Towards an Axiomatization of
Simple Analog Algorithms

—Preliminary Version—

Olivier Bournez!, Nachum Dershowitz?, and Evgenia Falkovich?

! LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Olivier.Bournez@lix.polytechnique.fr
2 School of Computer Science, Tel Aviv University, Ramat Aviv, 69978 Israel
nachum.dershowitz@cs.tau.ac.il, jenny.falkovich@gmail.com

Abstract. We propose a formalization of analog algorithms, extending
the framework of abstract state machines to continuous-time models of
computation.

The states of ‘continuous’ machinery ... form a continuous manifold,

and the behaviour of the machine is described by a curve on this manifold.
All machinery can be regarded as continuous, but when it is possible to regard
it as discrete it is usually best to do so.

The property of being ‘discrete’ is only an advantage for the theoretical
investigator, and serves mo evolutionary purpose, so we could not expect
Nature to assist us by producing truly ‘discrete’ brains.

Alan M. Turing, Intelligent Machinery, 1948

1 Introduction

We seek to gain an understanding of the fundamentals of analog systems, that
is, systems that operate in continuous (real) time and with real values. Several
different approaches have been taken in the pursuit of continuous-time models
of computation. One is inspired by continuous-time analog machines, and has its
roots in models of natural or artificial analog machinery. An alternate approach,
one that can be referred to as inspired by continuous-time system theories, is
broader in scope, and derives from research in systems theory done from a com-
putational perspective. Hybrid systems and automata theory, for example, are
two such sources of inspiration. See the survey in [7].

At the outset, continuous-time computation theory was mainly concerned
with analog machines. Determining which systems should actually be considered
to be algorithmic in nature is an intriguing question and relates to philosophi-
cal discussions about what constitutes a programmable machine. All the same,
there are a number of early examples of actual analog devices that are generally
accepted to be programmable. These include Pascal’s 1642 Pascaline [10], Her-
mann’s 1814 Planimeter, Bush’s landmark 1931 Differential Analyzer [6], as well

as Bill Phillips’ 1949 water-run Financephalograph [1]. Continuous-time compu-
tational models also include neural networks and systems that can be built using
electronic analog devices. Such systems begin in some initial state and evolve
over time in response to input signals. Results are read off from the evolving
state and/or from a terminal state.

Another line of development of continuous-time models was motivated by
hybrid systems, particularly by questions related to the hardness of their verifi-
cation and control. In this case, the models are not seen as models of necessarily
analog machines, but, rather, as abstractions of systems about which one would
like to establish some properties or derive verification algorithms.

Our goal is to capture all such models within one uniform notion of com-
putation and of algorithm. The most interesting case is the hybrid one, where
the system’s dynamics change in response to changing conditions, so there are
discrete transitions as well as continuous ones. To that end, we adopt some of
the ideas embodied in Gurevich’s abstract-state machine formalism for discrete
algorithms [14].

Abstract state machines (ASMs) constitute a most general model of sequen-
tial digital computation, one that can operate on any level of abstraction of data
structures and native operations. It has been shown [I5] that any algorithm
that satisfies three “Sequential Postulates” can be step-by-step emulated by an
ASM. These postulates formalize the following intuitions: (I) one is dealing with
discrete, deterministic state-transition systems; (II) the information in states
suffices to determine future transitions and may be captured by logical struc-
tures that respect isomorphisms; and (III) transitions are governed by the values
of a finite and input-independent set of (variable-free) terms. All notions of al-
gorithms for classical discrete-time models of computation in computer science,
like Turing machines, random-access memory (RAM) machines, as well as clas-
sical extensions of them, including oracle Turing machines, alternating Turing
machines, and the like, fall under the purview of the Sequential Postulates. This
provides a basis for deriving computability theory, or even complexity theory,
upon these very basic axioms about what an algorithm really is. In particular,
adding a fourth axiom about initial states, yields a way to derive a proof of
the Church-Turing Thesis [4[12l5], as well as its extended version about relative
complexity [IT].

Capturing the notion of algorithmic computation for analog systems is a first
step towards a better understanding of computability theory for continuous-time
systems. Even this first step is a non-trivial task. Some work in this direction
has been done for simple signals. See, for example, [8/9] for an approach within
the abstract-state machine framework. An interesting approach to specifying
some continuous-time evolutions, based on abstract state machines and using
infinitesimals, is [I8]. However, a comprehensive framework, capturing general
analog systems seems to be wanting. See [7] for a discussion of the diverse analog
computability theories.

In this work, we adapt and extend ideas from work on ASMs to the analog
case, that is to say, from notions of algorithms for digital models to analogous

notions for analog systems. We go beyond the easier issue of “continuous space”,
that is, discrete-time models or algorithms with real-valued operations, since
these have already been made to fit comfortably within the ASM framework,
for which, see [2]. Indeed, algorithms for discrete-time analog models, like algo-
rithms for the Blum-Shub-Smale model of computation [3], can be covered in
this setting. The geometric constructions in [I7] are simple (loop-free) examples
of continuous-space algorithms.

In the next section, we introduce dynamical transition systems, defining sig-
nals and transition systems. In Sect. Bl we introduce abstract dynamical systems.
Next, in Sect. @ we define what an algorithmic dynamical system is. Then, in
Sect. Bl we define analog programs and provide some examples, followed by a
brief conclusion.

2 Dynamical Transition Systems

Analog systems may be thought of as “states” that evolve over “time”. The sys-
tems we deal with receive inputs, called “signals”, but do not otherwise interact
with their environment.

2.1 Signals

Typically, a signal is a function from an interval of time to a “domain” value, or
to a tuple of atomic domain values. For simplicity, we will presume that signals
are indexed by real-valued time T = R, are defined only for a finite initial (open
or closed) segment of T, and take values in some domain D. Usually, the domain
is more complicated than simple real numbers; it could be something like a tuple
of infinitesimal signals. Every signal u : T — D has a length, denoted |ul, such
that u(j) is undefined beyond |u|. To be more precise, the length of signals that
are defined on any of the intervals (0, £), [0, £), (0,], [0, ¢] is £. In particular, the
length of the (always undefined) empty signal, ¢, is 0, as is the length of any
point signal, defined only at moment 0.

The concatenation of signals is denoted by juxtaposition, and is defined as
expected, except that concatenation of a right-closed signal with a left-closed
one is only defined if they agree on the signal value at those closed ends, and
concatenation is not defined if they are both open at the point of concatenation.
The empty signal ¢ is a neutral element of the concatenation operation.

Let U be the set of signals for some particular domain D. The prefiz relation
on signals, u < v, holds if there is a w € U such that v = v w. As usual, we write
u < v for proper prefixes (u < v but u # v). It follows that ¢ < u < uw for all
signals u,w € Y. And, v < v implies |u| < |v], for all u,v.

2.2 Transition Systems

Definition 1 (Transition System). A transition system (S, So,U, T) consists
of the following:

— A nonempty set (or class) S of states with a nonempty subset (or subclass)
So C S of initial states.

— A setU of input signals over some domain D.

— A U-indezed family T = {7y tucu of state transformations 7, : S — S.

Initial states might, for example, differ in the values of parameters, such as initial
values.

It will be convenient to abbreviate 7,,(X) as just X, the state of the system
after receiving the signal u, having started in state X. We will also use Xy as
an abbreviation for the trajectory {X,}y<u, describing the past evolution of the
state.

For simplicity, we are assuming that the system is deterministic. Note that the
classical ASM framework for digital algorithms, though initially defined for de-
terministic systems, has been extended to nondeterministic transitions in [I6/13].

Should one want to model the possibility of terminal states, then the trans-
formations would be partial functions 7, : § = S. We gloss over this distinction
in what follows.

Definition 2 (Dynamical System). A dynamical system (S,So,U,T) is a
transition system, where the transformations satisfy

Tuv = Ty O Ty,
for all u,v € U, and where 7. is the identity function on states.

This implies that X, = (Xy)o-

It follows from this definition that 7T(yu)w = Tu(ww), Since composition is
associative. It also follows that instantaneous transitions are idempotent. That
is, T4 © Ty = T4, for point signal a, because then aa = a.

3 Abstract Dynamical Systems

3.1 Abstract States

A vocabulary V is a finite collection of fixed-arity function symbols, some of
which may be tagged relational. A term whose outermost function name is rela-
tional is termed Boolean.

Definition 3 (Abstract Transition System). An abstract transition system
is a dynamical transition system whose states S are (first-order) structures over
some finite vocabulary V, such that the following hold:

(a) States are closed under isomorphism, so if X € S is a state of the system,
then any structure Y isomorphic to X is also a state in S, and Y is an
initial state if X is.

(b) Input signals are closed under isomorphism, so if u € U is a signal of the sys-
tem, then any signal v isomorphic to u (that is, maps to isomorphic values)
is also a signal in U.

(¢) Transformations preserve the domain (base set); that is, Dom X, = Dom X
for every state X € S and signal v € U.

(d) Transformations respect isomorphisms, so, if X = Y is an isomorphism
of states X,Y € S, and u =¢ v is the corresponding isomorphism of input
signals u,v € U, then X, = Y,,.

In particular, system evolution is causal (“retrospective”): a state at any
given moment is completely determined by past history and the current input
signal. This is analogous to the Abstract State Postulate for discrete algorithms,
as formulated in [I5], except that subsequent states X, depend on the whole
signal u, not just the prior state X and current input.

To keep matters simple, we are assuming (unrealistically) that all opera-
tions are total. Instead, we simply model partiality by including some undefined
element | in domains. See, however, the development in [2].

Vocabularies. We will assume that the vocabularies of all states include the
Boolean truth constants, the standard Boolean operations, equality, and function
composition, and that these are always given their standard interpretations. We
treat predicates as truth-valued functions, so states may be viewed as algebras.

There are idealized models of computation with reals, such as the BSS model
[3], for which true equality of reals is available in all states. On the other hand,
there are also models of computable reals, for which “numbers” are functions
that approximate the idealized number to any desired degree of accuracy, and in
which only partial equality is available. See [2] for how to extend the abstract-
state-machine framework to deal faithfully with such cases.

3.2 Locations in States

Locations. Since a state X is a structure, it interprets function symbols in V,
assigning a value b from Dom X to the location f(ai,...,a;) in X for every
k-ary symbol f € V and values a1, ..., a; taken from Dom X. In this way, state
X assigns a value [t] y € Dom X to any ground term ¢ over V. Similarly, a state
X assigns the appropriate function value [f] to each symbol f € V.

States. It is convenient to view each state as a collection of the graphs of
its operations, given in the form of a set of location-value pairs. We adopt the
convention of writing f(as,...,ar) — b, where f(ai,...,ax) is a location in
state X, specified by the operation f € V and elements aq,...,a; € Dom X,
and b € Dom X is the value assigned by the state to that operation f at that
point (aq,...,ax). This convention allows us to apply set operations to states,
without ambiguity.

3.3 Updates of States

We need to capture the changes to a state that are engendered by a system. For
a given abstract transition system, define its update function A as follows:

A(X) = M. X, \ X

We write A, (X) for A(X)(u). The trajectory of a system may be recovered from
its update function, as follows:

where

Vu(X) :={l =[] : £ —=be Ay(X) for some b}

are the location-value pairs in X that are updated by A,,.

4 Algorithmic Dynamic Systems

We say that states X and Y agree, with respect to a set of terms 7', if [s]] = [s],
for all s € T'. This will be abbreviated X =7 Y. We also say that states X and
Y are similar, with respect to a set of terms T, if or all terms s,t € T, we have
[s]x = [t] x iff [s]y = [t]y- This will be abbreviated X ~7 Y.

4.1 Algorithmicity

The current state, “modulo” its critical terms, unambiguously determines future
states.

Definition 4 (Algorithmic Transitions). An abstract transition system with
states S over vocabulary V is algorithmic if there is a fived finite set T' of critical
terms over V, such that A, (X) = Ay (Y) for any two of its states X, Y € S and
signal u € U, whenever X and Y agree on T'. In symbols:

X=xY=A,X)=A,Y).
This implies
Xao=rYs=A,X)=A,Y).
Furthermore, similarity should be preserved:
X ~r Yy = Xua ~1 Yoa
where a € U is any point signal (|a] = 0).

Following the reasoning in [I5, Lemma 6.2], every new value assigned by
A, (X) to a location in state X is the value of some critical term. That is, if
L= be Ay(X), then b = [t] , for some critical t € T'.

Proposition 1. Fvery new value assigned by A, (X) to a location in state X
is the value of some critical term. That is, if £ — b € Ay (X), then b = [t]y for
some critical t € T'.

Proof. By contradiction, assume that some b is not critical. Let Y be the struc-
ture isomorphic to X that is obtained from X by replacing b with a fresh element
b'. By the abstract-state postulate, Y is a state. Check that [t], = [t] for every
critical term ¢. By the choice of T', A, (Y) equals A, (X) and therefore contains
b in some update. But b does not occur in Y. By (the inalterable-base-set part
of) the abstract-state postulate, b does not occur in Y,, either. Hence it cannot
occur in A, (Y) =Y, \' Y. This gives the desired contradiction.

Agreeability of states is preserved by algorithmic transitions:

Lemma 1. For an algorithmic transition system with critical terms T, it is the
case that

X=Y=X,=1Y,

for any states X, Y € S and input signal w € U.

4.2 Flows and Jumps

A “jump” in a trajectory is a change in the dynamics of the system, in contrast
with “flows”, during which the dynamics are fixed. Formally, a jump corresponds
to a change in the equivalences between critical terms, whereas, when the tra-
jectory “flows”, equivalences between critical terms are kept invariant. Accord-
ingly, we will say that a trajectory Xz flows if all intermediate states X,, and
X, (e <w < v < u) are similar. It jumps at its end if there is no prefix w < u
such that all intermediate X,, w < v < u, are similar to X,. It jumps at its
beginning if there is no prefix w < u such that all intermediate X,, € < v < w,
are similar to X.

4.3 Analgorithms
Putting everything together, we have arrived at the following.

Definition 5 (Analog Algorithm). An analog algorithm (or “analgorithm”)
is an algorithmic (abstract) transition system, such that no trajectory has more
than a finite number of (prefizes that end in) jumps.

In other words, an analog algorithm is a signal-indexed deterministic state-
transition system (Definitions [[l and [2]), whose states are algebras that respect
isomorphisms (Definition Bl), whose transitions are governed by the values of a
fixed finite set of terms (Definition M), and whose trajectories do not change
dynamics infinitely often (Definition [Hl).

4.4 Properties

System evolution is causal (“retrospective”): a state at any given moment is
completely determined by past history and the current input signal.

Theorem 1. For any analog algorithm, the trajectory can be recovered from the
immediate past (or updates from the past). In other words, X.,, for right-closed
signal u, can be obtained (up to isomorphism) as a function of Xy (that is, the
Xy, for v <u) plus the final input u..

In fact, X, depends on arbitrarily small segments X, |u), t < [u], of past
history.

Proof. This is a direct consequence of Definition Bl a

4.5 Further Considerations

It might also make sense to disallow the value given to a location ¢ at some time
t to depend on infinitely many prior changes. For example, one would not want
the value of f(t) to be set at every moment ¢ to 2f(¢/2). Rather, the value of
every location £ at moment ¢ should be determined by values provided by the
signal at time ¢ and by values of locations in the state that are “stable” at ¢t. By
stable, we mean that there is a non-empty interval of time up to ¢ in which its
value is constant. Furthermore, this temporal dependency of locations should be
well-founded.

It may happen that the system of equations that controls transitions has
a critical non-unique solution for the given initial conditions. For example, the
equation y/(z)? = 4y(z), restricted to the initial condition y(0) = 0, has two
distinct solutions, namely, ¥y = 0 and y = 2. In this case, we would want to
add some continuity constraint. We would want to require that a choice of the
solution made in the initial state is not changed for the whole trajectory governed
by that equation.

5 Programs

5.1 Definition

Definition 6 (Analog Program). An analog program P over a vocabulary V
s a finite text, taking one of the following forms:

— A constraint statement v1,...,v, such that C, where C' is a Boolean con-
dition over V and the v; are terms over V (usually subterms of C') whose
values may change in connection with execution of this statement.

— A parallel statement [Py || -+ || Pn] (n > 0), where each of the P; is an
analog program over V. (If n =0, this is “do nothing” or “skip”.)

— A conditional statement if C' then P, where C' is a Boolean condition over
V, and P is an ASM program over V.

We can use an assignment statement f(si,...,s,) := t as an abbreviation
for f(s1,...,sn) such that f(s1,...,s,) =t. But bear in mind that the result
is instantaneous, so that x := 2z is tantamount to = := 0, regardless of the
prior value of x. Similarly, x := x + 1 is only possible if the domain includes an
“infinite” value oo for which co = 0o + 1.

5.2 Semantics

In the simple case, where the changes in state at time ¢t depend only on the
current signal v and state X, we can envision the following sequence of events:

(a) All non-stable locations in X (see Sect. [LH]) have undefined values.

(b) The signal sets the value of location 1, yielding X'.

(c) Critical terms are evaluated in X’. (Only relevant terms need be evaluated,
per [2].) This may involve looking up the values of pre-defined “static” op-
erations in the state, like multiplication or division.

(d) All conditionals are evaluated, yielding a set of enabled constraints.

(e) All enabled constraints are solved (deterministically, we are assuming). In
the explicit case, this means that all enabled assignments are “executed” in
parallel, yielding a resultant state X”.

5.3 Examples

To begin with, consider analog algorithms that are purely flow, that is to say
without any jumps. Flow programs invoke a time parameter, which we assume
is supplied by the input signal. In simple continuous-time systems, the state
evolves continually, governed by ordinary differential equations, say.

For example, the motion of an idealized simple pendulum is governed by the
second-order differential equation

9"+%9=o,

where 6 is angular displacement, g is gravitational acceleration, and L is the
length of the pendulum rod. Let the signal u € U be just real time. States report
the current angle € V. All states are endowed with the same (or isomorphic)
operations for real arithmetic, including sine and square root, interpreting stan-
dard symbols. Initial states contain values for g, L, and the initial angle §; when
the pendulum is released.

For small 6y, the flow trajectory 7 (X) can be specified simply by

9:90-sin<\/%-z>,

where 2 is the input port and nothing but 6 changes from state to state. The
update function is, accordingly,

At(X):{9H90-51n<\/%-z>}.

t f - f ; f #
=

Fig.1. A GPAC for sine and cosine.

Hence, the critical term is 6 - sin(1/g/L - ¢). It can be described by program

Hsuchthat0—00~sin<,/%~z)] .

One of the most famous models of analog computations is the General Pur-
pose Analog Computer (GPAC) of Claude Shannon [I9]. Figure [depicts a
(non-mimimal) GPAC that generates sine and cosine: in this picture, the [
signs denote some integrator, and the —1 denote some constant block. If ini-
tial conditions are set up correctly, such a system will evolve according to the
following initial value problem:

=z z(0)=1
y =z y(0)=0
Z=—y 2(0)=0
It follows that x(t) = cos(t), y(t) = sin(t), z = —sin(¢). In other words, this

simple GPAC that generates sine and cosine can be modeled by program
[,y,z such that z = cos(z) Ay =sin(z) Az = —y] .
This system could also be modeled implicitly as:
Solve({x' = z;9/ = 2;2 =y}, {xr =1,y =0;2 =0}, 1) ,

with states incorporating an operation Solve that takes a system of differential
equations, initial conditions, and a given time ¢, and returns the current values
of the dynamic variables (x,y, z, in this example).

Our proposed model can also adequately describe systems (like a bouncing
ball) in which the dynamics change periodically. The physics of a bouncing ball
are given by the explicit flow equations

v=v9—g-t
r=uv-1,
where ¢ is the gravitational constant, vy is the velocity when last hitting the

table, and ¢ is the time signal—except that upon impact, each time = = 0, the
velocity changes according to

v =—k-v,

where k is the coefficient of impact. The critical Boolean term is z = 0. In any
finite time interval, this condition changes value only finitely many times.
This system can be described by a program like

[if © # 0 then z,v such that v =vg—g-t,z = (v9g —g-t) -t
|| if z =0 then vo := —k-v],

where x stands for its height, and v, its speed. Every time the ball bounces, its
speed is reduced by a factor k.

6 Discussion

We have formalized some aspects of analog algorithms, as they describe processes
that evolve in continuous time according to rules expressed in a program.

The proposals in this paper are just a start in our quest to formalize analog
computation. In Sect. [£.5 we mentioned some further considerations, including
the modeling of nondeterministic behavior. In future work, we need to consider
additional features, including signals that contain more than just time and the
incorporation of implicit behavioral specifications.

References

1. Wikipedia. MONIAC computer. At http://en.wikipedia.org/wiki/MONIAC_
Computer| (viewed Mar. 1, 2012)

2. Blass, A., Dershowitz, N., ,Gurevich, Y.: Exact exploration and hanging al-
gorithms. Proceedings of the 19th EACSL Annual Conferences on Computer
Science Logic (Brno, Czech Republic). Lecture Notes in Computer Science, vol.
6247, Berlin, Germany, Springer (2010) 140-154. Available at http://nachum.
org/papers/HangingAlgorithms. pdf (viewed June 3, 2011); longer version, Exact
exploration, at http://nachum.org/papers/ExactExploration.pdf (viewed May
27, 2011)

3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc. (NS) 21:1-46, 1989

4. Boker, U., Dershowitz, N.: The Church-Turing Thesis over arbitrary domains. In:
Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on
the Occasion of His 85th Birthday (Avron, A., Dershowitz, N., Rabinovich, A.,
eds)., Lecture Notes in Computer Science, vol. 4800, Springer-Verlag, Berlin, pp.
199-229, 2008. Available at http://nachum.org/papers/ArbitraryDomains. pdf
(viewed Jan. 10, 2012)

5. Boker, U., Dershowitz, N.: Three paths to effectiveness. In: Fields of Logic and
Computation: Essays Dedicated to Gurevich, Y. on the Occasion of His 70th Birth-
day (Blass, A., Dershowitz, N., Reisig, W., eds.), Lecture Notes in Computer Sci-
ence, vol. 6300, Springer-Verlag, Berlin, 2010. Available at http://nachum.org/
papers/ThreePathsToEffectiveness. pdf (viewed Jan. 10, 2012)

6. Bush, V.: The differential analyser. Journal of the Franklin Institute 212(4):447—
488, 1931

http://en.wikipedia.org/wiki/MONIAC_Computer
http://en.wikipedia.org/wiki/MONIAC_Computer
http://nachum.org/papers/HangingAlgorithms.pdf
http://nachum.org/papers/HangingAlgorithms.pdf
http://nachum.org/papers/ExactExploration.pdf
http://nachum.org/papers/ArbitraryDomains.pdf
http://nachum.org/papers/ThreePathsToEffectiveness.pdf
http://nachum.org/papers/ThreePathsToEffectiveness.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bournez, O., Campagnolo, M.L.: A survey on continuous time computations. In:
New Computational Paradigms. Changing Conceptions of What is Computable
(Cooper, S.B., Lowe, B., Sorbi, A., eds.). New York, Springer-Verlag, pp. 383-423.
2008

Cohen, J., Slissenko, A.: On implementations of instantaneous actions real-time
ASM by ASM with delays. Proc. of the 12th Intern. Workshop on Abstract State
Machines (ASM ’2005), Paris, France, pp. 387-396, 2005

Cohen, J., Slissenko, A.: Implementation of sturdy real-time abstract state ma-
chines by machines with delays. Proc. of the 6th Intern. Conf. on Computer Science
and Information Technology (CSIT ’2007), September 2007, Yerevan, Armenia.
Academy of Science of Armenia

Coward, D.: Doug Coward’s Analog Computer Museum, 2006. http://www.
cowardstereoview. com/analog/ (viewed Jan. 10, 2012)

Dershowitz, N., Falkovich, E.: A formalization and proof of the Extended Church-
Turing Thesis (extended abstract), Studia Logica Conference on Trends in Logic,
IX: Church Thesis: Logic, Mind and Nature, Krakow, Poland, June 2011. Available
at http://nachum. org/papers/ECTT.pdf (viewed Jan. 10, 2012)

Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof
of Church’s Thesis. The Bulletin of Symbolic Logic 14(3):299-350, 2008. Available
at http://nachum.org/papers/Church.pdf (viewed Apr. 15, 2009)

Glausch, A., Reisig, W.: A semantic characterization of unbounded-non-
deterministic abstract state machines. Algebra and Coalgebra in Computer Sci-
ence, Lecture Notes in Computer Science, vol. 4624, Springer, Berlin, pp. 242-256,
2007

Gurevich, Y.: Evolving algebras 1993: Lipari guide. In E. Borger, ed., Specifica-
tion and Validation Methods, pp. 9-36. Oxford University Press, 1995. Available
at http://research.microsoft.com/~gurevich/opera/103.pdf (viewed Apr. 15,
2009)

Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Transactions on Computational Logic 1, 2000, pp. 77-111. Available
at http://research.microsoft.com/~gurevich/opera/141.pdf| (viewed Apr. 15,
2009)

Gurevich, Y., Yavorskaya, T.: On bounded exploration and bounded nondeter-
minism. Technical Report MSR-TR-2006-07, Microsoft Research, Redmond, WA.
January 2006. Available at http://research.microsoft.com/~gurevich/opera/
177.pdf (viewed Jan. 10, 2012)

Reisig, W.: On Gurevich’s theorem on sequential algorithms. Acta Informatica
39(5):273-305, 2003

Rust, H.: Hybrid abstract state machines: Using the hyperreals for describing
continuous changes in a discrete notation. In Y. Gurevich, P. Kutter, M. Odersky,
L. Thiele, eds., International Workshop on Abstract State Machines (Monte Verita,
Switzerland), TIK-Report 87, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, pp. 341-356, March 2000

Shannon, C. E.: Mathematical theory of the differential analyser. Journal of
Mathematics and Physics 20:337-354, 1941

http://www.cowardstereoview.com/analog/
http://www.cowardstereoview.com/analog/
http://nachum.org/papers/ECTT.pdf
http://nachum.org/papers/Church.pdf
http://research.microsoft.com/~gurevich/opera/103.pdf
http://research.microsoft.com/~gurevich/opera/141.pdf
http://research.microsoft.com/~gurevich/opera/177.pdf
http://research.microsoft.com/~gurevich/opera/177.pdf

	Towards an Axiomatization of Simple Analog Algorithms[1ex]—Preliminary Version—

