Olivier Bournez
email: olivier.bournez@lix.polytechnique.fr

Nachum Dershowitz
email: nachum.dershowitz@cs.tau.ac.il

Evgenia Falkovich
email: jenny.falkovich@gmail.com

Towards an Axiomatization of Simple Analog Algorithms -Preliminary Version

Keywords:

We propose a formalization of analog algorithms, extending the framework of abstract state machines to continuous-time models of computation.

The states of 'continuous' machinery . . . form a continuous manifold, and the behaviour of the machine is described by a curve on this manifold. All machinery can be regarded as continuous, but when it is possible to regard it as discrete it is usually best to do so.

The property of being 'discrete' is only an advantage for the theoretical investigator, and serves no evolutionary purpose, so we could not expect Nature to assist us by producing truly 'discrete' brains.

Introduction

We seek to gain an understanding of the fundamentals of analog systems, that is, systems that operate in continuous (real) time and with real values. Several different approaches have been taken in the pursuit of continuous-time models of computation. One is inspired by continuous-time analog machines, and has its roots in models of natural or artificial analog machinery. An alternate approach, one that can be referred to as inspired by continuous-time system theories, is broader in scope, and derives from research in systems theory done from a computational perspective. Hybrid systems and automata theory, for example, are two such sources of inspiration. See the survey in [START_REF] Bournez | A survey on continuous time computations[END_REF].

At the outset, continuous-time computation theory was mainly concerned with analog machines. Determining which systems should actually be considered to be algorithmic in nature is an intriguing question and relates to philosophical discussions about what constitutes a programmable machine. All the same, there are a number of early examples of actual analog devices that are generally accepted to be programmable. These include Pascal's 1642 Pascaline [START_REF] Coward | Doug Coward's Analog Computer Museum[END_REF], Hermann's 1814 Planimeter, Bush's landmark 1931 Differential Analyzer [START_REF] Bush | The differential analyser[END_REF], as well as Bill Phillips' 1949 water-run Financephalograph [START_REF]MONIAC computer[END_REF]. Continuous-time computational models also include neural networks and systems that can be built using electronic analog devices. Such systems begin in some initial state and evolve over time in response to input signals. Results are read off from the evolving state and/or from a terminal state.

Another line of development of continuous-time models was motivated by hybrid systems, particularly by questions related to the hardness of their verification and control. In this case, the models are not seen as models of necessarily analog machines, but, rather, as abstractions of systems about which one would like to establish some properties or derive verification algorithms.

Our goal is to capture all such models within one uniform notion of computation and of algorithm. The most interesting case is the hybrid one, where the system's dynamics change in response to changing conditions, so there are discrete transitions as well as continuous ones. To that end, we adopt some of the ideas embodied in Gurevich's abstract-state machine formalism for discrete algorithms [START_REF] Gurevich | Evolving algebras 1993[END_REF].

Abstract state machines (ASMs) constitute a most general model of sequential digital computation, one that can operate on any level of abstraction of data structures and native operations. It has been shown [START_REF] Gurevich | Sequential abstract-state machines capture sequential algorithms[END_REF] that any algorithm that satisfies three "Sequential Postulates" can be step-by-step emulated by an ASM. These postulates formalize the following intuitions: (I) one is dealing with discrete, deterministic state-transition systems; (II) the information in states suffices to determine future transitions and may be captured by logical structures that respect isomorphisms; and (III) transitions are governed by the values of a finite and input-independent set of (variable-free) terms. All notions of algorithms for classical discrete-time models of computation in computer science, like Turing machines, random-access memory (RAM) machines, as well as classical extensions of them, including oracle Turing machines, alternating Turing machines, and the like, fall under the purview of the Sequential Postulates. This provides a basis for deriving computability theory, or even complexity theory, upon these very basic axioms about what an algorithm really is. In particular, adding a fourth axiom about initial states, yields a way to derive a proof of the Church-Turing Thesis [START_REF] Boker | The Church-Turing Thesis over arbitrary domains[END_REF][START_REF] Dershowitz | A natural axiomatization of computability and proof of Church's Thesis[END_REF][START_REF] Boker | Fields of Logic and Computation: Essays Dedicated to Gurevich, Y. on the Occasion of His 70th Birth[END_REF], as well as its extended version about relative complexity [START_REF] Dershowitz | A formalization and proof of the Extended Church-Turing Thesis[END_REF].

Capturing the notion of algorithmic computation for analog systems is a first step towards a better understanding of computability theory for continuous-time systems. Even this first step is a non-trivial task. Some work in this direction has been done for simple signals. See, for example, [START_REF] Cohen | On implementations of instantaneous actions real-time ASM by ASM with delays[END_REF][START_REF] Cohen | Implementation of sturdy real-time abstract state machines by machines with delays[END_REF] for an approach within the abstract-state machine framework. An interesting approach to specifying some continuous-time evolutions, based on abstract state machines and using infinitesimals, is [START_REF] Rust | Hybrid abstract state machines: Using the hyperreals for describing continuous changes in a discrete notation[END_REF]. However, a comprehensive framework, capturing general analog systems seems to be wanting. See [START_REF] Bournez | A survey on continuous time computations[END_REF] for a discussion of the diverse analog computability theories.

In this work, we adapt and extend ideas from work on ASMs to the analog case, that is to say, from notions of algorithms for digital models to analogous notions for analog systems. We go beyond the easier issue of "continuous space", that is, discrete-time models or algorithms with real-valued operations, since these have already been made to fit comfortably within the ASM framework, for which, see [START_REF] Blass | Exact exploration and hanging algorithms[END_REF]. Indeed, algorithms for discrete-time analog models, like algorithms for the Blum-Shub-Smale model of computation [START_REF] Blum | On a theory of computation and complexity over the real numbers: NP completeness, recursive functions and universal machines[END_REF], can be covered in this setting. The geometric constructions in [START_REF] Reisig | On Gurevich's theorem on sequential algorithms[END_REF] are simple (loop-free) examples of continuous-space algorithms.

In the next section, we introduce dynamical transition systems, defining signals and transition systems. In Sect. 3, we introduce abstract dynamical systems. Next, in Sect. [START_REF] Boker | The Church-Turing Thesis over arbitrary domains[END_REF], we define what an algorithmic dynamical system is. Then, in Sect. 5, we define analog programs and provide some examples, followed by a brief conclusion.

Dynamical Transition Systems

Analog systems may be thought of as "states" that evolve over "time". The systems we deal with receive inputs, called "signals", but do not otherwise interact with their environment.

Signals

Typically, a signal is a function from an interval of time to a "domain" value, or to a tuple of atomic domain values. For simplicity, we will presume that signals are indexed by real-valued time T = R, are defined only for a finite initial (open or closed) segment of T, and take values in some domain D. Usually, the domain is more complicated than simple real numbers; it could be something like a tuple of infinitesimal signals. Every signal u : T ⇀ D has a length, denoted |u|, such that u(j) is undefined beyond |u|. To be more precise, the length of signals that are defined on any of the intervals (0, ℓ), [0, ℓ), (0, ℓ], [0, ℓ] is ℓ. In particular, the length of the (always undefined) empty signal, ε, is 0, as is the length of any point signal, defined only at moment 0.

The concatenation of signals is denoted by juxtaposition, and is defined as expected, except that concatenation of a right-closed signal with a left-closed one is only defined if they agree on the signal value at those closed ends, and concatenation is not defined if they are both open at the point of concatenation. The empty signal ε is a neutral element of the concatenation operation.

Let U be the set of signals for some particular domain

D. The prefix relation on signals, u ≤ v, holds if there is a w ∈ U such that v = u w. As usual, we write u < v for proper prefixes (u ≤ v but u = v). It follows that ε ≤ u ≤ uw for all signals u, w ∈ U. And, u ≤ v implies |u| ≤ |v|, for all u, v.

Transition Systems

Definition 1 (Transition System). A transition system S, S 0 , U, T consists of the following:

-A nonempty set (or class) S of states with a nonempty subset (or subclass) S 0 ⊆ S of initial states. -A set U of input signals over some domain D.

-A U-indexed family T = {τ u } u∈U of state transformations τ u : S → S.

Initial states might, for example, differ in the values of parameters, such as initial values.

It will be convenient to abbreviate τ u (X) as just X u , the state of the system after receiving the signal u, having started in state X. We will also use X u as an abbreviation for the trajectory {X v } v<u , describing the past evolution of the state.

For simplicity, we are assuming that the system is deterministic. Note that the classical ASM framework for digital algorithms, though initially defined for deterministic systems, has been extended to nondeterministic transitions in [START_REF] Gurevich | On bounded exploration and bounded nondeterminism[END_REF][START_REF] Glausch | A semantic characterization of unbounded-nondeterministic abstract state machines[END_REF].

Should one want to model the possibility of terminal states, then the transformations would be partial functions τ u : S ⇀ S. We gloss over this distinction in what follows.

Definition 2 (Dynamical System). A dynamical system S, S 0 , U, T is a transition system, where the transformations satisfy

τ uv = τ v • τ u ,
for all u, v ∈ U, and where τ ε is the identity function on states.

This implies that X uv = (X u) v .
It follows from this definition that τ (uv)w = τ u(vw) , since composition is associative. It also follows that instantaneous transitions are idempotent. That is, τ a • τ a = τ a , for point signal a, because then aa = a.

Abstract Dynamical Systems

Abstract States

A vocabulary V is a finite collection of fixed-arity function symbols, some of which may be tagged relational. A term whose outermost function name is relational is termed Boolean.

Definition 3 (Abstract Transition System

). An abstract transition system is a dynamical transition system whose states S are (first-order) structures over some finite vocabulary V, such that the following hold:

(a) States are closed under isomorphism, so if X ∈ S is a state of the system, then any structure Y isomorphic to X is also a state in S, and Y is an initial state if X is. (b) Input signals are closed under isomorphism, so if u ∈ U is a signal of the system, then any signal v isomorphic to u (that is, maps to isomorphic values) is also a signal in U.

(c) Transformations preserve the domain (base set); that is, Dom X u = Dom X for every state X ∈ S and signal u ∈ U.

(d) Transformations respect isomorphisms, so, if X ∼ =ζ Y is an isomorphism of states X, Y ∈ S, and u ∼ =ζ v is the corresponding isomorphism of input signals u, v ∈ U, then X u ∼ =ζ Y v .
In particular, system evolution is causal ("retrospective"): a state at any given moment is completely determined by past history and the current input signal. This is analogous to the Abstract State Postulate for discrete algorithms, as formulated in [START_REF] Gurevich | Sequential abstract-state machines capture sequential algorithms[END_REF], except that subsequent states X u depend on the whole signal u, not just the prior state X and current input.

To keep matters simple, we are assuming (unrealistically) that all operations are total. Instead, we simply model partiality by including some undefined element ⊥ in domains. See, however, the development in [START_REF] Blass | Exact exploration and hanging algorithms[END_REF].

Vocabularies. We will assume that the vocabularies of all states include the Boolean truth constants, the standard Boolean operations, equality, and function composition, and that these are always given their standard interpretations. We treat predicates as truth-valued functions, so states may be viewed as algebras.

There are idealized models of computation with reals, such as the BSS model [START_REF] Blum | On a theory of computation and complexity over the real numbers: NP completeness, recursive functions and universal machines[END_REF], for which true equality of reals is available in all states. On the other hand, there are also models of computable reals, for which "numbers" are functions that approximate the idealized number to any desired degree of accuracy, and in which only partial equality is available. See [START_REF] Blass | Exact exploration and hanging algorithms[END_REF] for how to extend the abstractstate-machine framework to deal faithfully with such cases.

Locations in States

Locations. Since a state X is a structure, it interprets function symbols in V, assigning a value b from Dom X to the location f (a 1 , . . . , a k) in X for every k-ary symbol f ∈ V and values a 1 , . . . , a k taken from Dom X. In this way, state X assigns a value t X ∈ Dom X to any ground term t over V. Similarly, a state X assigns the appropriate function value f X to each symbol f ∈ V.

States. It is convenient to view each state as a collection of the graphs of its operations, given in the form of a set of location-value pairs. We adopt the convention of writing f (a 1 , . . . , a k) → b, where f (a 1 , . . . , a k) is a location in state X, specified by the operation f ∈ V and elements a 1 , . . . , a k ∈ Dom X, and b ∈ Dom X is the value assigned by the state to that operation f at that point (a 1 , . . . , a k). This convention allows us to apply set operations to states, without ambiguity.

Updates of States

We need to capture the changes to a state that are engendered by a system. For a given abstract transition system, define its update function ∆ as follows:

∆(X) = λu. X u \ X
We write ∆ u (X) for ∆(X)(u). The trajectory of a system may be recovered from its update function, as follows:

X u = (X \ ∇ u (X)) ∪ ∆ u (X) where ∇ u (X) := {ℓ → ℓ X : ℓ → b ∈ ∆ u (X)
for some b} are the location-value pairs in X that are updated by ∆ u .

Algorithmic Dynamic Systems

We say that states X and Y agree, with respect to a set of terms T , if s X = s Y for all s ∈ T . This will be abbreviated X = T Y . We also say that states X and Y are similar, with respect to a set of terms T , if or all terms s, t ∈ T , we have s X = t X iff s Y = t Y . This will be abbreviated X ∼ T Y .

Algorithmicity

The current state, "modulo" its critical terms, unambiguously determines future states.

Definition 4 (Algorithmic Transitions

). An abstract transition system with states S over vocabulary V is algorithmic if there is a fixed finite set T of critical terms over V, such that ∆ u (X) = ∆ u (Y) for any two of its states X, Y ∈ S and signal u ∈ U, whenever X and Y agree on T . In symbols:

X = T Y ⇒ ∆ u (X) = ∆ u (Y) .
This implies

X u = T Y u ⇒ ∆ u (X) = ∆ u (Y) .
Furthermore, similarity should be preserved:

X u ∼ T Y v ⇒ X ua ∼ T Y va ,
where a ∈ U is any point signal (|a| = 0).

Following the reasoning in [15, Lemma 6.2], every new value assigned by ∆ u (X) to a location in state X is the value of some critical term. That is, if ℓ → b ∈ ∆ u (X), then b = t X for some critical t ∈ T . Proposition 1. Every new value assigned by ∆ u (X) to a location in state X is the value of some critical term. That is, if ℓ → b ∈ ∆ u (X), then b = t X for some critical t ∈ T .

Proof. By contradiction, assume that some b is not critical. Let Y be the structure isomorphic to X that is obtained from X by replacing b with a fresh element b ′ . By the abstract-state postulate, Y is a state. Check that t Y = t X for every critical term t. By the choice of T , ∆ u (Y) equals ∆ u (X) and therefore contains b in some update. But b does not occur in Y . By (the inalterable-base-set part of) the abstract-state postulate, b does not occur in Y u either. Hence it cannot occur in ∆ u (Y) = Y u \ Y . This gives the desired contradiction.

Agreeability of states is preserved by algorithmic transitions:

Lemma 1. For an algorithmic transition system with critical terms T , it is the case that

X = T Y ⇒ X u = T Y u
for any states X, Y ∈ S and input signal u ∈ U.

Flows and Jumps

A "jump" in a trajectory is a change in the dynamics of the system, in contrast with "flows", during which the dynamics are fixed. Formally, a jump corresponds to a change in the equivalences between critical terms, whereas, when the trajectory "flows", equivalences between critical terms are kept invariant. Accordingly, we will say that a trajectory X u flows if all intermediate states X w and X v (ǫ < w < v < u) are similar. It jumps at its end if there is no prefix w < u such that all intermediate X v , w < v < u, are similar to X u . It jumps at its beginning if there is no prefix w ≤ u such that all intermediate X v , ǫ < v < w, are similar to X.

Analgorithms

Putting everything together, we have arrived at the following.

Definition 5 (Analog Algorithm

). An analog algorithm (or "analgorithm") is an algorithmic (abstract) transition system, such that no trajectory has more than a finite number of (prefixes that end in) jumps.

In other words, an analog algorithm is a signal-indexed deterministic statetransition system (Definitions 1 and 2), whose states are algebras that respect isomorphisms (Definition 3), whose transitions are governed by the values of a fixed finite set of terms (Definition 4), and whose trajectories do not change dynamics infinitely often (Definition 5).

Properties

System evolution is causal ("retrospective"): a state at any given moment is completely determined by past history and the current input signal.

Theorem 1. For any analog algorithm, the trajectory can be recovered from the immediate past (or updates from the past). In other words, X u , for right-closed signal u, can be obtained (up to isomorphism) as a function of X u (that is, the X v , for v < u) plus the final input u * .

In fact, X u depends on arbitrarily small segments X u(t,|u|) , t < |u|, of past history.

Proof. This is a direct consequence of Definition 3.

⊓ ⊔

Further Considerations

It might also make sense to disallow the value given to a location ℓ at some time t to depend on infinitely many prior changes. For example, one would not want the value of f (t) to be set at every moment t to 2f (t/2). Rather, the value of every location ℓ at moment t should be determined by values provided by the signal at time t and by values of locations in the state that are "stable" at t. By stable, we mean that there is a non-empty interval of time up to t in which its value is constant. Furthermore, this temporal dependency of locations should be well-founded. It may happen that the system of equations that controls transitions has a critical non-unique solution for the given initial conditions. For example, the equation y ′ (x) 2 = 4y(x), restricted to the initial condition y(0) = 0, has two distinct solutions, namely, y ≡ 0 and y = x 2 . In this case, we would want to add some continuity constraint. We would want to require that a choice of the solution made in the initial state is not changed for the whole trajectory governed by that equation.

Programs

Definition Definition 6 (Analog Program

). An analog program P over a vocabulary V is a finite text, taking one of the following forms:

-A constraint statement v 1 , . . . , v n such that C, where C is a Boolean condition over V and the v i are terms over V (usually subterms of C) whose values may change in connection with execution of this statement.

-A parallel statement [P 1 • • • P n] (n ≥ 0)
, where each of the P i is an analog program over V. (If n = 0, this is "do nothing" or "skip".) -A conditional statement if C then P , where C is a Boolean condition over V, and P is an ASM program over V.

We can use an assignment statement f (s 1 , . . . , s n) := t as an abbreviation for f (s 1 , . . . , s n) such that f (s 1 , . . . , s n) = t. But bear in mind that the result is instantaneous, so that x := 2x is tantamount to x := 0, regardless of the prior value of x. Similarly, x := x + 1 is only possible if the domain includes an "infinite" value ∞ for which ∞ = ∞ + 1.

Semantics

In the simple case, where the changes in state at time t depend only on the current signal u and state X, we can envision the following sequence of events:

(a) All non-stable locations in X (see Sect. 4.5) have undefined values. (b) The signal sets the value of location ı, yielding X ′ . (c) Critical terms are evaluated in X ′ . (Only relevant terms need be evaluated, per [START_REF] Blass | Exact exploration and hanging algorithms[END_REF].) This may involve looking up the values of pre-defined "static" operations in the state, like multiplication or division. (d) All conditionals are evaluated, yielding a set of enabled constraints. (e) All enabled constraints are solved (deterministically, we are assuming). In the explicit case, this means that all enabled assignments are "executed" in parallel, yielding a resultant state X ′′ .

Examples

To begin with, consider analog algorithms that are purely flow, that is to say without any jumps. Flow programs invoke a time parameter, which we assume is supplied by the input signal. In simple continuous-time systems, the state evolves continually, governed by ordinary differential equations, say. For example, the motion of an idealized simple pendulum is governed by the second-order differential equation

θ ′′ + g L θ = 0 ,
where θ is angular displacement, g is gravitational acceleration, and L is the length of the pendulum rod. Let the signal u ∈ U be just real time. States report the current angle θ ∈ V. All states are endowed with the same (or isomorphic) operations for real arithmetic, including sine and square root, interpreting standard symbols. Initial states contain values for g, L, and the initial angle θ 0 when the pendulum is released. For small θ 0 , the flow trajectory τ t (X) can be specified simply by

θ = θ 0 • sin g L • ı ,
where ı is the input port and nothing but θ changes from state to state. The update function is, accordingly,

∆ t (X) = θ → θ 0 • sin g L • ı .
q q t z y x Fig. 1. A GPAC for sine and cosine.

Hence, the critical term is θ 0 • sin(g/L • ı). It can be described by program

θ such that θ = θ 0 • sin g L • ı .
One of the most famous models of analog computations is the General Purpose Analog Computer (GPAC) of Claude Shannon [START_REF] Shannon | Mathematical theory of the differential analyser[END_REF]. Figure 1 depicts a (non-mimimal) GPAC that generates sine and cosine: in this picture, the signs denote some integrator, and the -1 denote some constant block. If initial conditions are set up correctly, such a system will evolve according to the following initial value problem:

   x ′ = z x(0) = 1 y ′ = x y(0) = 0 z ′ = -y ′ z(0) = 0 .
It follows that x(t) = cos(t), y(t) = sin(t), z = -sin(t). In other words, this simple GPAC that generates sine and cosine can be modeled by program [x, y, z such that x = cos(ı) ∧ y = sin(ı) ∧ z = -y] .

This system could also be modeled implicitly as: Solve ({x ′ = z; y ′ = x; z ′ = y}, {x = 1; y = 0; z = 0}, t) , with states incorporating an operation Solve that takes a system of differential equations, initial conditions, and a given time t, and returns the current values of the dynamic variables (x, y, z, in this example).

Our proposed model can also adequately describe systems (like a bouncing ball) in which the dynamics change periodically. The physics of a bouncing ball are given by the explicit flow equations

v = v 0 -g • t x = v • t ,
where g is the gravitational constant, v 0 is the velocity when last hitting the table, and t is the time signal-except that upon impact, each time x = 0, the velocity changes according to

v 0 = -k • v ,
where k is the coefficient of impact. The critical Boolean term is x = 0. In any finite time interval, this condition changes value only finitely many times.

This system can be described by a program like

[if x = 0 then x, v such that v = v 0 -g • t, x = (v 0 -g • t) • t if x = 0 then v 0 := -k • v] ,
where x stands for its height, and v, its speed. Every time the ball bounces, its speed is reduced by a factor k.

Discussion

We have formalized some aspects of analog algorithms, as they describe processes that evolve in continuous time according to rules expressed in a program. The proposals in this paper are just a start in our quest to formalize analog computation. In Sect. 4.5, we mentioned some further considerations, including the modeling of nondeterministic behavior. In future work, we need to consider additional features, including signals that contain more than just time and the incorporation of implicit behavioral specifications.