elements of the Mueller matrix taken at 90°
azimuth for the reference grating (blue solid lines) and the artificial LER grating (red dash dotted lines).

The results of fitting the azimuthally dependent Mueller matrix data are shown in Fig. 5. Profiles acquired at azimuthal
angles from 0° to 90° (with a step of 10°) are plotted together to illustrate the stability of the fits and the consistency in
the profile shape. Figure 5 shows enormous stability of the middle line-width, which is usually the most precisely 
determined dimension using optical methods. In fact, changes of the middle line width values between different azimuths 
are in the sub-nanometer scale. It is possible to notice that the hardest parts of the profile to be determined (the most 
correlated values) correspond to the top and the bottom of the grating where, unlike for the middle line width, the
differences are noticeable. The main purpose of showing Fig. 5 is to illustrate the stability of the parameter determination 
which can be achieved for all possible configurations, not only for one selected, i.e., planar, configuration. The
advantage of using multiple azimuth configurations is that validity of the grating model can be tested; if it did not 
represent the true profile of the line, it is unlikely that the local minima of the fits would yield the same profile
parameters.
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Figure 5. Simultaneous plot of profiles fitted at ten different azimuthal angles from 0° to 90°.

The final results of our work are shown in Fig. 6. The figure represents RMSE values acquired using the same profile 
model for the reference and the perturbed gratings. We can see a consistent increase of RMSE values for the LER grating
as compared to the reference grating. The increase is not that large as was observed in our previous work on periodically 
designed LWR [5], but it is still evident. The absolute values of RMSE are larger than for the case in Ref. [5] and also 
ratios between RMSE differences and RMSE of the reference target are less favorable. In order to increase the contrast
between RMSE values acquired on the reference and the perturbed gratings, the further improvement of the model is 
required, which means more details need to be introduced into the profile parameterization, while avoiding unacceptable
correlations between parameters. Since the correlations between parameters were rather favorable, we believe that
further improvements are possible. We stress here that keeping consistency over all azimuthal configurations is 
important, as it helps us to avoid the pitfall of selecting a profile having smaller RMSE at certain azimuths but less stable
over other azimuths.

Figure 6. Azimuthal dependence of RMSE acquired by fitting reference (blue boxes) and artificially perturbed (red circles)
line gratings.
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5. CONCLUSIONS
We have demonstrated a study of spectroscopic Mueller matrix ellipsometry to pseudo-random LER. In order to 
systematically evaluate the sensitivity of the method, we have manufactured a near perfect grating (that is, small natural
LER) and artificially perturbed grating using a pseudo-random approach. The method involves using multiple azimuthal
configurations in order to provide information on the stability of the results. The first step was to determine a four-
trapezoid-based profile model for the reference grating, which, when finite numerical aperture is correctly taken into
account, corresponds well to the measured data and provide reasonable RMSE. In the next step, we applied the same
model to the artificially perturbed grating in order to see differences in RMSE. Indeed, a consistent increase of RMSE
for all azimuthal angles was observed confirming that we are sensitive to the manufactured LER. This conclusion is
important in the context of the presence of significant NA which generally decreases the sensitivity to LER. We have
also proposed that for further improvement of the sensitivity or the contrast between RMSE values acquired for the
reference and the artificial LER gratings, a more detailed model of the profile can be considered.
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