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1 INTRODUCTION

Magnetorheological elastomers (MREs) are a class of solidsthat consist of a rubber matrix filled
with magnetizable particles, typically sub-micron sized iron particles (see Rigbi and Jilkén (1983)
and Ginder et al. (1999)). The interest in these materials stems from their strong magnetoelastic
coupling properties. The application of an external magnetic field h, tends to align the initially random
magnetization vectors of the particles with the applied external field. As a result the interparticle
magnetic forces result in the macroscopic magnetostriction of the MRE.

Although theoretical research in general coupled field theories in mechanics was actively conduc-
ted from the early fifties to the early seventies, the attention that this area received in the next twenty
years was considerably diminished, perhaps due to the absence of technologically relevant applica-
tions. One might also speculate as an additional factor the lack, at the time, of the appropriate com-
puter hardware that is required to handle the complicated numerical calculations necessary for the
solution of the resulting boundary value problems (geometric nonlinearities, coupling between me-
chanical and magnetic fields). The situation changed in the late nineties, due to an application-driven
strong interest in MR devices (see for example Carlson and Jolly (2000)) and recent experimental in-
vestigations of Ginder et al. (1999) on MREs and their applications as well as the more recent studies
of Hubert et al. (2003), Coquelle and Bossis (2006), Diguet et al (2009,2010).

From a theoretical viewpoint, the excellent monograph by Brown (1966), which was published
in the mid-sixties, presents a direct (using conservation laws) and a variational (based on a poten-
tial energy) approach, both resulting in the same governingequations and boundary conditions for
the finite strain magnetoelasticity of non-conducting solids. Further refinements and complications in
finite strain magnetoelasticity were proposed in the early seventies by Maugin and Eringen (1972),
which included magnetic couple stresses and spin interactions stresses as a result of the dependence
of the solid’s free energy not only on the gradient of deformation and magnetization but on the spatial
gradient of the magnetization as well. On the numerical side, most of the literature on the subject (e.g.
Hirsinger and Billardon (1995), Huang et al. (1999)) solve the mechanical and magnetic problems in-
dependently and then iterate until the problem converges. Other researchers solve the coupled problem
directly (Ren et al. (1995)), or using fully-coupled FFT algorithms (Brenner, 2010), but in most of
these cases a small strain formulation is adopted and different expressions are used for the calculation
of the body forces in each one of these works.

An intriguing feature in the continuum modeling of MREs are the different expressions for the
magnetic (Maxwell) part of the total stress and the body forces, depending on adopted hypotheses.
In an effort to reconcile theses differences Dorfmann and Ogden (2003) and Kankanala and Trian-
tafyllidis (2004) have proposed fully coupled magneto-mechanical formulations for these materials.
In particular, Kankanala and Triantafyllidis (2004) have derived a consistent, fully Lagrangian varia-
tional formulation with a local energy minimum at equilibrium (instead of the saddle points in the
principles proposed by Brown (1966)), which is appropriatefor the finite element implementation
of coupled magneto-mechanical problems. In particular, this unified variational approach has already
been applied successfully in the simpler context of electromagnetic forming (where an eddy current
approximation is used and there is no magnetization presentin the solid) (Thomas and Triantafyllidis,
(2009)). However, the numerical implementation of these coupled variational principles remains an
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open question.
All the above-mentioned work on MREs is phenomenological and based on continuum models.

However, due to the recent interest in particle-filled MREs,there are recent efforts to use microme-
chanical models and mean-field homogenization techniques to predict their overall properties based
on particle volume fraction and particle shape and distribution information (e.g. Daniel et al. (2008),
Corcolle et al. (2009), Diguet et al. (2009, 2010), Ponte Castañeda and Galipeau (2010), Galipeau and
Ponte Castañeda (2012)). One should also mention here otherrecent studies involving magnetoelastic
interactions, such as magnetostriction and the development of fine microstructures in thin films (e.g.
James and Kinderlehrer (1993)). However, in our opinion, there are still several open questions that
need to be answered. For instance, the use of appropriate independent variables in the homogenization
problem (i.e., magnetization M or magnetic fieldH or magnetic field B as in Ponte Castañeda and
Galipeau (2010)) is of crucial importance, especially for numerics. Finally we should also mention
the very recent work of Kuo, Slinger and Bhattacharya (2010)that addresses the issue of optimizing
magnetoelastic coupling by microstructure modification.

The present study is divided into two parts and makes use of the works of Kankanala and Trianta-
fyllidis (2004) and Danas et al. (2012). In the first part a general presentation of the governing equa-
tions for MREs is given. Moreover, using the energy approachwe propose a minimum, fully-coupled
variational principle which is appropriate for finite element implementation. In the second part of this
work, we present recent experimental results for MREs with particle-chain microstructures subjected
to prestressing and arbitrary magnetic fields. Then, we propose a transversely isotropic energy den-
sity function that is able to reproduce these experimental measurements. In order to explain (i) the
counterintuitive effect of dilation under zero or compressive applied mechanical loads for the ma-
gnetostriction experiments and (ii) the importance of a finite strain constitutive formulation even at
small magnetostrictive strains, we propose microscopic mechanisms of deformation which are further
supported by full-field coupled FEM microstructural calculations.

2 THEORETICAL ANALYSIS

In this section, we present briefly the theoretical background for magnetoelastic solids. More specifi-
cally, the starting point for the exact or approximate solution of all boundary value problems is based
on the construction of appropriate variational principles. Thus, following Kankanala and Triantafylli-
dis (2004), we define the potential energyE(u,M ,A) of the magnetoelastic solid as

E(u,M ,A) =

∫

V

ρ0(ψ − µ0 h0 · M − f · u)dv +
1

2µ0

∫

R3

‖∇ × A − µ0ρ0M‖2 dv −

∫

∂V

t · uda, (1)

whereψ(C,M) is the free energy plus magnetic dipole energy (termed also “anisotropy energy”), and
is a function ofC = FT · F (right Cauchy-Green tensor),F is the deformation gradient,M is the
magnetization per unit mass,h0 is the externally applied magnetic field,f is applied non-magnetic
body force (e.g., gravity) per unit mass,A is the vector potential for the magnetic field perturbation,
ρ0 is the reference mass density,µ0 is the magnetic permeability of free space andt is the externally
applied mechanical traction. Notice that the magnetic energy appears in the second integral over
the entire spaceR3 since the magnetic field also exists outside the solid under consideration, which
occupies a volumeV with boundary∂V . The above energy is a functional of the independent variables
u, M , andA.

The Euler-Lagrange equations with respect toA are Ampere’s equations and interface conditions
(across an interface with reference normaln), namely:

E,A δA = 0 ⇒ ∇× H = 0 in R
3, n × [[H]] on ∂V, H = h · F, (2)

whereH andh are the h-fields in the reference and current configurations,respectively. Variation with
respect to specific magnetizationM gives the magnetic part of the constitutive response:

E,M = 0, ⇒
∂ψ

∂M
= µ0 h. (3)

Finally variation with respect to displacementu gives the equations of mechanical equilibrium and
corresponding interface conditions:

E,u = 0, ⇒ ∇ ·Π+ ρ0f = 0 in V, n · [[Π]] = T. (4)
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Here,T is the mechanical traction in the reference configuration and the first Piola-Kirchhoff stress,
Π, is related to the total Cauchy stressσ by

Π = J F
−1 · σ, σ = ρ

[

2F ·
∂ ψ

∂C
· FT + µ0 (Mh + hM)

]

+ µ0

[

hh −
1

2
(h · h) I

]

, (5)

whereJ = detF andρ = ρ0/J is the current mass density.
Notice from (5) that the total Cauchy stressσ has a mechanical part (the term inψ, recognized

from finite elasticity) plus a magnetic part (termed Maxwellstress) and is obviously symmetric. It is
worth noticing that even in the absence of material (ρ0 = 0) the Maxwell stress component is nonzero,
a concept which is a bit strange for solid mechanics where theconcept of stress is associated with the
presence of a solid.

The advantage of using a unified variational principle is evident from the absence of need to
consider separately electromagnetic body forces and interface conditions (the body forces are simply
found as the divergence of the Maxwell stress in (5)). It should also be pointed out here that, as seen
from (5), the Maxwell stress is nonlinear in terms of the magnetic field quantities, thus explaining the
need for a full Lagrangian formulation of the variational principle.

3 EXPERIMENTS AND MODELING

Experiments are carried out (Danas et al., 2012) for MREs comprising25% of iron particles of sizes
ranging from 0.5µm to 5µm cured in a 0.8T magnetic field. The application of a magnetic field during
the curing process leads to formation of particle chains aligned with the curing field direction. The
experiments involve three different setups; (a) uniaxial stress tests in the direction of a magnetic field
which is aligned with the particle chains, (b) uniaxial stress tests in the direction of a magnetic field
which is perpendicular to the particle chains and (c) simpleshear tests where the particle chains are
initially aligned with the applied magnetic field, as shown in Fig. 1.
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FIG. 1 –An illustration of the stiffening effect of a magnetic field on the shear stress-strain behavior of a MRE
(left) with particle-chain microstructure, initially aligned with the applied magnetic field (center). The stiffening
in the mechanical response when a magnetic fieldh0 is applied is due to inter-particle magnetic forces (right).

The other part of this work pertains in finding an energy density function ψ that best fits the
experiments reported above (Danas et al., 2012). The material under investigation is a transversely
isotropic composite since the iron particles form chains along a certain direction. This implies that
the free energy densityψ should also depend on the unit vectorN, (see Fig. 1), which defines the
initial orientation of the particle chains. Thus, one has

ψ = ψ(C,N,M), C = FT • F, N • N = 1. (6)

The reader is referred to the work of Danas et al. (2012) for the derivation and detailed expressions of
the energy functionψ.

Fig. 2 shows experimentally measured magnetostriction strain∆ε versus the applied nondimen-
sional magnetic fieldh/ρ0Ms for uniaxial stress tests (withρ0 denoting the initial material density).
In Fig. 2a, the magnetostriction is plotted for different preloadsσ/G, which are aligned with the ap-
plied magnetic field and the particle chain (h ‖ N). The magnitude of magnetostriction increases in
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FIG. 2 – Magnetostriction∆ε versus the applied nondimensional magnetic fieldh/ρ0Ms for various pres-
tresses,σ/G, aligned with the applied magnetic field. Part (a) and (b) correspond particle chains parallel
(h ‖ N) and perpendicular (h ⊥ N), respectively, to the applied magnetic field.

absolute value with the magnitude of the nondimensional preloads. Interestingly, the magnetostric-
tion response is not symmetric with respect to the sign of theprestress in Fig. 2a. Notice that the
sample expands (∆ε > 0) for zero or negative prestresses and contracts for adequately large tensile
prestresses. This asymmetry implies a strong nonlinear effect of the applied prestress on the resulting
magnetostriction. In turn, Fig. 2b, shows the strong influence of the particle-chain orientation upon
the overall magnetization and magnetostriction of the MRE specimens. In order to unfold the corres-
ponding underlying microstructural deformation mechanisms leading to the pronounced prestress and
particle-chain orientation effects, FEM full-field calculations are also carried out (not shown here for
brevity).
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FIG. 3 – Deformation micromechanism explaining the influence on magnetostriction of particle chain orien-
tation and prestressesσ/G (withG denoting the shear modulus of the MRE). The direction of the large (green-
color) arrows indicates the direction of effective magnetic dipoles, i.e., from south to north pole. The small
(red-color) arrows indicate the direction of motion of the particle due to the magnetic forces.

In an attempt to explain the magnetostrictive behavior depicted in Fig. 2 and particularly the coun-
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terintuitive results for the magnetostriction (e.g.,∆ε > 0 for no prestress), Danas et al. (2012) have
proposed a mechanism, sketched in Fig. 3, which could explain the previously observed responses.
The proposed local deformation mechanism to be detailed in the following has its roots in the origi-
nal work of Klingenberg and Zukoski (1990) (in the context ofelectrorheological suspensions) and
Lemaire and Bossis (1991) (in the context of magnetic suspensions), who found that between a pair
of particles subjected to a magnetic (or electric) field, there exists a restoring force which is, in ge-
neral, non-aligned to the applied magnetic (or electric) field and tends to align the particles with the
applied magnetic (or electric) field so that they form magnetic (or electric) dipoles. Similar obser-
vations have also been made in the more recent work of Borcea and Bruno (2001) in the context of
two-particle magnetostatic systems at small strain as wellas in Diguet et al. (2009) in the context of
isotropic systems (who used a dipole-to-dipole particle interaction instead of a continuum model for
the finite-sized particles to model extension of the MRE during application of magnetic fields).

As sketched in Fig. 3a forσ/G ≤ 0, the particles are taken to be somewhat aligned in a staggered
configuration. However, it is important that we do not allow for a perfect alignment of the particles in
accord with the electron micrograph shown in Fig. 1. Then, byapplication of the fieldh parallel to the
particle chain, the particles become magnetic dipoles witheffective magnetization direction indicated
by the large (green-color) arrows that tend to align themselves with the externally applied magnetic
field. The optimal configuration would be the one that the south magnetic pole of a particle on top
approaches the north magnetic pole of the particle below. Inorder to achieve such a configuration,
the particles must move in a direction almost perpendicularto h, as indicated by the small (red-color)
arrows in Fig. 3a.

This interparticle motion leads to a contraction in the direction normal toh and consequently due
to matrix incompressibility to an overall extension of the MRE alongh. Similarly in Fig. 3b, when
the particle chain is perpendicular to the applied magneticfield h , the repulsive forces between the
neighboring particles are even stronger than in the parallel case and hence lead to an even higher
overall magnetostriction. In contrast, in Fig. 3c, due to the adequately large positive prestress, the
interparticle distance increases and attractive forces between particles appear now in the direction of
the applied magnetic field, leading to an overall compressive magnetostriction.

Theoretical predictions, based on the energy density of equation (6) are compared to experimental
results in the case of simple shear loading and a uniaxial stress test in the direction of a magnetic
field which is (i) aligned with the particle chains and (ii) perpendicular to the particle chains (not
shown here for brevity). In all three cases, The model gives an excellent agreement with experiments
for relatively moderate magnetic fields but has also been satisfactorily extended to include magnetic
fields near saturation (see detailed discussion in Danas et al. (2012)).

4 CONCLUSIONS AND FUTURE WORK

The present combined experimental and theoretical investigation of MREs subjected to coupled me-
chanical and magnetic loading reveals the many challengingfeatures of these materials. This study
shows the adequacy of the anisotropic, finite strain continuum formulation for the description of these
materials, while at the same time it demonstrates the importance of microgeometry in the macrosco-
pic magnetoelastic coupling response of the composite. Given the need in applications to produce
MREs with strong magnetoelastic coupling, it is desirable to build a) microscopic models to study
these coupling mechanisms in detail and b) mean-field (i.e.,homogenization) models to investigate
more efficiently the influence of matrix properties, particle distribution and shape on the macroscopic
magnetomechanical response of these composites. On the practical side, mean field theories are a
valuable tool to optimize coupling properties (e.g., Galipeau and Ponte Castañeda (2012); Kuo et al.
(2010)) in these materials. Studies in these directions arecurrently under way by the authors.
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