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Learning Equilibria in Games by Stochastic
Distributed Algorithms.

Olivier Bournez and Johanne Cohen∗

Abstract We consider a family of stochastic distributed dynamics to learn equilibria
in games, that we prove to correspond to an Ordinary Differential Equation (ODE).
We focus then on a class of stochastic dynamics where this ODE turns out to be
related to multipopulation replicator dynamics. Using facts known about conver-
gence of this ODE, we discuss the convergence of the initial stochastic dynamics.
For general games, there might be non-convergence, but when the convergence of
the ODE holds, considered stochastic algorithms converge towards Nash equilibria.
For games admitting a multiaffine Lyapunov function, we prove that this Lyapunov
function is a super-martingale over the stochastic dynamics and that the stochastic
dynamics converge. This leads a way to provide bounds on their time of convergence
by martingale arguments. This applies in particular for many classes of games con-
sidered in literature, including several load balancing games and congestion games.

1 Introduction

Consider a scenario where agents learn from their experiments, by small adjust-
ments. This might be for example about choosing their telephone companies, or
about their portfolio investments. We are interested in understanding when the
whole market can converge towards rational situations, i.e. Nash equilibria in the
sense of game theory. This is natural to expect dynamics of adjustments to be
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stochastic, and fully distributed, since we expect agents to adapt their strategies
based on their local knowledge of the market.

Several such dynamics of adjustments have been considered recently in the liter-
ature. Up to our knowledge, this has been done mainly for deterministic dynamics
or best-response based dynamics: computing a best response requires a global de-
scription of the market. Stochastic variations, avoiding a global description, have
been considered. However, considered dynamics are somehow rather ad-hoc, in or-
der to get efficient convergence time bounds. We want to consider here more general
dynamics related to (possibly perturbed) replicator dynamics, and discuss when one
may expect convergence.

Basic game theory framework. Let [n] = {1, . . . ,n} be the set of players. Every
player i has a set Si of pure strategies. Let mi be the cardinal of Si. A mixed
strategy qi = (qi,1,qi,2, . . . ,qi,m1) corresponds to a probability distribution over pure
strategies: pure strategy ` is chosen with probability qi,` ∈ [0,1], with ∑

mi
`=1 qi,` = 1.

Let Ki be the simplex of mixed strategies for player i. Any pure strategy ` can be
considered as mixed strategy e`, where vector e` denotes the unit probability vector
with `th component unity, hence as a corner of Ki.

Let K = ∏
n
i=1 Ki be the space of all mixed strategies. A strategy profile Q =

(q1, ...,qn) ∈ K specifies the strategies of all players: qi corresponds to the mixed
strategy of player i. In game theory, we often write Q = (qi,Q−i), where Q−i de-
notes the vector of the strategies played by all other players. We admit games whose
payoffs may be random: we assume that each player i gets a random cost of ex-
pected value ci(Q). In particular, the expected cost for player i for playing the pure
strategy e` is denoted by ci(e`,Q−i).

Some classes of games. Several games where players’ costs are based on the
shared usage of a common set of resources [m] = {1,2, . . . ,m} where each resource
1 ≤ r ≤ m has an associated nondecreasing cost function denoted by Cr : [n]→ R,
have been considered in algorithmic game theory literature.

In load balancing games [9], the machines are the resources, and the players
(task) choose a machine to execute : each player i has a weight wi. The cost for
player i under profile of pure strategies (assignment) Q = (q1, . . . ,qn) corresponds
to ci(Q) = Cqi(λqi(Q)), where λr(Q) is the load of machine r: λr(Q) = ∑ j:q j=r w j.
In congestion games [13], the players compete for subsets of [m]. Hence, the pure
strategy space Si of player i is a subset of 2[m] and a pure strategy qi ∈ Q for player
i is a subset of [m] resources. The cost of player i under profile of pure strategies
Q corresponds to ci(Q) = ∑r∈qi Cr(λr(Q)) where λr(Q) is the number of q j with
r ∈ q j.

Ordinal and potential games. All these classes of games can be related to po-
tential games introduced by [11]: A game is an ordinal potential game if there
exists some function φ from pure strategies to R such that for all pure strategies
Q−i, qi, and q′i, one has ci(qi,Q−i)− ci(q′i,Q−i)> 0 iff φ(qi,Q−i)−φ(q′i,Q−i)> 0.
It is an an exact potential game if for all pure strategies Q−i, qi, and q′i, one has
ci(qi,Q−i)− ci(q′i,Q−i) = φ(qi,Q−i)−φ(q′i,Q−i).
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2 Stochastic Learning Algorithms

We consider fully distributed algorithms of the following form where b is a positive
real parameter close to 0.

Let Q(t) = (q1(t), ...,qn(t)) ∈ K denote the state of all players at instant t. Our
interest is in the asymptotic behavior of Q(t), and its possible convergence to Nash
equilibria. Functions Fb

i (ci(t),si(t),qi(t))) is defined as generic as possible, main-
taining that the qi(t) always stays validity probability vectors. We only assume that
Gi(Q) = limb→0E[ Fb

i (ci(t),si(t),qi(t)) |Q(t) ] is always defined and that Gi is con-
tinuous.
• Initially, qi(0) ∈ Ki can be any vector of probability, for all i.
• At each round t,

• Any player i selects strategy ` ∈Si with probability qi,`(t). This leads to a cost
ci(t) for player i.

• Select some player i(t): player i(t) is selected with probability pi, with ∑
n
i=1 pi =

1.
This player i(t) updates qi(t) as follows: qi(t+1) = qi(t)+bFb

i (ci(t),si(t),qi(t));
Any other player keeps qi(t) unchanged: qi(t +1) = qi(t).

Results. In the general case (Theorem 1), any stochastic algorithm in the consid-
ered class converges (see in [2]) weakly towards solutions of initial value problem
(ordinary differential equation (ODE)) dqi

dt = piGi(Q), given Q(0).
A replicator-like dynamics Fb

i is a dynamic where Fb
i (ci(t),si(t),qi(t))= γ(ci(t))

(qi(t)− esi(t))+O(b), where γ : R→ [0,1] is some decreasing function with value
in [0,1]. We assume all costs to be positive, by linearity of expectation then all costs
must be bounded by some constant M, and we can take γ(x) = M−x

M .
We can admit randomly perturbed dynamics: O(b) denotes some perturbation

that stay of order of b. A perturbed replicator-like dynamic is of the form

Fb
i (ri(t),si(t),qi(t))=O(b)+


γ(ri(t))(qi(t)− esi(t)) with probability α

b(qi(t)− es j ) with probability 1−α,
where j ∈ {1, . . . ,mi} is chosen uniformly,

where 0 < α < 1 is some constant.
We prove that such dynamics have a mean-field approximation which is iso-

morphic to a multipopulation replicator dynamics. We claim (Theorem 2), that for
general games, if there is convergence of the mean-field approximation, then sta-
ble limit points will correspond to Nash equilibria. Notice, that there is no reason
that the convergence of mean-field approximation holds for generic games. We note
(Theorem 3) that the ordinal games are Lyapunov games: their mean-field limit ap-
proximation admits some Lyapunov function. Furthermore, we show that for Lya-
punov games with multiaffine Lyapunov function, the Lyapunov function is a super-
martingale over stochastic dynamics. Finally, we deduce results on the convergence
of stochastic algorithms for this class.

For lack of space, we refer to [2] for missing proofs.
Related work. A potential game always have a pure Nash equilibrium: since

ordinal potential function, that can take only a finite number of values, is strictly
decreasing in any sequence of pure strategies strict best response moves, such a
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sequence must be finite and must lead to a Nash equilibrium [13].This is clear that
an (exact) potential game is an ordinal potential game. Congestion games, and hence
load balancing games are known to be particular potential games [13].

For load-balancing games, the bounds on the convergence time of best-response
dynamics have been investigated in [5]. Since players play in turns, this is often
called the Elementary Stepwise System. Other results of convergence in this model,
have been investigated in [7, 10], but they require some global knowledge of the
system in order to determine what next move to choose. A Stochastic version of
best-response dynamics has been investigated in [1].For congestion games, the prob-
lem of finding pure Nash equilibria is PLS-complete [8]. Efficient convergence of
best-response dynamics to approximate Nash equilibria in particular symmetric con-
gestion games have been investigated in [3] in the case where each resource cost
function satisfies a bounded jump assumption.

All previous discussions are about best-response dynamics. A stochastic dy-
namic, not elementary stepwise like ours, but close to those considered in this paper,
has been partially investigated in [12] for general games and for potential games: It
is proved to be weakly convergent to solutions of a multipopulation replicator equa-
tion. Some of our arguments follow theirs, but notice that their convergence result
(Theorem 3.1) is incorrect: convergence may happen towards non-Nash (unstable)
stationary points. Furthermore, this is not clear that any super-martingale argument
holds for such dynamics, as our proof relies on the fact that the dynamics is elemen-
tary stepwise.

Replicator equations have been deeply studied in evolutionary game theory [15].
Evolutionary game theory has been applied to routing problems in the Wardrop traf-
fic model in [6]. Potential games have been generalized to continuous player sets in
[14]. They have be shown to lead to multipopulation replicator equations, and since
our dynamics are not about continuous player sets, but lead to similar dynamics, we
borrow several constructions from [14]. No time convergence discussion is done in
[14]. Moreover, in [4], a replicator equation for the routing games and for particular
allocation games are studied to converge to a pure Nash equilibrium.

3 Mean-Field Approximation For Generic Algorithms

We focus on the evolution of Q(t), where Q(t) = (q1(t), ...,qn(t)) denotes the strat-
egy profile at instant t in the stochastic algorithm. Clearly, Q(t) is an homoge-
neous Markov chain. Define ∆Q(t) as ∆Q(t) = Q(t + 1)−Q(t), and ∆qi(t) as
qi(t +1)−qi(t). We can write

E[ ∆qi(t) |Q(t) ] = bpiE[ Fb
i (ci(t),si(t),qi(t)) |Q(t) ], (1)

with Gi(Q) = limb→0E[ Fb
i (ci(t),si(t),qi(t)) |Q(t) ] assumed to be continuous un-

der our hypotheses.
Convergence of the stochastic algorithms towards ODEs defining their mean-

field limit approximation can be formalized as follows: Consider the piecewise-
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linear interpolation Qb(.) of Q(t) defined by Qb(t) = Q(bt/bc) + (t/b− bt/bc)
(Q(bt/b+1c)−Q(bt/bc)). Function Qb(.) belongs to the space of all functions
from R into K which are right continuous and have left hand limits (cad-lag func-
tions). Now consider the sequence {Qb(.) : b> 0}. We are interested in the limit Q(.)
of this sequence when b→ 0. Recall that a family of random variable (Yt)t∈R weakly
converges (see in [2]) to a random variable Y , if E[h(Xt)] converges to E[h(Y )] for
each bounded and continuous function h.

Theorem 1. The sequence of interpolated processes {Qb(.)} converges weakly,
when b→ 0, to Q(.), which is the solution of initial value problem

dqi

dt
= piGi(Q), i = 1, · · · ,n, with Q(0) = Qb(0). (2)

4 General Games and Replicator-Like Dynamics

Now, we restrict to (possibly perturbed) replicator-like dynamics, as defined in page
3. For any such dynamic (full details in [2]), Equation (2) leads to the following or-
dinary differential equation which turns out to be (a rescaling of) (multipopulation)
classical replicator dynamic

dqi,`

dt
= piqi,`(ci(qi,Q−i)− ci(e`,Q−i)), (3)

whose limit points are related to Nash equilibria (see in [2]). Using properties of
dynamics (3), we get:

Theorem 2. For general games, for any replicator-like or perturbed replicator-like
dynamic, the sequence of interpolated processes {Qb(.)} converges weakly, as b→
0, to the unique deterministic solution of dynamic(3) with Q(0) = Qb(0). If the
mean-field approximation dynamic (3) converges, its stable limit points correspond
to Nash equilibria of the game.

More precisely (see in [2]), the following are true for solutions of dynamic (3): (i)
All Nash equilibria are stationary points. (ii) All stable stationary points are Nash
equilibria. (iii) However, (unstable) stationary points can include some non-Nash
equilibria.

Actually, all corners of simplex K are stationary points, as well as, from the form
of (3), more generally any state Q in which all strategies in its support perform
equally well. Such a state Q is not a Nash equilibrium as soon as there is an not used
strategy (i.e. outside of the support) that performs better.

Unstable limit stationary points may exist for the mean-field approximation.
Consider for example a dynamics that leave on some face of K where some well-
performing strategy is never used. To avoid “bad” (non-Nash equilibrium, hence
unstable) stationary points, following the idea of penalty functions for interior point
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methods, one can use as in Appendix A.3 of [14] some patches on the dynamics that
would guarantee Non-complacency (see in [2]). Non-Complacency (NC) is the fol-
lowing property: G(Q) = 0 implies that Q is a Nash equilibrium (3) (i.e. stationarity
implies Nash).

For general games, we get that the limit for b→ 0 is some ordinary differential
equation whose stable limit points, when t → ∞, IF there exist, can only be Nash
equilibria. Hence, IF there is convergence of the ordinary differential equation, then
one expects the previous stochastic algorithms to learn equilibria.

5 Lyapunov Games, Ordinal and Potential Games

Since general games have no reason to converge, we propose now to restrict to
games for which replicator equation dynamic or more generally general dynamics
(2) is provably convergent.

Definition 1 (Lyapunov Game). We say that a game has a Lyapunov function (with
respect to a particular dynamic (2) over K), or that the game is Lyapunov, if there ex-
ists some non-negative C 1 function F : K→R such that for all i, ` and Q, whenever
G(Q) 6= 0,

∑
i,`

pi
∂F

∂qi,`
(Q)Gi,`(Q)< 0. (4)

Lyapunov games include ordinal potential games: we will say that a Lyapunov
function F : K→R is multiaffine, if it is defined as as polynomial in all its variables,
it is of degree 1 in each variable, and none of its monomials are of the form qi,`qi,`′ .

Theorem 3. An ordinal potential game is a Lyapunov game with respect to dynam-
ics (3). Furthermore, its has some multiaffine Lyapunov function.

If φ is the potential of the ordinal potential game, then one can take its expec-
tation F(Q) = E[ φ(Q) | players play pure strategies according to Q ]as a Lyapunov
function with respect to dynamics (3). The following class of games have been in-
troduced [14, 12].

Definition 2 (Potential Game [14]). A game is called a continuous potential game
if there exists a C 1 function F : K→ R such that for all i, ` and Q,

∂F
∂qi,`

(Q) = ci(e`,Q). (5)

Proposition 1. A continuous potential game is a Lyapunov game with respect to
dynamics (3). Its has some multiaffine Lyapunov function.

Proposition 2. An (exact) potential game of potential φ leads to a continuous po-
tential game with F(Q) =E[ φ(Q) ], and conversely, the restriction of F of class C 2

to pure strategies of a potential in the sense of above definition leads to an (exact)
potential.
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A Lyapunov game can have some non-multiaffine potential function, hence not
all Lyapunov games with respect to dynamics (3) are ordinal games. The interest of
Lyapunov functions is that they provide convergence. Observing that all previous
classes are Lyapunov games with respect to dynamics (3), this gives the full interest
of this corollary.

Corollary 1. In a Lyapunov game with respect to general dynamics (3), whatever
the initial condition is, the solutions of mean-field approximation (2) will converge.
The stable limit points are Nash equilibria.

6 Replicator Dynamics for Multiaffine Lyapunov Games

Fortunately, this is possible to go further, observing that many of the previous classes
turn out to have a multiaffine Lyapunov function. The key observation is the follow-
ing (the proof mainly relies on the fact that second order terms are null for multi-
affine functions).

Lemma 1. When F is a multiaffine Lyapunov function,

E[ ∆F(Q(t +1)) |Q(t) ] =
n

∑
i=1

mi

∑
`=1

∂F
∂qi,`

(Q(t))E[ ∆qi,` |Q(t) ], (6)

where ∆F(t) = F(Q(t +1))−F(Q(t)).

Notice that for Lyapunov game with a multiaffine Lyapunov function F , with
respect to Dynamic (3) (this include ordinal, and hence potential games from above
discussion), the points Q∗ realizing the minimum value F∗ of F over compact K
must correspond to Nash equilibria.

Fortunately, this is possible to get bounds on the expected time of convergence
(see in [2]): we write L(µ) for the subset of states Q on which F(Q)≤ µ .

Definition 3 (ε-Nash equilibrium). Let ε ≥ 0. A state Q is some ε-Nash equilib-
rium iff for all 1≤ i≤ n,1≤ `≤ mi, we have ci(e`,Q−i)≥ (1− ε)ci(qi,Q−i).

Theorem 4. Consider a Lyapunov game with a multiaffine Lyapunov function F,
with respect to (3). This includes ordinal, and hence potential games from above
discussion. Taking b = O(ε), whatever the initial state of the stochastic algorithm
is, it will almost surely reach some ε-Nash equilibrium. Furthermore, it will do it in
a random time whose expectation T (ε) satisfies T (ε)≤O(F(Q(0))

ε
).
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