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Introduction

The computational power of networks of anonymous resource-limited mobile agents has been investigated recently. Angluin et al. proposed in [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF] the model of population protocols where finitely many finite-state agents interact in pairs chosen by an adversary. Each interaction has the effect of updating the state of the two agents according to a joint transition function. A protocol is said to (stably) compute a predicate on the initial states of the agents if, in any fair execution, after finitely many interactions, all agents reach a common output that corresponds to the value of the predicate.

The model has been originally proposed to model computations realized by sensor networks in which passive agents are carried along by other entities. Variants of the original model considered so far include restriction to one-way communications [START_REF] Angluin | The computational power of population protocols[END_REF], restriction to particular interaction graphs [START_REF] Angluin | Stably computable properties of network graphs[END_REF], random interactions [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF], with "speed" [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]. Various kinds of fault tolerance have been considered for population protocols [START_REF] Delporte-Gallet | When birds die: Making population protocols fault-tolerant[END_REF], including the search for self-stabilizing solutions [START_REF] Angluin | Self-stabilizing population protocols[END_REF]. Solutions to classical problems of distributed algorithms have also been considered in this model (see [START_REF] Michail | New Models for Population Protocols[END_REF]).

Most of the works so far on population protocols have concentrated on characterizing which predicates on the initial states can be computed in different variants of the model and under various assumptions [START_REF] Michail | New Models for Population Protocols[END_REF]. In particular, the predicates computable by the unrestricted population protocols from [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF] have been characterized as being precisely the semi-linear predicates, that is those predicates on counts of input agents definable in first-order Presburger arithmetic [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF][START_REF] Angluin | Stably computable predicates are semilinear[END_REF].

In an orthogonal way, pairwise interactions between finite-state agents are sometimes motivated by the study of the dynamics of particular two-player games from game theory. For example, the work in [START_REF] Dyer | Convergence of the iterated prisoner's dilemma game[END_REF] considers the dynamics of the so-called PAVLOV behavior in the iterated Prisoners' Dilemma. Several results about the time of convergence of this particular dynamics towards the stable state can be found in [START_REF] Dyer | Convergence of the iterated prisoner's dilemma game[END_REF], and [START_REF] Fribourg | Coupling and self-stabilization[END_REF], for rings, and complete graphs [START_REF] Jaggard | Distributed computing with adaptive heuristics[END_REF] with having various classes of adversarial schedulers [START_REF] Istrate | Adversarial scheduling in evolutionary game dynamics[END_REF].

Our purpose is to better understand whether and when pairwise interactions, and hence population protocols, can be considered as the result of a game. We prove that restricting to games is not really a restriction: all predicates computable by protocols can actually be computed by protocols corresponding to games, i.e. any semi-linear predicate can be computed by a Pavlovian population multi-protocol.

In Section 2, we recall population protocols. In Section 3, we give some basics from game theory. In Section 4, we discuss how a game can be turned into a dynamics, and introduce the notion of Pavlovian population. In Section 5 we state our main result: any semi-linear predicate can be computed by a Pavlovian population multi-protocol. Remaining sections correspond to its proof: we prove that threshold and modulo predicates can be computed respectively in Sections 6 and 7.

Related Works. As we already said, population protocols have been introduced in [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF], and proved to compute all semi-linear predicates. They have been proved not to be able to compute more in [START_REF] Angluin | Stably computable predicates are semilinear[END_REF]. Various restrictions on the initial model have been considered up to now. A survey can be found in [START_REF] Michail | New Models for Population Protocols[END_REF].

More generally, population protocols arise as soon as populations of anonymous agents interact in pairs. Our original motivation was to consider rules corresponding to two-player games, and population protocols arose quite incidentally. The main advantage of the [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF] settings is that it provides a clear understanding of what is called a computation by the model. Many distributed systems have been described as the result of games, but as far as we know there has not been any attempt to characterize what can be computed by games in the spirit of this computational model.

In this paper, we turn two-player games into dynamics over agents, by considering PAVLOV behavior. This is inspired by [START_REF] Dyer | Convergence of the iterated prisoner's dilemma game[END_REF][START_REF] Fribourg | Coupling and self-stabilization[END_REF][START_REF] Kraines | Pavlov and the prisoner's dilemma[END_REF] that consider the dynamics of a particular set of rules termed the PAVLOV behavior in the iterated Prisoners' Dilemma. The PAVLOV behavior is sometimes also termed WIN-STAY, LOSE-SHIFT [START_REF] Nowak | A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game[END_REF][START_REF] Axelrod | The Evolution of Cooperation[END_REF]. Notice, that we extended it from two-strategy two-player games to n-strategies two-player games, whereas above references only talk about two-strategies two-player games, and mostly of the iterated Prisoners' Dilemma. This is clearly not the only way to associate a dynamic to a game. Alternatives to PAVLOV behavior could include MYOPIC dynamics (at each step each player chooses the best response to previously played strategy by its adversary), or the well-known and studied FICTIOUS-PLAYER dynamics (at each step each player chooses the best response to the statistics of the past history of strategies played by its adversary). We refer to [START_REF] Fudenberg | The Theory of Learning in Games[END_REF][START_REF] Binmore | Fun and Games[END_REF] for a presentation of results known about the properties of the obtained dynamics according to the properties of the underlying game. This is clearly non-exhaustive, and we refer to [START_REF] Axelrod | The Evolution of Cooperation[END_REF] for a zoology of possible behaviors for the particular iterated Prisoners' Dilemma game, with discussions of their compared merits.

Recently Jaggard et al. [START_REF] Jaggard | Distributed computing with adaptive heuristics[END_REF] studied a distributed model similar to protocol populations where the interactions between pairs of agents correspond to a game. Unlike in our model, each agent has there its own pay-off matrix and has some knowledge of the history. This work gives several non-convergence results.

In this paper we consider possibly asymmetric games. In a recent paper [START_REF] Bournez | Playing with population protocols[END_REF] we discussed population protocols corresponding to Pavlovian strategies obtained from symmetric games and we gave some protocols to compute some basic predicates. Unlike what we obtain here, where we prove that any computable predicate is computable by an asymmetric Pavlovian population protocol, restricting to symmetric games seems a (too) strong restriction and most predicates (e.g. counting up to 5, to check where x = 0 mod 2) seems not even computable.

Population Protocols

A protocol [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF] is given by (Q, Σ, ι, ω, δ) with the following components. Q is a finite set of states. Σ is a finite set of input symbols. ι : Σ → Q is the initial state mapping, and ω : Q → {0, 1} is the individual output function. δ ⊆ Q 4 is a joint transition relation that describes how pairs of agents can interact. Relation δ is sometimes described by listing all possible interactions using the notation (q 1 , q 2 ) → (q ′ 1 , q ′ 2 ), or even the notation q 1 q 2 → q ′ 1 q ′ 2 , for (q 1 , q 2 , q ′ 1 , q ′ 2 ) ∈ δ (with the convention that (q 1 , q 2 ) → (q 1 , q 2 ) when no rule is specified with (q 1 , q 2 ) in the left-hand side). The protocol is termed deterministic if for all pairs (q 1 , q 2 ) there is only one pair (q ′ 1 , q ′ 2 ) with (q 1 , q 2 ) → (q ′ 1 , q ′ 2 ). In that case, we write δ 1 (q 1 , q 2 ) for the unique q ′ 1 and δ 2 (q 1 , q 2 ) for the unique q ′ 2 .

Computations of a protocol proceed in the following way. The computation takes place among n agents, where n ≥ 2. A configuration of the system can be described by a vector of all the agents' states. The state of each agent is an element of Q. Because agents with the same states are indistinguishable, each configuration can be summarized as an unordered multiset of states, and hence of elements of Q. Each agent is given initially some input value from Σ: Each agent's initial state is determined by applying ι to its input value. This determines the initial configuration of the population.

An execution of a protocol proceeds from the initial configuration by interactions between pairs of agents. Suppose that two agents in state q 1 and q 2 meet and have an interaction. They can change into state q ′ 1 and q

′ 2 if (q 1 , q 2 , q ′ 1 , q ′ 2 ) is in the transition relation δ. If C and C ′ are two configurations, we write C → C ′ if C ′ can
be obtained from C by a single interaction of two agents: this means that C contains two states q 1 and q 2 and C ′ is obtained by replacing q 1 and q 2 by q ′ 1 and q ′ 2 in C, where (q 1 , q 2 , q ′ 1 , q ′ 2 ) ∈ δ. An execution of the protocol is an infinite sequence of configurations C 0 , C 1 , C 2 , • • • , where C 0 is an initial configuration and C i → C i+1 for all i ≥ 0. An execution is fair if for every configuration C that appears infinitely often in the execution, if C → C ′ for some configuration C ′ , then C ′ appears infinitely often in the execution. As proved in [START_REF] Angluin | Stably computable predicates are semilinear[END_REF], the fairness condition implies that any global configuration that is infinitely often reachable is eventually reached.

At any point during an execution, each agent's state determines its output at that time. If the agent is in state q, its output value is ω(q). The configuration output is 0 (resp. 1) if all the individual outputs are 0 (resp. 1). If the individual outputs are mixed 0s and 1s then the output of the configuration is undefined.

Let p be a predicate over multisets of elements of Σ. Predicate p can be considered as a function whose range is {0, 1} and whose domain is the collection of these multisets. The predicate is said to be computed by the protocol if, for every multiset I, and every fair execution that starts from the initial configuration corresponding to I, the output value of every agent eventually stabilizes to p(I). Predicates can also be considered as functions whose range is {0, 1} and whose domain is N |Σ| . The following is then known.

Theorem 1 ([3, 4]). A predicate is computable in the population protocol model if and only if it is semilinear.

Recall that semilinear sets are exactly the sets that are definable in first-order Presburger arithmetic [START_REF] Presburger | Uber die Vollstandig-keit eines gewissen systems der Arithmetik ganzer Zahlen, in welchemdie Addition als einzige Operation hervortritt[END_REF].

Game Theory

We now recall the simplest concepts from Game Theory. We focus on noncooperative games, with complete information, in normal form.

The simplest game is made up of two players, called I (or initiator ) and R (or responder ), with a finite set of actions, called pure strategies, Strat(I) and Strat(R). Denote by A i,j (resp. B i,j ) the score for player I (resp. R) when I uses strategy i ∈ Strat(I) and R uses strategy j ∈ Strat(R). The scores are given by n × m matrices A and B, where n and m are the cardinality of Strat(I) and Strat(R).

A strategy x in Strat(I) is said to be a best response to strategy y in Strat(R), denoted by x ∈ BR A (y) if A z,y ≤ A x,y for all strategies z ∈ Strat(I). Conversely, a strategy y ∈ Strat(R) satisfies y ∈ BR B (x) if B x,z ≤ B x,y for all strategies z ∈ Strat(R). A pair (x, y) is a (pure) Nash equilibrium if x ∈ BR A (y) and y ∈ BR B (x). In other words, two strategies (x, y) form a Nash equilibrium if in that state neither of the players has a unilateral interest to deviate from it.

There are two main approaches to discuss dynamics of games. The first consists in repeating games [START_REF] Binmore | Fun and Games[END_REF]. The second in using models from evolutionary game theory. Refer to [START_REF] Hofbauer | Evolutionary game dynamics[END_REF][START_REF] Weibull | Evolutionary Game Theory[END_REF] for a presentation of this latter approach.

Repeating k times a game, is equivalent to extending the space of actions into Strat(I) k and Strat(R) k : player I (respectively R) chooses his or her action x(t) ∈ Strat(I), (resp. y(t) ∈ Strat(R)) at time t for t = 1, 2, • • • , k. This is equivalent to a two-player game with respectively n k and m k choices for players.

In practice, player I (respectively R) has to solve the following problem at each time t: given the history of the game up to now, that is to say Is is natural to suppose that this is given by some behavior rules:

X t-1 = x(1), • • • , x(t -1) and Y t-1 = y(1), • • • , y(t -
x(t) = f (X t-1 , Y t-1 ) and y(t) = g(X t-1 , Y t-1
) for some particular functions f and g.

The question of the best behavior rule to use in games, in particular for the Prisoners' Dilemma gave birth to an important literature. In particular, after the book [START_REF] Axelrod | The Evolution of Cooperation[END_REF], that describes the results of tournaments of behavior rules for the iterated Prisoners' Dilemma, and that argues that there exists a best behavior rule called T IT -F OR -T AT . This consists in cooperating at the first step, and then do the same thing as the adversary at subsequent times. A lot of other behaviors, most of them with very picturesque names have been proposed and studied: see for example [START_REF] Axelrod | The Evolution of Cooperation[END_REF].

Among possible behaviors there is PAVLOV behavior: in the iterated Prisoners' Dilemma, a player cooperates if and only if both players opted for the same alternative in the previous move. This name [START_REF] Axelrod | The Evolution of Cooperation[END_REF][START_REF] Kraines | Pavlov and the prisoner's dilemma[END_REF][START_REF] Nowak | A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game[END_REF] stems from the fact that this strategy embodies an almost reflex-like response to the payoff: it repeats its former move if it was rewarded above a threshold value, but switches behavior if it was punished by receiving under this value. Refer to [START_REF] Nowak | A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game[END_REF] for some study of this strategy in the spirit of Axelrod's tournaments. The PAVLOV behavior can also be termed WIN-STAY, LOSE-SHIFT since if the play on the previous round results in a success, then the agent plays the same strategy on the next round. Alternatively, if the play resulted in a failure the agent switches to another action [START_REF] Axelrod | The Evolution of Cooperation[END_REF][START_REF] Nowak | A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game[END_REF].

From Games To Population Protocols

In the spirit of the previous discussion, to any game, we can associate a population protocol as follows, corresponding to a PAVLOV (ian) behaviour: Definition 1 (Associating a Protocol to a Game). Assume a (possibly asymmetric) two-player game is given. Let A and B be the corresponding matrices. Let ∆ be some threshold.

The protocol associated to the game is a population protocol whose set of states is Q, where Q = Strat(I) = Strat(R) is the set of strategies of the game, and whose transition rules δ are given as follows: (q 1 , q 2 , q ′ 1 , q ′ 2 ) ∈ δ where

-q ′ 1 = q 1 when A q1,q2 ≥ ∆, -q ′ 1 ∈ BR A (q 2 ) when A q1,q2 < ∆, -q ′ 2 = q 2 when B q2,q1 ≥ ∆, -q ′ 2 ∈ BR B (q 1 ) when B q2,q1 < ∆.

Definition 2 (Pavlovian Population Protocol). A population protocol is

Pavlovian if it can be obtained from a game as above.

A population protocol obtained from a game as above will be termed deterministic if best responses are assumed to be unique; in this case, the rules are deterministic: for all q 1 , q 2 , there is a unique q ′ 1 and a unique q ′ 2 such that (q 1 , q 2 , q ′ 1 , q ′ 2 ) ∈ δ. In order to avoid to talk about matrices, we start by stating some structural properties of Pavlovian population protocols.

Proposition 1. Consider a set of rules. For all rules ab → a ′ b ′ , we denote

δ I a (b) = b ′ and δ R b (a) = a ′ . Let Stable I (a) = {x ∈ Q|δ I a (x) = x}, and Stable R (a) = {x ∈ Q|δ R a (x) = x}. Then the set of rules is deterministic Pavlovian iff ∀a ∈ Q ∃ max I (a) ∈ Stable I (a) and ∃ max R (a) ∈ Stable R (a) such that for all states a, 1. ∀b ∈ Stable I (a) implies δ I a (b) = max I (a). 2. ∀b ∈ Stable R (a) implies δ R a (b) = max R (a).
Proof. First, we consider a Pavlovian population protocol P obtained from corresponding matrices A and B. Let ∆ be the associated threshold. Let a be an arbitrary state in Q, and let q be the best response to strategy a for matrix B. Focus on the rule aq → a ′ q ′ where (a ′ , q ′ ) ∈ Q 2 , i.e., focus on the case where player I plays a while player R plays q. As q = BR B (a), we have, by Definition 1, q ′ equals to q. Thus, q ∈ Stable I (a). Now, let consider b such that b / ∈ Stable I (a). We focus on the rule ab → a ′′ b ′ where (a ′′ , b ′ ) ∈ Q 2 . So by definition of set Stable I , we have b = b ′ . Using Definition 1, we have B b,a < ∆ and b ′ = BR B (a). So b ′ = BR B (a) = q. Thus, if we let max I (a) = q, max I (a) satisfies the conditions of the proposition.

Using similar arguments, we can also prove that

∃ max R (a) ∈ Stable R (a) such that ∀b ∈ Stable R (a) implies δ I a (b) = max R (a)
. In fact, we can sum up the relationship between the game matrix and rules by the following: for any a ∈ Q, we have Stable

I (a) = {x ∈ Q|B x,a ≥ ∆} ∪ {BR B (a)} and max I (a) = BR B (a) and Stable R (a) = {x ∈ Q|A x,a ≥ ∆} ∪ {BR A (a)} and max R (a) = BR A (a).
Conversely, consider a population protocol P satisfying the properties of the proposition. All rules ab → a ′ b ′ are such that δ I a (b) = b ′ and δ R b (a) = a ′ . We focus on the construction on a two-player game having the corresponding matrices A, and B. We fix an arbitrary value ∆ as the threshold of the corresponding game.

-

If Stable I (a) = Q, then B max I (a),a = ∆ + 1. If x ∈ Stable I (a) and if x = max I (a) then B x,a = ∆. If x / ∈ Stable I (a), then B x,a = ∆ -1. -If Stable I (a) = Q, then ∀x ∈ Q, B x,a = ∆. -If Stable R (a) = Q, then A max R (a),a = ∆ + 1. If x ∈ Stable R (a) and if x = max R (a) then A x,a = ∆. If x / ∈ Stable R (a), then A x,a = ∆ -1. -If Stable R (a) = Q, then ∀x ∈ Q, A x,a = ∆.
It is easy to see that this game describes all rules of P . So, P is a Pavlovian population Protocol.

Main Result

Inverting value of the individual output function, the class of predicates computable by a Pavlovian population protocol is clearly closed under negation. However, this is not clear that predicates computable by Pavlovian population protocols are closed under conjunction or disjunction.

This is true if one considers multi-protocol. The idea is to consider k (possibly asymmetric) two-player games. At each step, each player chooses a strategy for each of the k games. Now each of the k games is played independently when two agents meet. Formally: Definition 3 (Multiprotocol). Consider k (possibly asymmetric) two-player games. For game i, let Q i be the corresponding states, A i and B i the corresponding matrices.

The associated population protocol is the population protocol whose set of states is

Q = Q 1 × Q 2 × . . . × Q k ,
and whose transition rules are given as follows: ((q 1 1 , . . . , q k 1 ), (q 1 2 , . . . , q k 2 ), (q

1 1 ′ , . . . , q k 1 ′ ), (q 1 2 ′ , . . . , q k 1 ′
)) ∈ δ where, for all

1 ≤ i ≤ k, (q i 1 , q i 2 , q i 1 ′ , q i 2 ′
) is a transition of the Pavlovian population protocol associated to the i th game.

Notice that, when considering population protocols, a multi-protocol is a particular population protocol. This is the key property used in [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF] to prove that stably computable predicates are closed under boolean operations. When considering Pavlovian games, one can build multi-protocols that are not Pavlovian protocols, and it is not clear whether one can always transform any pavlovian multi-protocol into an equivalent pavlovian protocol.

As explained before, multisets of elements of Σ = (σ 1 , . . . , σ l ) are in bijection with elements of N l , and can be represented by a vector (x 1 , . . . , x l ) of non-negative integers where x i is the number of occurrences of σ i in the multiset. Thus, we consider predicates ψ over vectors of non-negative integers. We write [ψ] for their characteristic functions. Recall that a predicate is semi-linear iff it is Presburger definable [START_REF] Presburger | Uber die Vollstandig-keit eines gewissen systems der Arithmetik ganzer Zahlen, in welchemdie Addition als einzige Operation hervortritt[END_REF]. Semi-linear predicate correspond to boolean combinations of threshold predicates and modulo predicates defined as follows (variables x i represent the number of agents initially in state σ i ): A threshold predicate is of the form [Σa i x i ≥ k], where ∀i, a i ∈ Z, k ∈ Z and the x i s are variables. A modulo predicate is of the form [Σa i x i ≡ b mod k], where ∀i,

a i ∈ Z, k ∈ N \ {0, 1}, b ∈ [1, k -1]
and the x i s are variables.

We can then state our main result: Theorem 2. For any predicate ψ, the following conditions are equivalent:

ψ is computable by a population protocol ψ is computable by a Pavlovian population multi-protocol ψ is semi-linear.

The proof of the following proposition can be found in Appendix A.1.

Proposition 2. The class of predicates computable by multi-games are closed under boolean operations.

As from Proposition 2, predicates computable by Pavlovian population multiprotocols are closed under boolean operations, and as a Pavlovian population protocol is a particular Pavlovian population multi-protocol, and as predicates computable by (general) population protocols are known to be exactly semilinear predicates, to prove Theorem 2 we only need to prove that we can compute threshold predicates and modulo predicates by Pavlovian population protocols. This is the purpose of the following sections.

Threshold Predicates

In this section, we prove that we can compute threshold predicates using Pavlovian protocols. Proposition 3. For any integer k, and any integers a 1 , a 2 , • • • , a m there exists a Pavlovian population protocol that computes

[ m i=1 a i x i ≥ k].
First note, that we can assume without loss of generality that k ≥ 1. Indeed,

[Σa i x i ≥ -k] = [Σ(-a i )x i ≤ k] = [Σ(-a i )x i < k + 1] which is the negation of [Σ(-a i )x i ≥ k + 1].
Thus from a population protocol computing [Σ(-a i )x i ≥ k + 1] with k ≥ 0, we just have to inverse the output function to obtain a population protocol that computes

[Σa i x i ≥ -k].
The purpose of the rest of this section is to prove Proposition 3. We first discuss some basic ideas: Our techniques are inspired by the work of Angluin et al. [START_REF] Angluin | The computational power of population protocols[END_REF]. The set of states we use is the set of integers from [-M, M ] where M = max(|a i |, 2k -1). Each agent with input σ i is given an initial weight of a i . During the execution, the sum of the weights over the whole population is preserved. In [START_REF] Angluin | Stably computable predicates are semilinear[END_REF], the general idea is the following: two interacting agents with positive weights p and q such that p + q ≤ M are transformed into an agent with weight 0 and an agent with weight p + q, while two agents with weight p and q such that p + q > M are transformed into two agents with weight ⌊(p + q)/2⌋ and ⌈(p + q)/2⌉ that are both greater or equal to k.

In our setting, we cannot use the same rules since all agents that change their states when they meet an agent in state p while being initiator (resp. responder) must take the same state that only depends of p. To avoid this problem, a trick is to use rules of the following form: pq → (p+1)(q -1). However, we also have to make sure that the protocol enables all agents to agree in the final configuration.

Whereas this kind of consideration is easy in the classical population protocol model, this turns out to be tricky in our settings.

We describe a protocol that computes [

m i=1 a i x i ≥ k].
Our protocol is defined as follows: we consider Σ = {σ 1 , . . . , σ l }, Q = {⊤} ∪ [-M, M ]; for all i, ι(σ i ) = a i ; and we take ω(⊤) = 1 and for any p ∈ [-M, M ], ω(p) = 1 if and only if p ≥ 1.

We distinguish two cases: either k = 1, or k ≥ 2. We present two protocols here, because we need to have a mechanism in our protocols to enable to "broadcast" the result; this is not so difficult in the first case whereas it is more technical in the second one. Due to lack of space, we only give the rules for k = 1 (the proof can be found in Appendix A.2), but provide a full proof for the case k ≥ 2. Case k = 1. Our protocol computing [Σa i x i ≥ 1] is defined as follows (see Appendix A.2). The rules are the following.

⊤⊤→⊤⊤ 1⊤ → 1⊤ ∀n ∈ [-M, 0], ∀p ∈ [2, M -1] n⊤→ n0 nx → nx ∀x ∈ [-M, M ], ⊤x→ ⊤x ∀x ∈ [-M, M ] 1n → (n + 1)⊤ ∀n ∈ [-M, 0] 1p → 1p ∀p ∈ [1, M ] p⊤→ p⊤ pn →(n + 1)(p -1) pp ′ → pp ′ ∀p ′ ∈ [1, M ]
Case k ≥ 2. Our protocol is deterministic and from Proposition 1 uniquely determined by the sets Stable I (q), Stable R (q), and by the values max I (q), max R (q) defined as follows.

q ∈ Q Stable I (q) max I (q) Stable R (q) max R (q) ⊤ {⊤} ∪ [-M, 0] ∪ [k, M ] -1 {⊤} ∪ [-M, M ] n ∈ [-M, -1] [-M, M ] 0 {⊤} ∪ [-M, 0] (n + 1) 0 [-M, M ] 0 {⊤} ∪ [-M, k -1] 1 1 {⊤, 0, M } ⊤ [-M, 0] 2 p ∈ [2, k -1] {⊤, 0, M } (p -1) [-M, 0] (p + 1) b ∈ [k, M -1] {⊤} ∪ [k, M ] (b -1) {⊤} ∪ [-M, 0] ∪ [k, M ] (b + 1) M {⊤} ∪ [k, M ] (M -1) {⊤} ∪ [-M, M ]
The transition rules we obtain from these sets and values are the following.

⊤⊤→ ⊤⊤ ⊤p → (p + 1)(-1) ∀p ∈ [1, k -1] 1⊤ → 1⊤ 1x → (x + 1)⊤ ∀x / ∈ {⊤, 0, M } ∀p ∈ [2, k -1] p⊤ → p⊤ p0 → p0 ∀n ∈ [-M, 0] n⊤→ n0 ∀b ∈ [k, M ] b⊤ → b⊤ bx →(x + 1)(b -1) ∀x ∈ [-M, k -1] ⊤x →⊤x ∀x ∈ [-M, 0] ∪ [k, M ] 10 →10 1M →1M px →(x + 1)(p -1) ∀x / ∈ {⊤, 0, M } pM →pM nx →nx ∀x ∈ [-M, M ] bb ′ →bb ′ ∀b ′ ∈ [k, M ]
We say that an agent in state x ∈ [-M, M ] has weight x and that an agent in state ⊤ has weight 0. Note that in the initial configuration the sum of the weights of all agents is exactly Σa i x i . Note that any of the rule of our protocol does not modify the total weight of the population, i.e., at any step of the execution, the sum of the weights of all agents is exactly Σa i x i .

Note that the stable configurations, (i.e., the configurations where no rule can be applied to modify the state of any agent), are the following:

every agent a is in some state n(a) ∈ [-M, 0], -a unique agent is in state p ∈ [1, k -1] and every other agent is in state 0.

every agent a is either in some state b(a) ∈ [k, M ] or in state ⊤.

Note that no agent starts in state ⊤, and that no rule enables the two interacting agents to enter the state ⊤ except for the rule ⊤⊤ → ⊤⊤. Thus, we know that it is impossible that all agents are in state ⊤. Consequently, in the last case described, we know that there is at least one agent in a state b ∈ [k, M ].

Note that in any stable configuration, all agents have the same output; if Σa i x i ≥ k then all agents output 1, while in all the other cases, the agents output 0. Thus, if the population reaches a stable configuration, we know that the computed output is correct and that it will not be modified any more. Now, we should prove that the fairness condition ensures that we always reach a stable configuration. In fact, it is sufficient to prove that from any reachable configuration, there exists an execution that reaches a stable configuration.

Consider any configuration reached during the execution. As long as there is an agent in state p ∈ [1, M ] and an agent in state n ∈ [-M, -1], we apply pn → (n + 1)(p -1). Thus we can always reach a configuration where the states of all agents are in [-M, 0] ∪ {⊤} if Σa i x i ≤ 0, or in [0, M ] ∪ {⊤} otherwise.

If Σa i x i ≤ 0, then there is at least one agent in state n ∈ [-M, 0], since all agents cannot be in state ⊤. In this case, applying iteratively the rule n⊤ → n0, we reach a stable configuration where all agents have a state in [-M, 0].

Suppose now that Σa

i x i ∈ [1, k -1]. Since Σa i x i ∈ [1, k -1]
, each agent with a positive weight is in a state in [1, k -1]. Applying iteratively the rule pp ′ → (p -1)(p ′ + 1) where p, p ′ ∈ [1, k -1], we reach a configuration where there is exactly one agent in state p ∈ [1, k -1] while all the other agents are in state 0 or ⊤. Applying iteratively the rules ⊤p → (p + 1)(-1) and (p + 1)(-1) → 0p, we reach a configuration where one agent is in state p ∈ [1, k -1] while all the other agents are in state 0.

Finally, assume that Σa i x i ≥ k. If there is an agent in state p ∈ [1, k -1], we know that there is at least another agent in state q ∈ [1, M ]. If p + q ≤ M , applying iteratively the rule pq → (p -1)(q + 1) between these two agents, we reach a configuration where one of these two agents is in state 0 while the other is in state p + q. In this case, we have strictly reduced the number of agents in a state in [

1, k -1]. If p+q > M ≥ 2k, then q ∈ [k, M ],
and applying iteratively the rule qp → (q -1)(p + 1), we reach a configuration where one agent is in state k while the other agent is in state p + q -k ∈ [k, 2M ]. Here again, we have strictly reduced the number of agents in a state in [1, k -1]. Applying these rules as long as there exists an agent in state p ∈ Due to lack of space, we only give the rules of the protocol for the case when b ∈ [1, k -1] (see Appendix A.3 for the complete proof). In that case, our protocol is defined as follows: Σ = {σ 1 , . . . , σ l }, Q = {⊤} ∪ [0, k -1]; for all i, let ι(σ i ) ≡ a i mod k; let ω(⊤) = 1 and for any p ∈ [0, k -1], let ω(p) = 1 if and only if p = b.

The rules are the following:

⊤⊤ → ⊤⊤ b⊤ → b⊤ 0⊤ → 0⊤ ∀p ∈ [1, k -1] ⊤p → ⊤p p(k -1)→⊤(p -1) ∀p ∈ [0, k -1] \ {b} 0p → 0p ⊤0→ 00 0b→ ⊤(k -1) if b = k -1 0b→ (b + 1)(k -1) if b = k -1 pp ′ → pp ′ ∀p ′ ∈ [0, p -1] pp ′ →(p ′ + 1)(p -1) ∀p ′ ∈ [p, k -2] p⊤→ 1(p -1)

Conclusion

In this work, we present some (original an non-trivial) Pavlovian population protocols that compute the general threshold and modulo predicates. From this, we deduced that a predicate is computable in the Pavlovian population multiprotocol model if and only if it is semilinear.

In other words, we proved that restricting to rules that correspond to asymmetric games in pairwise interactions is not a restriction.

We however needed to consider multi-protocols, that is to say multi-games. We conjecture that the Pavlovian population protocols (i.e. non-multi-protocol) can not compute all semilinear predicates. A point is that in such protocols the set of rules are very limited (see Proposition 1). In particular, it seems rather impossible to perform an "or" operation between two modulo predicates in the general case.

Notice that the hypothesis of asymmetric games seems also necessary. We studied symmetric Pavlovian population protocols in [START_REF] Bournez | Playing with population protocols[END_REF] where we demonstrated that some non-trivial predicates can be computed. However, even very basic predicates, like the threshold predicate counting up to 5, seems problematic to be computed by symmetric games. With asymmetric games, general threshold and modulo predicates can be computed.

Proposition 4 .

 4 [1, k -1], we reach a configuration where all agents are either in a state in [k, M ], or in state 0 or ⊤. Since Σa i x i ∈ [k, M ], we know there exists an agent in state b ∈ [k, M ]. Applying iteratively the rules b0 → 1(b-1) and 1(b-1) → b⊤, we reach a stable configuration where all agents are either in state ⊤ or in a state in [k, M ]. For any integers k, b, and any integers a 1 , a 2 , • • • , a m there exists a Pavlovian population protocol that computes [ m i=1 a i x i ≡ b mod k].

  1) what should I (resp. R) play at time t? In other words, how to choose x(t) ∈ Strat(I)? (resp. y(t) ∈ Strat(R)?)

⋆ This work and all authors were partly supported by ANR Project SHAMAN, Xavier Koegler was supported by the ANR projects ALADDIN and PROSE

A Proofs

The following proofs are here for completeness of the refereeing process.

A.1 Proof of Proposition 2

The negation is easy to deal with, as we just need to change ω into 1 -ω. From de Morgan's laws, we only need to prove closure by conjunction.

For the conjunction of two multi-games, let consider the multi-game including all the games present in the two initial multi-games. The conjunction protocol is the one associated to the new multi-game with output function ω ′ (q 1 , . . . , q k , p 1 , . . . , p l ) = ω 1 (q 1 , . . . , q k ) * ω 2 (p 1 , . . . , p l ), where (q 1 , . . . , q k ) and (p 1 , . . . , p l ) are the corresponding games in the first and second multi-games, and ω 1 and ω 2 the respective output functions.

A.2 Proof of Our Protocol for Threshold Predicates when k = 1 Our protocol computing [Σa i x i ≥ 1] is defined as follows:

where ⊤ corresponds to a weight of 0 but has a different output meaning than the state 0. -ι(σ i ) = a i .

ω(⊤) = 1 and for any p ∈ [-M, M ], ω(p) = 1 if and only if p ≥ 1.

Our protocol is deterministic and from Proposition 1 uniquely determined by the sets Stable I (q), Stable R (q), and by the values max I (q), max R (q) defined as follows.

The transition rules we obtain from these sets and values are the following.

We say that an agent in state x ∈ [-M, M ] has weight x and that an agent in state ⊤ has weight 0. Note that in the initial configuration the sum of the weights of all agents is exactly Σa i x i . Note that any of the rule of our protocol does not modify the total weight of the population, i.e., at any step of the execution, the sum of the weights of all agents is exactly Σa i x i .

Note that the stable configurations, (i.e., the configurations where no rule can be applied to modify the state of some agent), are the following:

each agent a is in some state n(a) ∈ [-M, 0], -each agent a is either in some state p(a) ∈ [1, M ] or in state ⊤.

Note that no agent starts in state ⊤, and that no rule enables the two interacting agents to enter the state ⊤ except for the rule ⊤⊤ → ⊤⊤. Thus, we know that it is impossible that all agents are in state ⊤. Consequently, in the last case described, we know that there is at least one agent in a state p ∈ [1, M ].

Note that in any stable configuration, all agents have the same output; if Σa i x i ≥ 1 then all agents output 1, while in all the other cases, the agents output 0. Thus, if the population reaches a stable configuration, we know that the computed output is correct and that it will not be modified any more. Now, we should prove that the fairness condition ensures that we always reach a stable configuration. In fact, it is sufficient to prove that from any reachable configuration, there exists an execution that reaches a stable configuration. Indeed, since the number of configurations is finite, it means that in any execution, there is a stable configuration S such that from any reachable configuration, S is reachable. The fairness condition ensures that S is eventually reached.

We now show that from any configuration, there exists an execution that leads to a stable configuration.

Consider any configuration reached during the execution. As long as there is an agent in state p ∈ [1, M ] and an agent in state n ∈ [-M, -1], we apply pn → (n + 1)(p -1). Thus we can always reach a configuration where the states of all agents are in [-M, 0] ∪ {⊤} if Σa i x i ≤ 0, or in [0, M ] ∪ {⊤} otherwise.

If Σa i x i ≤ 0, then there is at least one agent in state n ∈ [-M, 0], since all agents cannot be in state ⊤. In this case, applying iteratively the rule n⊤ → n0, we reach a stable configuration where all agents have a state in [-M, 0].

If Σa i x i ≥ 1, then there is at least one agent in state p ∈ [1, M ]. If there is an agent in state 0, we apply the following rules. If there is no agent in state 1, we apply a rule p0 → 1(p -1) for p ∈ [2, M ] to create a 1. Then, applying iteratively the rule 10 → 1⊤, we reach a stable configuration where each agent is either in a state in [

This ends the proof of Proposition 3 when k = 1.

A.3 Proof of Our Protocol for Modulo Counting

Here again, we use rules of the form np → (n + 1)(p -1) mod k so that at the end of the computation there is only one node with a non-zero weight. We should also add some rules to be able to ensure the "broadcast" of the result among the agents. We consider two cases, depending on whether b is equal to zero or not.

Our protocol is defined as follows:

where ⊤ corresponds to a weight of 0 but has a different output meaning than the state 0.

Our protocol is deterministic and from Proposition 1 uniquely determined by the sets Stable I (q), Stable R (q), and by the values max I (q), max R (q) defined as follows. In the following table, when p = k -1 (resp. b = k -1), p + 1 (resp. b + 1) should be understand as ⊤.

The transition rules we obtain from these sets and values are the following.

Note that in the initial configuration the sum of the weights of all agents is exactly Σa i x i mod k. Note that the application of any rule of our protocol does not modify this value, i.e., at any step of the execution, the sum of the weights of all agents is exactly Σa i x i mod k.

Note that the stable configurations, (i.e., the configurations where no rule can be applied to modify the state of some agent), are the following:

there exists a unique agent in state b and all other agents are in state ⊤.

there exists at most one agent in state p ∈ [1, k -1] \ {b} and all other agents are in state 0.

As in the protocols for threshold predicates, no rule can transform the states of two interacting agents into ⊤ except for the rule ⊤⊤ → ⊤⊤. Since initially, no agent is in state ⊤, it is impossible to reach a configuration where all agents are in state ⊤.

In any stable configuration, either all agents output 1 (if Σa i x i ≡ b mod k), or all agents output 0. We now show that from any reachable configuration, we can reach a stable configuration.

As long as there are two agents in states p, p ′ ∈ [1, k -1] with p ≤ p ′ , we can apply iteratively the rule pp ′ → (p ′ + 1)(p -1) between these two agents. Doing so, either one agent enters state 0, or one agent is in state k -1, while the other is in state p ′′ ∈ [1, k -1]. In the latter case, applying the rule p(k -1) → ⊤(p -1), we also decrease the number of agents with a positive weight by 1. Thus, we can always reach a configuration where there is at most one agent a in state p ∈ [1, k -1], while all the other agents are in state 0 or ⊤.

If Σa i x i ≡ 0 mod k, then all agents are in state 0 or ⊤, and we know there is at least one agent in state 0. Applying as long as necessary the rule ⊤0 → 00, we reach a stable configuration where all agents are in state 0.

then one agent is in state p while all the other agents are in state 0 or ⊤. If there is an agent in state ⊤, we apply the rule p⊤ → 1(p -1). If p = 1, then there is one more agent in state 0. If p > 1, we apply the rule 1(p -1) → p0, to also get one more agent in state 0. Iterating this process, we reach a stable configuration where one agent is in state p while all other agents are in state 0.

If Σa i x i ≡ b mod k, then one agent is in state b while all the other agents are in state 0 or ⊤. As long as there is an agent in state 0, if b = k -1, we apply the rules 0b → (b + 1)(k -1) and (b + 1)(k -1) → ⊤b. If b = k -1, we apply the rule 0(k -1) → ⊤(k -1). Doing so, we reach a stable configuration where one agent is in state b while all other agents are in state ⊤.

Case b = 0. If k = 2, then [Σa i x i ≡ 0 [START_REF] Angluin | Stably computable properties of network graphs[END_REF]] is the negation of [Σa i x i ≡ 1 [START_REF] Angluin | Stably computable properties of network graphs[END_REF]]. In this case, since pavlovian protocols are closed under negation, we know from the previous case that there is a pavlovian protocol that computes [Σa i x i ≡ 0 [START_REF] Angluin | Stably computable properties of network graphs[END_REF]].

In the following, we assume that k ≥ 3. Our protocol is defined as follows:

where A and B corresponds to a weight of 0 but has a different output meaning than the state 0.

ι(σ i ) ≡ a i mod k.

ω(0) = 1 and for any

Our protocol is deterministic and from Proposition 1 uniquely determined by the sets Stable I (q), Stable R (q), and by the values max I (q), max R (q) defined as follows.

The transition rules we obtain from these sets and values are the following.

Note that in the initial configuration the sum of the weights of all agents is exactly Σa i x i mod k. Note that the application of any rule of our protocol does not modify this value, i.e., at any step of the execution, the sum of the weights of all agents is exactly Σa i x i mod k.

Note that the stable configurations, (i.e., the configurations where no rule can be applied to modify the state of some agent), are the following:

all agents are in state 0.

there exists a unique agent in state p ∈ [1, k -2] and all other agents are in state A. -there exists a unique agent in state p ∈ [2, k -1] and all other agents are in state B.

In any stable configuration, either all agents output 1 (if Σa i x i ≡ b mod k), or all agents output 0. We now show that from any reachable configuration, we can reach a stable configuration.

As in the previous case, as long as there are two agents in states p, p ′ ∈ [1, k -1] with p ≤ p ′ , we can apply iteratively the rule pp ′ → (p ′ + 1)(p -1) between these two agents. Doing so, either one agent enters state 1, or one agent is in state k -1. If one agent is in state 1 while the other is in state k -1, we apply the rule 1(k -1) → BA, and we have decreased the number of agents with a positive weight by 2. If there is one agent in state 1 (resp. k -1) while the other is in state p ∈ [1, k -2] (resp. p ∈ [2, k -1]), we apply the rule 1p → (p + 1)A (resp. p(k -1) → B(p -1)) to decrease the number of agents with a positive weight. Thus, we can always reach a configuration where there is at most one agent a in state p ∈ [1, k -1], while all the other agents are in state 0, A or B.

If Σa i x i ≡ 0 mod k, either all agents have started in state 0 or not. In the first case, the initial configuration was a stable configuration, and we have nothing to prove. In the second case, the last step before we reach a configuration containing only agents in state 0, A or B, there was one agent in state 1, one agent in state (k -1) and the rule 1(k -1) → BA has been applied. Thus, either there exists an agent in state 0 in the configuration, or there exists an agent in state A and an agent in state B. In the latter case, we can apply the rule AB → 00 to be in a configuration containing agents in state 0. Then, applying the rules A0 → 00 and B0 → 00, we reach a stable configuration where all agents are in state 0.

If Σa i x i ≡ 1 mod k (resp. Σa i x i ≡ k -1 mod k), we reach a configuration where there is exactly one agent in state 1 (resp. k -1) while all the other agents are in state 0, A or B. Then applying the rules 1B → 1A and 10 → 1B (resp. A(k -1) → B(k -1) and 0(k -1) → B(k -1)), we reach a stable configuration where there is exactly one agent in state 1 (resp. k -1) while all the other agents are in state A (resp. B).

If Σa i x i ≡ p mod k with p ∈ [2, k -2], we reach a configuration where there is exactly one agent in state p while all the other agents are in state 0, A or B. If the agents with weight 0 are either all in state A, or all in state B, we are in a stable configuration. Otherwise, applying as long as possible the rules AB → 00, 0p → (p + 1)(k -1) and (p + 1)(k -1) → Bp, we reach a final configuration where exactly one agent is in state p while all the other agents are in state B.