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Abstract. We define a general model capturing the behavior of a pop-
ulation of anonymous agents that interact in pairs. This model captures
some of the main features of opportunistic networks, in which nodes
(such as the ones of a mobile ad hoc networks) meet sporadically. For its
reminiscence to Population Protocol, we call our model Large-Population
Protocol, or LPP. We are interested in the design of LPPs enforcing, for
every ν ∈ [0, 1], a proportion ν of the agents to be in a specific subset
of marked states, when the size of the population grows to infinity; In
which case, we say that the protocol computes ν. We prove that, for
every ν ∈ [0, 1], ν is computable by a LPP if and only if ν is algebraic.
Our positive result is constructive. That is, we show how to construct,
for every algebraic number ν ∈ [0, 1], a protocol which computes ν.

1 Introduction

1.1 Motivation. So-called opportunistic networks (see, e.g., [32]) are char-
acterized by connections between users that appear sporadically, which are as
many opportunities for exchanging data or forwarding messages. As such, they
form a subclass of the so-called delay-tolerant networks (DTNs). A typical and
probably prominent example of opportunistic networks is sparse mobile ad hoc
networks, as analyzed in, e.g., the Zebra project [29], as well as in several other
projects aiming at understanding the potential of opportunistic networks [15,
27]. This paper is interested in the computing power of such networks.

More specifically, we are focussing on the slicing problem [28], which refers
to the ability of creating a virtualized network running over multiple physical
nodes, where the nodes are partitioned in multiple slices. Many metrics may be
used to sort the nodes for assigning them to different slices. Typical metrics are
available resources, such as memory, bandwidth, or computing power. However,
as underlined in [28], slicing the network by focusing only on the size of the slices,
also deserves to be investigated, for applications to systems involving devices
with similar resource capabilities. Independently from the context, we stress
that the slice sizes are usually expressed as a percentage of the network size.
Slicing algorithms in the literature are usually designed for peer-to-peer systems
in which powerful peers are capable of generating random numbers [28], or taking
advantage of a storage capacity proportional to the population size [23] or to the
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size of the neighborhood [22]. In this paper, we show how to slice the nodes of
opportunistic networks composed of tiny and simple devices, deterministically,
using only the basic resources of finite state agents, by taking benefits of the
randomized interactions between these agents.

To illustrate our objective, consider a population of nodes (e.g., sensors)
moving in a somewhat restricted environment. Assume moreover, for the sake
of simplifying the presentation and the analysis, that nodes meet uniformly at
random over time. Let us say one wants to slice these nodes into two slices of
equal size. The following trivial 2-state protocol achieves this. Nodes are either
in state positive or negative, and whenever two nodes meet, one of them becomes
positive while the other becomes negative. Nodes then tend over time to partition
themselves into two slices of equal size, when the size of the population grows
to infinity. As a more sophisticated example, assume that one wants to slice
the nodes in order to construct a slice such that the probability that two nodes
in this slice meet is 1/2. That is, one wants to slice the nodes into two slices,
with one slice amounting to a ratio 1/

√
2 of the total number of nodes. This

is ensured by the following 2-state protocol. Whenever two nodes meet, their
actions depend on their current states + or −: if the nodes are in different states
then both become positive; otherwise, one of them becomes positive while the
other becomes negative. This dynamic can be summarized by the four transition
rules:

+− → ++ ++ → +−
−+ → ++ −− → +− (1)

This protocol has been extensively analyzed in [14], where it is proved that the
proportion of positive nodes does converge to the desired ratio 1/

√
2 over time,

when the size of the population grows to infinity.

In some sense, the former protocol computes 1/2, while the latter protocol
computes 1/

√
2. One may of course be interested in computing other values. To

start with, beside 1/2, is it possible to compute every rational in [0, 1]? And
beside rationals, is the protocol for 1/

√
2 extendable to ratios of the form x−1/k

for every x ≥ 1 and k ≥ 2? More generally, what is the limit of such protocols
in term of their computing power? For instance, is it possible to compute solu-
tions of trigonometric equations? E.g., can we design a protocol insuring that,
asymptotically, a ratio π

4 of the nodes are in some prescribed state?

1.2 Framework. In order to determine the computing power of a collection
of nodes such as the ones involved in an opportunistic network, we abstract
our model from the specific technological constraints to be faced when one is
dealing with networks (security, forwarding mechanism, mobility, etc.). In fact,
a network applying a protocol such as the one in Eq. 1 can be considered as a
population protocol, in the spirit of the model introduced in [3]. Essentially, in
population protocols, nodes (or agents) are anonymous, their interactions are
supposed to be scheduled so as to satisfy some natural fairness property, and
their individual actions are independent from the size of the population.



Classical population protocols are however designed to compute predicates
over their input configuration whereas the protocol in Eq. 1 computes a (real)
value (i.e., the proportion of agents in positive state), independently from the
initial configuration. Another difference with classical population protocols is
that the result of our computation is asymptotic, when the size of the population
grows to infinity. These differences can be tackled by considering a setting that we
call Large-Population Protocols (LPPs), which is essentially population protocols
whose behaviors are analyzed when the population grows to infinity. In this
context, for any given number ν ∈ [0, 1], a LPP is said to compute ν if the
proportion of agents in some specific states, say the marked states, converges
over time to ν when the population grows to infinity.

We can now reformulate the question raised in the previous section slightly
more formally by: what can be computed by a LPP? More precisely, we ad-
dress the problem of determining which numbers can be computed by Large-
Population Protocols. That is, we are aiming at identifying the set of real num-
bers ν ∈ [0, 1] for which there exists a LPP computing ν.

1.3 Our results. We first define formally our model for Large-Population
Protocols (LPP). The model is quite general in the sense that it encompasses
all the models involving a “population” of agents, whenever they are dealing
with anonymous agents that interact in pairs. We then prove that the execution
of any LPP is well characterized by the behavior of a differential system. This
characterization can be considered similar to what is usually done in mean field
theory. However, we go beyond the simple application of mean field analysis by
completely formalizing the connection between the execution of a LPP and the
behavior of the corresponding differential system. Specifically, fix any protocol
P, and define X = X(n, t) as the random variables equal to the proportion of
agents in marked state at time t in a population of size n, during the execution
of P. We characterize the exact behavior of X when the size of population grows
to infinity. Essentially, we prove that, whenever the initial state is close enough
to a stable equilibrium, we have

X(n, t) ≈ f(t) +
1√
n
N (0, χ) (2)

where f is the solution of the differential system corresponding to P, N (0, χ) is
a centered gaussian with covariance matrix χ depending on P, and ≈ denotes a
convergence in law after an appropriate rescaling.

Using the correspondence between LPPs and differential systems, we char-
acterize the real numbers that are computable by LPPs as being all algebraic
numbers in [0, 1]. The fact that transcendental numbers cannot be computed by
LPPs is a consequence of arguments from model theory (mainly Tarski’s effec-
tive procedure for quantifier elimination over real closed fields). Our main result
is a proof that all algebraic numbers can be computed by LPPs. Our proof is
constructive, that is, for every algebraic number ν ∈ [0, 1] described by some
polynomial P , with rational coefficients, and satisfying P (ν) = 0, we show how
to construct a LPP computing ν in the sense of Eq. 2. That is, X(n, t) satisfies
the relation of Eq. 2, with limt→∞ f(t) = ν.



The algorithmic construction proceeds in four stages. The first stage con-
sists in constructing, for every rational ν, a LPP computing ν. The second
stage of the construction consists in a form of derandomization for LPP. More
precisely, we show that every protocol involving probabilistic transition rules
where each probability is rational can be transformed into a protocol involving
solely deterministic transition rules. Hence, the remaining two stages involve
protocols using probabilistic transition rules. The third stage is heavily based
on our characterization of LPP using differential systems. We construct a dif-
ferential system corresponding to a LPP, and admitting ν as an equilibrium.
This system is obtained by identifying a multivariate polynomial P̃ such that
P̃ (x1, . . . , xk) = P (x1) whenever xi = xi−1x1, where k is the degree of P . Inter-
estingly, P̃ is not P in which xi would be replaced by xi. Instead, P̃ is specifically
designed so that to yield a differential system which admits ν as an equilibrium,
that can be in turn transformed into a protocol with rational probabilistic tran-
sitions. The fourth and last stage of the construction involves stability. We show
how to modify the construction of the third stage to enforce that ν becomes a
stable equilibrium. This is achieved by carefully modifying the polynomial P̃ so
that the Routh-Hurwitz stability criterion can be applied, while preserving the
ability to translate the differential system into a LPP.

1.4 Related work. The model that we consider in this paper captures the
behavior of any large population of indistinguishable agents interacting in pairs
in a Markovian manner. This framework includes many models from nature,
physics, and biology (see, e.g., [31]). Several papers have already demonstrated
the benefit of using an algorithmic approach for understanding such models (see,
e.g., the recent papers [12, 18, 20]). Conversely, models from nature, physics, and
biology can be viewed as alternative paradigms of computation (see, e.g., [1, 11]).

Classical models for capturing the dynamics of populations include Lotka-
Volterra dynamics for predator-prey models, replicator dynamics, and, more
generally, all kinds of models from evolutionary game theory. In particular, it is
known that a subclass of protocols designed in the context of evolutionary game
theory correspond to Lotka Volterra dynamics [17], which are in turn known to
be equivalent to replicator dynamics [26]. The connections between the dynamics
of games and population protocols has been studied in [13, 17].

Population protocols have been introduced in [3]. The model was designed
to decide logic predicates, and predicates computable by classical population
protocols have been characterized [3, 4] as being precisely the semi-linear predi-
cates, that is, those predicates on counts of input agents definable in first-order
Presburger arithmetic. Variants of the original model considered so far include
restrictions on communications [2, 5], random interactions [3, 8, 7], and mediated
interactions [30]. Various kinds of fault tolerance have also been considered for
population protocols [6, 21]. We refer to [9] for a comprehensive introduction to
population protocols, and to [16, 19] for the description of formal methods for
verifying such protocols.

A few papers addressed the asymptotic behavior of population protocols,
when the population size grows to infinity. In [24], a framework for translating



certain subclasses of differential equation systems into practical protocols for
distributed systems, assuming a large population, is described. In [17], the au-
thors study the dynamics and the stability of (probabilistic) population protocols
via ordinary differential equations. [14] proves that there exists a close relation-
ship between, on the one hand, classical finite population protocols, and, on the
other hand, models obtained by ordinary differential equations. The protocol
computing 1/

√
2 described in Eq. 1 has been thoroughly studied in [14] where

convergence is proved using weak-convergence methods for stochastic processes.
In [10], the authors address the issue of convergence speed. It is proved that it
is possible to compute 1/

√
2 with arbitrary precision ε > 0 in a time polynomial

in 1/ε, using a number of agents polynomial in 1/ε.

2 Large-Population Protocols

In this section, we define Large-Population Protocols (LPP), and state formally
what is meant by computing with LPPs. The general idea of the model has been
introduced in [10] and [14]. The following subsection recalls the main features
of the model. Our first contribution is a formal specification of the asymptotic
behavior of a LPP.

2.1 The model. We consider a population of n anonymous agents, each of
which can be in finitely many possible states, from a finite set Q. This popula-
tion evolves with time. We assume a synchronous discrete-time system, and, at
each round, two agents a and b are selected among the n agents. The selection
is performed uniformly at random, independently from the past. Note that the
original population protocol model [3] just assumes a specific fairness hypothesis
for the interactions between the agents, which are under the control of an adver-
sary with restricted power. Nevertheless, when the size of the population goes
to infinity, uniform sampling of agents appears to be a natural way to extend
the fairness hypothesis used in classical population protocols. Moreover, uniform
sampling is consistent with the interpretation of agents as autonomous entities
moving at random. (See also [9] for a discussion on the random adversary in
finite state systems.)

The two agents a, b that are selected, can interact and change their states
according to a set ∆ of transition rules of the form qi qj → qk ql where (qk, ql) =
∆(qi, qj).

Note that the transition is not necessarily symmetric, i.e., the selected pair
(a, b) may cause a transition different from the one caused by the pair (b, a). In
other words, we do not necessarily assume ∆(qi, qj) = ∆(qj , qi). Let us identify
a specific subset Q+ of states of Q, say {q1, q2, · · · , qm}, to be the marked state,
and denote Q = {q1, q2, · · · , q|Q|}. The pair (Q,∆) entirely defines a protocol
P. Such a protocol is called large-population protocol because, informally, we
will say that P computes some given number ν if P enforces the proportion of
agents in states q ∈ Q+ to converge to ν along with time, when the size n of the
population grows to infinity.



To get some intuition of how to formally define computation, assume first
that n is fixed, and assume m = 1. The evolution (with time) of the population
can be modeled by a discrete-time homogeneous Markov chain whose states are
all the possible configurations of the system. For the sake of simplifying the dis-
cussion, assume first that the Markov chain is irreductible. (Whether it is the
case or not depends on the protocol P.) Let Yi(t) be the random variables equal
to the numbers of agents in state qi at time t, and let Y (t) = (Y1(t), . . . , Y|Q|(t)).

Let us now consider the Markov chain defined by Y (t) = 1
n (Y1(t), · · · , Y|Q|(t)).

A consequence of the Ergodic Theorem (this is where we use the irreducibility
assumption) is that the chain Y (t) admits a unique stationary distribution, say
µ = (µ1, µ2, . . . , µ|Q|). Hence, for any initial state of the population, the distribu-

tion of Y (t) converges to µ when t goes to infinity. In particular, the distribution
of Y 1(t), the proportion of agents in the marked state q1 at time t, converges to
the distribution µ1 when t goes to infinity. As a consequence, the expected value
of Y 1(t) converges to the expected value Eµ1 of µ1. Intuitively, we are interested
in the limit of Eµ1 when n grows to infinity. The difficulty comes from the fact
that a protocol is dealing with Y 1(t), which depends on both t and n. The study
of this double limit must be treated with care in the general case, which is the
purpose of the remainder of this section.

Notice that the limit of Eµ1 can be a non-rational real number, whereas,
when n is fixed, the expected value of µ1 is necessarily a rational number since,
for every i, we have Y i(t) ∈

{
1
n , . . . ,

n
n

}
. So Y i(t) is a Markov chain over this

latter set. As a consequence, the distribution µi is a distribution over this latter
set. Since the stationary distribution µ is the solution of a set of linear equations
with rational coefficients, µ is necessarily weighting the elements of

{
1
n , . . . ,

n
n

}
with rational quantities. In particular, the expected value of µ1 satisfies Eµ1 =∑n
i=1 µ1( in ) · in , and thus is a rational number.
To handle the growth of the population, one must perform a time rescaling.

Let us redefine the notations so that to capture explicitely the size n of the

population. Let Y
(n)
i (t) be the random variable equal to the numbers of agents

in state qi at time t in a population of size n, and let Y
(n)

i (t) = 1
n · Y

(n)
i (t). Let

Y
(n)

(t) = (Y
(n)

1 (t), . . . , Y
(n)

|Q|(t)). Then let

X(n)(t) = Y
(n)

(bntc) + (nt− bntc) · (Y (n)
(bnt+ 1c)− Y (n)

(bntc)).

By definition, X(n)(t) is a continuous-time Markov chain obtained by linear

interpolation of Y
(n)

with a time-acceleration of factor n. After rescaling, the
number of interactions occurring in one time-unit is proportional to the number
of agents in the population. To capture the asymptotic behavior of X(n)(t),
we use a balance equation. Let (eq)q∈Q be the canonical base of R|Q|, and let
b : R|Q| → R|Q| be the function defined by:

b(x) =
∑

(q1,q2)∈Q2

(
xq1xq2

(
− eq1 − eq2 +

∑
(q3,q4)∈Q2

δq1,q2,q3,q4(eq3 + eq4)
))

(3)

where δq1,q2,q3,q4 = 1 if ∆(q1, q2) = (q3, q4), and 0 otherwise. The function b
acts as a balance equation. That is, assuming that the proportion of agents in



state q is xq ∈ R for every q ∈ Q, then one expects each rule qi qj → qk ql to
happen with probability xqixqj . Accounting for this balance for all rules, and
considering that all produced states must be consumed by some rule, yield that
if the proportion of states converges to some equilibrium x, then this equilibrium
must satisfy b(x) = 0. The following has been proved in [14].

Lemma 1 (Theorem 4 of [14]). For every initial condition Y (n)(0) with
Y (n)(0) → x when n→∞, the sequence of random processes X(n) converges
in law to the solution of the stochastic differential equation (with degenerated
brownian motion): dX(t) = b(X(t))dt, with X(0) = x.

2.2 Computing with LPPs. In view of Lemma 1, we get that the behavior
of a protocol can be well approached by an ordinary differential equation, when
the size of the population becomes large. In particular, if x∗ is some stable equi-

librium of the differential equation, then one expects Y
(n)

(t) to converge to x∗

whenever it starts close enough to x∗. Unfortunately, the notion of convergence
involved in Lemma 1 (i.e., convergence in law) is too weak to derive this con-
clusion directly. On the other hand, it is actually possible to go further in the
analysis of population protocol, in order to provide a deeper understanding of
the convergence. By doing so, we are able to provide an asymptotic development

for Y
(n)

(t), as stated in the following result.

Theorem 1. Assume that the ordinary differential in Lemma 1 has a stable
equilibrium b(x∗) = 0. Then there exists a neighborhood of x∗ such that, whenever

Y
(n)

(0) belongs to this neighborhood, we have Y
(n)

(t) ≈ x∗ + 1√
n
N (0, χ) when

t → ∞, where N (0, χ) is the centered gaussian distribution with covariance
matrix χ, for some χ, and ≈ denotes convergence in law of the rescaling of

Y
(n)

(t) when t→∞.

By an adaptation of the arguments in [10], one can also show that if the
ordinary differential equation in Lemma 1 has a stable equilibrium b(x∗) = 0,
then, for every ε > 0, and for every 0 < p < 1, there is a neighborhood U of
x∗ and some integers n and t, both polynomial in 1/ε, which guarantee that,

with probability at least p, we have ‖Y (n)
(t) − x∗‖ ≤ ε whenever the initial

configuration belongs to U .
We have now all ingredients to formally define computing with LPPs.
Let P = (Q,∆) be a LPP. A vector of real numbers x∗ = (x1, . . . , x|Q|) ∈

[0, 1]|Q| is said to be an equilibrium of a P if and only if b(x∗) = 0, that is to
say the constant solution f(t) = (x1, . . . , x|Q|) is a fix-point solution of the dif-
ferential equation in Lemma 1. An equilibrium x∗ of P is said to be stable if it
is the (exponentially) stable equilibrium of the associated ordinary differential
equation. In other words, there is a neighborhood U of the equilibrium x∗ such
that any trajectory starting from U converges exponentially fast to the equilib-
rium. This is equivalent to saying that the Eigenvalues of the Jacobian matrix
of b in x∗ has negative real parts [25].



Definition 1. A real number ν is said to be computable by LPP if there exists
a vector x∗ = (x1, x2, ..., xk) ∈ [0, 1]k such that

∑k
i=1 xi = 1, and a LPP P,

admitting finitely many equilibria, such that (x1, x2, ..., xk) is a stable equilibrium
of P and

∑
qi∈Q+ xi = ν where Q+ is the set of marked states for P.

Notice that the above definition requires the system to have finitely many
equilibria. This assumption is mainly to avoid pathological cases, in particular
the case of idle systems q q′ → q q′ for all q, q′. Indeed, in idle systems, all
initial states are equilibria, and such a system would compute any real of [0, 1],
depending on the initial configuration.

3 The computational power of LPPs

In this section, we establish our main result:

Theorem 2. Every ν ∈ [0, 1] is computable by a LPP if and only if it is alge-
braic.

We first prove that there is an intrinsic limitation to the power of LPPs,
namely not a single transcendental number can be computed by LPPs. Indeed,
a direct consequence of arguments from model theory (mainly Tarski’s effective
procedure for quantifier elimination over real closed fields) allows us to prove
the following lemma:

Lemma 2. For every ν ∈ [0, 1], if ν is computable by a LPP then ν is algebraic.

The remaining part of the section is entirely dedicated to proving that every
algebraic number is indeed computable by a LPP. The proof is constructive,
meaning that we describe how to construct a LPP computing ν, for any given
algebraic number ν ∈ [0, 1]. The construction of the protocol is made in four
stages, corresponding to the following four subsections. The first stage consists
in the design of LPPs computing rational numbers. The second stage consists
in using the computation of rational numbers as a subroutine for the emulation
of probabilistic transition rules. This stage will allow us to consider LPPs with
transition rules of the form

qi qj → αi,j,k,l qk ql

to be understood as: the interaction between two agents in respective states
qi and qj results in the two agents moving to respective states qk and ql with
probability αi,j,k,l. Then, the third stage of our proof is the construction of a
(probabilistic) protocol P admitting ν as an equilibrium. We assume we are
given a degree-δ polynomial P ∈ Q[X] with root ν. The protocol P is based
on one specific choice for another degree-δ polynomial P ′ ∈ Q[X], and, essen-
tially, satisfies that (x1, . . . , xδ) ∈ [0, 1]δ is an equilibrium of P if and only if (1)

P ′(x1) = 0, (2) xi = xi1 for every 1 ≤ i < δ, and (3) xδ = 1 −
∑δ
i=1 xi. Finally,

the fourth stage of the construction consists in proving that we can actually
enforce this protocol P to be stable near the equilibrium.



3.1 Computing Rationals.

Lemma 3. Let ν ∈ [0, 1] be a rational number. There exists a LPP computing ν.

Proof. We first show that, for every integer k ∈ N, there exists a protocol that,
given any initial configuration, converges to the unique equilibrium ( 1

k , . . . ,
1
k ).

For this purpose, consider the protocol M over states Qk = {1, . . . , k} given by
the following transition rules: i j → (i+1) (j+1) where, for q ∈ Qk, q+1 stands
for (q mod k) + 1. The dynamic system describing this protocol is

dxi
dt

= 2(xi−1 − xi).

If f : R → [0, 1]k is a solution of this differential system, then, considering
g(t) = ‖f(t)− ( 1

k , . . . ,
1
k )‖2, where ‖x‖ is the euclidian norm of vector x, we get

dg(t)

dt
= 4

k∑
i=1

xi(xi−1 − xi).

A simple induction on k ∈ N enables to show that dg(t)
dt ≤ 0 for every vector

x ∈ [0, 1]k, and dg(t)
dt = 0 if and only if x1 = x2 = . . . = xk, thereby proving

that f converges to ( 1
k , · · · ,

1
k ) when t→∞. This, in particular, guarantees that

( 1
k , . . . ,

1
k ) is the only stable equilibrium of M.

Now, let ν = p/q ∈ Q. Computing ν is achieved by using M as above, with
k = q, and setting marked states as the first p states of Q. ut

3.2 Derandomization. We now prove that considering LPPs with proba-
bilistic transition rules where the probabilities are rational does not change the
computing power of LPPs. Note that this result has its own independent interest.
It essentially says that the random choice of the agents involved in the transition
provides enough randomness, and that there are no further benefits from using
randomization in the transition rules. Nevertheless, using probabilistic LPPs, or
PLPPs for short, considerably simplifies the construction of LPPs computing
algebraic numbers.

We focus on PLPPs, where the transition rules are defined by

qi qj → αi,j,k,l qk ql

where all αi,j,k,l are rational numbers1. Recall that such probabilistic transition
rules mean that an interacting pair of agents in respective states qi and qj will
move to respective states qk and ql, with probability αi,j,k,l. Of course, for such
rules to be well-defined, we assume that for every pair (qi, qj) ∈ Q2, we have

– for every (qk, ql) ∈ Q2, αi,j,k,l ≥ 0, and
–
∑

(qk,ql)∈Q2 αi,j,k,l = 1.

1 In fact, our derandomization technique could be extended to the case in which the
αi,j,k,l are computable by a LPP. This would however overload the presentation, and
the stronger assumption that αi,j,k,l ∈ Q is anyway sufficient for our purpose.



Notice that all previous definitions and statements can be easily extended to
PLPPs. In particular, Lemma 1 and Theorem 1 still hold, by replacing function
b in Eq. 3 by

b(x) =
∑

(q1,q2)∈Q2

xq1xq2

(
− eq1 − eq2 +

∑
(q3,q4)∈Q2

αq1,q2,q3,q4(eq3 + eq4)
)
.

Lemma 4. Let ν ∈ [0, 1], and assume that there exists a probabilistic LPP com-
puting ν, with rational probabilities. Then there exists a (deterministic) LPP
computing ν.

3.3 Constructing Equilibria. In view of the previous two subsections, one
can freely use probabilistic LPPs, whenever the probabilities are rational, in
order to compute any algebraic number ν ∈ [0, 1]. In this section, we will not
yet produce a probabilistic LPPs computing an algebraic number ν, as we will
ignore stability which is only discussed in the next section, and solely focus on
constructing a protocol with ν as an equilibrium.

Lemma 5. For every algebraic number ν ∈ [0, 1], there exist δ ∈ N, λ ∈ Q,

and a protocol P such that (ν, λν2, λ2ν3, . . . , λδ−2νδ−1, 1 −
∑δ−1
i=1 λ

i−1νi) is an
equilibrium of P.

Proof. Let ν ∈ (0, 1] be an algebraic number, and let P (X) =
∑δ
i=0 aiX

i, P ∈
Q[X], be a polynomial such that P (ν) = 0, and P (0) > 0. We claim that there ex-
ist a rational number ε 6= 0, and a protocol Pε with equilibrium (ν, λν2, λ2ν3, . . .

. . . , λδ−2νδ−1, 1−
∑δ−1
i=1 λ

i−1νi) described by the following differential equations:dx1 = ε(a0 + a1x1 +
∑δ−1
i=2

ai+1

λi−1xi−1x1)
dxi = λx1xi−1 − xi for every i = 2, . . . , δ − 1

dxδ = −
∑δ−1
i=1 dxi.

(4)

where λ is a rational number such that λ > 0, and
∑δ−1
i=1 λ

i−1νi ≤ 1. To establish
that claim, we explicitly construct a protocol Pε over set of states Q = {1, . . . , δ}
with 1 serving as our marked state. Fix λ ∈ Q, λ > 0 small enough, so that∑δ−1
i=1 λ

i−1νi ≤ 1. Then let

M = max
(
{|ai+1

λi−1
+ 2a0 + a1|, i ∈ {2, ..., δ − 1}} ∪ {|a2 + a0 + a1|, |2a0 + a1|, a0}

)
and fix ε ∈ Q, 0 < ε < 1

M (1 − λ
2 ). We define the family (αi,j,k,l)1≤i,j,k,l≤δ, that

yields the transition rules for the protocol Pε as follows:



i = 1, j = 1 =⇒ α1,1,1,1 = ε a2+a1+a0
2

+ 1
2

and α1,1,2,2 = λ
2

i = 1, 1 < j < δ − 1 =⇒ α1,j,1,1 = ε
aj+1

λj−1 +2a0+a1

4
+ 1

2
and α1,j,j+1,j+1 = λ

4

i = 1, j = δ − 1 =⇒ α1,j,1,1 = ε
2aδ
kδ−2 +2a0+a1

4
+ 1

2

i = 1, j = δ =⇒ α1,j,1,1 = ε 2a0+a1
4

+ 1
2

1 < i < δ − 1, j = 1 =⇒ αi,1,1,1 = ε
ai+1

λi−1 +2a0+a1

4
+ 1

2
and αi,1,i+1,i+1 = λ

4

i = δ − 1, j = 1 =⇒ αi,1,1,1 = ε
2aδ
kδ−2 +2a0+a1

4
+ 1

2

i = δ, j = 1 =⇒ αi,1,1,1 = ε 2a0+a1
4

+ 1
2

i > 1, j > 1 =⇒ αi,j,1,1 = ε a0
2



And, for all (k, l) 6= (δ, δ) not considered above, we set αi,j,k,l = 0. Finally, if
(k, l) = (δ, δ), then αi,j,δ,δ = 1−

∑
(k,l)6=(δ,δ) αi,j,k,l.

By definition of M and ε, it follows that, for any pair (i, j), if (k, l) 6= (δ, δ),
then 0 ≤ αi,j,k,l ≤ 1. Moreover, we have 0 ≤

∑
(k,l)6=(δ,δ) αi,j,k,l ≤ 1. Thus, for

every (i, j), 0 ≤ αi,j,δ,δ ≤ 1. Therefore, the family (αi,j,k,l) properly defines a
protocol Pε. We now show that this protocol satisfies our needs. By construction,
the dynamic of Pε is captured by the following system :

∀k ∈ {1, . . . , δ}, dxk =

δ∑
l=1

∑
i,j

(αi,j,k,l + αi,j,l,k)xixj − xk

which precisely yields Eq. 4. ut

3.4. Enforcing Stability. Perhaps surprisingly, stability does not come for
free, and the construction of the previous section is not sufficient to conclude.
One needs to enforce stability. For that purpose, the protocol of the previous
section is modified in order to satisfy the stability criteria from the theory of
dynamic systems. The following result completes the proof of Theorem 2.

Lemma 6. For every algebraic number ν ∈ [0, 1], there exist δ ∈ N, λ ∈ Q, and

a protocol P such that (ν, λν2, λ2ν3, . . . , λδ−2νδ−1, 1−
∑δ−1
i=1 λ

i−1νi) is a stable
equilibrium of P.
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